diff options
author | thegeorg <thegeorg@yandex-team.com> | 2024-03-13 13:58:24 +0300 |
---|---|---|
committer | thegeorg <thegeorg@yandex-team.com> | 2024-03-13 14:11:53 +0300 |
commit | 11a895b7e15d1c5a1f52706396b82e3f9db953cb (patch) | |
tree | fabc6d883b0f946151f61ae7865cee9f529a1fdd /contrib/libs/clang16/lib/CodeGen/CodeGenModule.cpp | |
parent | 9685917341315774aad5733b1793b1e533a88bbb (diff) | |
download | ydb-11a895b7e15d1c5a1f52706396b82e3f9db953cb.tar.gz |
Export clang-format16 via ydblib project
6e6be3a95868fde888d801b7590af4044049563f
Diffstat (limited to 'contrib/libs/clang16/lib/CodeGen/CodeGenModule.cpp')
-rw-r--r-- | contrib/libs/clang16/lib/CodeGen/CodeGenModule.cpp | 7216 |
1 files changed, 7216 insertions, 0 deletions
diff --git a/contrib/libs/clang16/lib/CodeGen/CodeGenModule.cpp b/contrib/libs/clang16/lib/CodeGen/CodeGenModule.cpp new file mode 100644 index 0000000000..12d602fed6 --- /dev/null +++ b/contrib/libs/clang16/lib/CodeGen/CodeGenModule.cpp @@ -0,0 +1,7216 @@ +//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This coordinates the per-module state used while generating code. +// +//===----------------------------------------------------------------------===// + +#include "CodeGenModule.h" +#include "ABIInfo.h" +#include "CGBlocks.h" +#include "CGCUDARuntime.h" +#include "CGCXXABI.h" +#include "CGCall.h" +#include "CGDebugInfo.h" +#include "CGHLSLRuntime.h" +#include "CGObjCRuntime.h" +#include "CGOpenCLRuntime.h" +#include "CGOpenMPRuntime.h" +#include "CGOpenMPRuntimeGPU.h" +#include "CodeGenFunction.h" +#include "CodeGenPGO.h" +#include "ConstantEmitter.h" +#include "CoverageMappingGen.h" +#include "TargetInfo.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/CharUnits.h" +#include "clang/AST/DeclCXX.h" +#include "clang/AST/DeclObjC.h" +#include "clang/AST/DeclTemplate.h" +#include "clang/AST/Mangle.h" +#include "clang/AST/RecursiveASTVisitor.h" +#include "clang/AST/StmtVisitor.h" +#include "clang/Basic/Builtins.h" +#include "clang/Basic/CharInfo.h" +#include "clang/Basic/CodeGenOptions.h" +#include "clang/Basic/Diagnostic.h" +#include "clang/Basic/FileManager.h" +#include "clang/Basic/Module.h" +#include "clang/Basic/SourceManager.h" +#include "clang/Basic/TargetInfo.h" +#include "clang/Basic/Version.h" +#include "clang/CodeGen/BackendUtil.h" +#include "clang/CodeGen/ConstantInitBuilder.h" +#include "clang/Frontend/FrontendDiagnostic.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringSwitch.h" +#include "llvm/ADT/Triple.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Frontend/OpenMP/OMPIRBuilder.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/ProfileSummary.h" +#include "llvm/ProfileData/InstrProfReader.h" +#include "llvm/ProfileData/SampleProf.h" +#include "llvm/Support/CRC.h" +#include "llvm/Support/CodeGen.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/ConvertUTF.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/TimeProfiler.h" +#include "llvm/Support/X86TargetParser.h" +#include "llvm/Support/xxhash.h" +#include <optional> + +using namespace clang; +using namespace CodeGen; + +static llvm::cl::opt<bool> LimitedCoverage( + "limited-coverage-experimental", llvm::cl::Hidden, + llvm::cl::desc("Emit limited coverage mapping information (experimental)")); + +static const char AnnotationSection[] = "llvm.metadata"; + +static CGCXXABI *createCXXABI(CodeGenModule &CGM) { + switch (CGM.getContext().getCXXABIKind()) { + case TargetCXXABI::AppleARM64: + case TargetCXXABI::Fuchsia: + case TargetCXXABI::GenericAArch64: + case TargetCXXABI::GenericARM: + case TargetCXXABI::iOS: + case TargetCXXABI::WatchOS: + case TargetCXXABI::GenericMIPS: + case TargetCXXABI::GenericItanium: + case TargetCXXABI::WebAssembly: + case TargetCXXABI::XL: + return CreateItaniumCXXABI(CGM); + case TargetCXXABI::Microsoft: + return CreateMicrosoftCXXABI(CGM); + } + + llvm_unreachable("invalid C++ ABI kind"); +} + +CodeGenModule::CodeGenModule(ASTContext &C, + IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, + const HeaderSearchOptions &HSO, + const PreprocessorOptions &PPO, + const CodeGenOptions &CGO, llvm::Module &M, + DiagnosticsEngine &diags, + CoverageSourceInfo *CoverageInfo) + : Context(C), LangOpts(C.getLangOpts()), FS(std::move(FS)), + HeaderSearchOpts(HSO), PreprocessorOpts(PPO), CodeGenOpts(CGO), + TheModule(M), Diags(diags), Target(C.getTargetInfo()), + ABI(createCXXABI(*this)), VMContext(M.getContext()), Types(*this), + VTables(*this), SanitizerMD(new SanitizerMetadata(*this)) { + + // Initialize the type cache. + llvm::LLVMContext &LLVMContext = M.getContext(); + VoidTy = llvm::Type::getVoidTy(LLVMContext); + Int8Ty = llvm::Type::getInt8Ty(LLVMContext); + Int16Ty = llvm::Type::getInt16Ty(LLVMContext); + Int32Ty = llvm::Type::getInt32Ty(LLVMContext); + Int64Ty = llvm::Type::getInt64Ty(LLVMContext); + HalfTy = llvm::Type::getHalfTy(LLVMContext); + BFloatTy = llvm::Type::getBFloatTy(LLVMContext); + FloatTy = llvm::Type::getFloatTy(LLVMContext); + DoubleTy = llvm::Type::getDoubleTy(LLVMContext); + PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); + PointerAlignInBytes = + C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) + .getQuantity(); + SizeSizeInBytes = + C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); + IntAlignInBytes = + C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); + CharTy = + llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); + IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); + IntPtrTy = llvm::IntegerType::get(LLVMContext, + C.getTargetInfo().getMaxPointerWidth()); + Int8PtrTy = Int8Ty->getPointerTo(0); + Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); + const llvm::DataLayout &DL = M.getDataLayout(); + AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); + GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); + ConstGlobalsPtrTy = Int8Ty->getPointerTo( + C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); + ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); + + // Build C++20 Module initializers. + // TODO: Add Microsoft here once we know the mangling required for the + // initializers. + CXX20ModuleInits = + LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == + ItaniumMangleContext::MK_Itanium; + + RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); + + if (LangOpts.ObjC) + createObjCRuntime(); + if (LangOpts.OpenCL) + createOpenCLRuntime(); + if (LangOpts.OpenMP) + createOpenMPRuntime(); + if (LangOpts.CUDA) + createCUDARuntime(); + if (LangOpts.HLSL) + createHLSLRuntime(); + + // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. + if (LangOpts.Sanitize.has(SanitizerKind::Thread) || + (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) + TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), + getCXXABI().getMangleContext())); + + // If debug info or coverage generation is enabled, create the CGDebugInfo + // object. + if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || + CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) + DebugInfo.reset(new CGDebugInfo(*this)); + + Block.GlobalUniqueCount = 0; + + if (C.getLangOpts().ObjC) + ObjCData.reset(new ObjCEntrypoints()); + + if (CodeGenOpts.hasProfileClangUse()) { + auto ReaderOrErr = llvm::IndexedInstrProfReader::create( + CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); + // We're checking for profile read errors in CompilerInvocation, so if + // there was an error it should've already been caught. If it hasn't been + // somehow, trip an assertion. + assert(ReaderOrErr); + PGOReader = std::move(ReaderOrErr.get()); + } + + // If coverage mapping generation is enabled, create the + // CoverageMappingModuleGen object. + if (CodeGenOpts.CoverageMapping) + CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); + + // Generate the module name hash here if needed. + if (CodeGenOpts.UniqueInternalLinkageNames && + !getModule().getSourceFileName().empty()) { + std::string Path = getModule().getSourceFileName(); + // Check if a path substitution is needed from the MacroPrefixMap. + for (const auto &Entry : LangOpts.MacroPrefixMap) + if (Path.rfind(Entry.first, 0) != std::string::npos) { + Path = Entry.second + Path.substr(Entry.first.size()); + break; + } + ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); + } +} + +CodeGenModule::~CodeGenModule() {} + +void CodeGenModule::createObjCRuntime() { + // This is just isGNUFamily(), but we want to force implementors of + // new ABIs to decide how best to do this. + switch (LangOpts.ObjCRuntime.getKind()) { + case ObjCRuntime::GNUstep: + case ObjCRuntime::GCC: + case ObjCRuntime::ObjFW: + ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); + return; + + case ObjCRuntime::FragileMacOSX: + case ObjCRuntime::MacOSX: + case ObjCRuntime::iOS: + case ObjCRuntime::WatchOS: + ObjCRuntime.reset(CreateMacObjCRuntime(*this)); + return; + } + llvm_unreachable("bad runtime kind"); +} + +void CodeGenModule::createOpenCLRuntime() { + OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); +} + +void CodeGenModule::createOpenMPRuntime() { + // Select a specialized code generation class based on the target, if any. + // If it does not exist use the default implementation. + switch (getTriple().getArch()) { + case llvm::Triple::nvptx: + case llvm::Triple::nvptx64: + case llvm::Triple::amdgcn: + assert(getLangOpts().OpenMPIsDevice && + "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); + OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); + break; + default: + if (LangOpts.OpenMPSimd) + OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); + else + OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); + break; + } +} + +void CodeGenModule::createCUDARuntime() { + CUDARuntime.reset(CreateNVCUDARuntime(*this)); +} + +void CodeGenModule::createHLSLRuntime() { + HLSLRuntime.reset(new CGHLSLRuntime(*this)); +} + +void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { + Replacements[Name] = C; +} + +void CodeGenModule::applyReplacements() { + for (auto &I : Replacements) { + StringRef MangledName = I.first(); + llvm::Constant *Replacement = I.second; + llvm::GlobalValue *Entry = GetGlobalValue(MangledName); + if (!Entry) + continue; + auto *OldF = cast<llvm::Function>(Entry); + auto *NewF = dyn_cast<llvm::Function>(Replacement); + if (!NewF) { + if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { + NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); + } else { + auto *CE = cast<llvm::ConstantExpr>(Replacement); + assert(CE->getOpcode() == llvm::Instruction::BitCast || + CE->getOpcode() == llvm::Instruction::GetElementPtr); + NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); + } + } + + // Replace old with new, but keep the old order. + OldF->replaceAllUsesWith(Replacement); + if (NewF) { + NewF->removeFromParent(); + OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), + NewF); + } + OldF->eraseFromParent(); + } +} + +void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { + GlobalValReplacements.push_back(std::make_pair(GV, C)); +} + +void CodeGenModule::applyGlobalValReplacements() { + for (auto &I : GlobalValReplacements) { + llvm::GlobalValue *GV = I.first; + llvm::Constant *C = I.second; + + GV->replaceAllUsesWith(C); + GV->eraseFromParent(); + } +} + +// This is only used in aliases that we created and we know they have a +// linear structure. +static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { + const llvm::Constant *C; + if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) + C = GA->getAliasee(); + else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) + C = GI->getResolver(); + else + return GV; + + const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); + if (!AliaseeGV) + return nullptr; + + const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); + if (FinalGV == GV) + return nullptr; + + return FinalGV; +} + +static bool checkAliasedGlobal(DiagnosticsEngine &Diags, + SourceLocation Location, bool IsIFunc, + const llvm::GlobalValue *Alias, + const llvm::GlobalValue *&GV) { + GV = getAliasedGlobal(Alias); + if (!GV) { + Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; + return false; + } + + if (GV->isDeclaration()) { + Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; + return false; + } + + if (IsIFunc) { + // Check resolver function type. + const auto *F = dyn_cast<llvm::Function>(GV); + if (!F) { + Diags.Report(Location, diag::err_alias_to_undefined) + << IsIFunc << IsIFunc; + return false; + } + + llvm::FunctionType *FTy = F->getFunctionType(); + if (!FTy->getReturnType()->isPointerTy()) { + Diags.Report(Location, diag::err_ifunc_resolver_return); + return false; + } + } + + return true; +} + +void CodeGenModule::checkAliases() { + // Check if the constructed aliases are well formed. It is really unfortunate + // that we have to do this in CodeGen, but we only construct mangled names + // and aliases during codegen. + bool Error = false; + DiagnosticsEngine &Diags = getDiags(); + for (const GlobalDecl &GD : Aliases) { + const auto *D = cast<ValueDecl>(GD.getDecl()); + SourceLocation Location; + bool IsIFunc = D->hasAttr<IFuncAttr>(); + if (const Attr *A = D->getDefiningAttr()) + Location = A->getLocation(); + else + llvm_unreachable("Not an alias or ifunc?"); + + StringRef MangledName = getMangledName(GD); + llvm::GlobalValue *Alias = GetGlobalValue(MangledName); + const llvm::GlobalValue *GV = nullptr; + if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) { + Error = true; + continue; + } + + llvm::Constant *Aliasee = + IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() + : cast<llvm::GlobalAlias>(Alias)->getAliasee(); + + llvm::GlobalValue *AliaseeGV; + if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) + AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); + else + AliaseeGV = cast<llvm::GlobalValue>(Aliasee); + + if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { + StringRef AliasSection = SA->getName(); + if (AliasSection != AliaseeGV->getSection()) + Diags.Report(SA->getLocation(), diag::warn_alias_with_section) + << AliasSection << IsIFunc << IsIFunc; + } + + // We have to handle alias to weak aliases in here. LLVM itself disallows + // this since the object semantics would not match the IL one. For + // compatibility with gcc we implement it by just pointing the alias + // to its aliasee's aliasee. We also warn, since the user is probably + // expecting the link to be weak. + if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { + if (GA->isInterposable()) { + Diags.Report(Location, diag::warn_alias_to_weak_alias) + << GV->getName() << GA->getName() << IsIFunc; + Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( + GA->getAliasee(), Alias->getType()); + + if (IsIFunc) + cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); + else + cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); + } + } + } + if (!Error) + return; + + for (const GlobalDecl &GD : Aliases) { + StringRef MangledName = getMangledName(GD); + llvm::GlobalValue *Alias = GetGlobalValue(MangledName); + Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); + Alias->eraseFromParent(); + } +} + +void CodeGenModule::clear() { + DeferredDeclsToEmit.clear(); + EmittedDeferredDecls.clear(); + if (OpenMPRuntime) + OpenMPRuntime->clear(); +} + +void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, + StringRef MainFile) { + if (!hasDiagnostics()) + return; + if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { + if (MainFile.empty()) + MainFile = "<stdin>"; + Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; + } else { + if (Mismatched > 0) + Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; + + if (Missing > 0) + Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; + } +} + +static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, + llvm::Module &M) { + if (!LO.VisibilityFromDLLStorageClass) + return; + + llvm::GlobalValue::VisibilityTypes DLLExportVisibility = + CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); + llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = + CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); + llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = + CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); + llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = + CodeGenModule::GetLLVMVisibility( + LO.getExternDeclNoDLLStorageClassVisibility()); + + for (llvm::GlobalValue &GV : M.global_values()) { + if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) + continue; + + // Reset DSO locality before setting the visibility. This removes + // any effects that visibility options and annotations may have + // had on the DSO locality. Setting the visibility will implicitly set + // appropriate globals to DSO Local; however, this will be pessimistic + // w.r.t. to the normal compiler IRGen. + GV.setDSOLocal(false); + + if (GV.isDeclarationForLinker()) { + GV.setVisibility(GV.getDLLStorageClass() == + llvm::GlobalValue::DLLImportStorageClass + ? ExternDeclDLLImportVisibility + : ExternDeclNoDLLStorageClassVisibility); + } else { + GV.setVisibility(GV.getDLLStorageClass() == + llvm::GlobalValue::DLLExportStorageClass + ? DLLExportVisibility + : NoDLLStorageClassVisibility); + } + + GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); + } +} + +void CodeGenModule::Release() { + Module *Primary = getContext().getModuleForCodeGen(); + if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) + EmitModuleInitializers(Primary); + EmitDeferred(); + DeferredDecls.insert(EmittedDeferredDecls.begin(), + EmittedDeferredDecls.end()); + EmittedDeferredDecls.clear(); + EmitVTablesOpportunistically(); + applyGlobalValReplacements(); + applyReplacements(); + emitMultiVersionFunctions(); + + if (Context.getLangOpts().IncrementalExtensions && + GlobalTopLevelStmtBlockInFlight.first) { + const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; + GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); + GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; + } + + if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) + EmitCXXModuleInitFunc(Primary); + else + EmitCXXGlobalInitFunc(); + EmitCXXGlobalCleanUpFunc(); + registerGlobalDtorsWithAtExit(); + EmitCXXThreadLocalInitFunc(); + if (ObjCRuntime) + if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) + AddGlobalCtor(ObjCInitFunction); + if (Context.getLangOpts().CUDA && CUDARuntime) { + if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) + AddGlobalCtor(CudaCtorFunction); + } + if (OpenMPRuntime) { + if (llvm::Function *OpenMPRequiresDirectiveRegFun = + OpenMPRuntime->emitRequiresDirectiveRegFun()) { + AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); + } + OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); + OpenMPRuntime->clear(); + } + if (PGOReader) { + getModule().setProfileSummary( + PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), + llvm::ProfileSummary::PSK_Instr); + if (PGOStats.hasDiagnostics()) + PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); + } + llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { + return L.LexOrder < R.LexOrder; + }); + EmitCtorList(GlobalCtors, "llvm.global_ctors"); + EmitCtorList(GlobalDtors, "llvm.global_dtors"); + EmitGlobalAnnotations(); + EmitStaticExternCAliases(); + checkAliases(); + EmitDeferredUnusedCoverageMappings(); + CodeGenPGO(*this).setValueProfilingFlag(getModule()); + if (CoverageMapping) + CoverageMapping->emit(); + if (CodeGenOpts.SanitizeCfiCrossDso) { + CodeGenFunction(*this).EmitCfiCheckFail(); + CodeGenFunction(*this).EmitCfiCheckStub(); + } + if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) + finalizeKCFITypes(); + emitAtAvailableLinkGuard(); + if (Context.getTargetInfo().getTriple().isWasm()) + EmitMainVoidAlias(); + + if (getTriple().isAMDGPU()) { + // Emit reference of __amdgpu_device_library_preserve_asan_functions to + // preserve ASAN functions in bitcode libraries. + if (LangOpts.Sanitize.has(SanitizerKind::Address)) { + auto *FT = llvm::FunctionType::get(VoidTy, {}); + auto *F = llvm::Function::Create( + FT, llvm::GlobalValue::ExternalLinkage, + "__amdgpu_device_library_preserve_asan_functions", &getModule()); + auto *Var = new llvm::GlobalVariable( + getModule(), FT->getPointerTo(), + /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, + "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, + llvm::GlobalVariable::NotThreadLocal); + addCompilerUsedGlobal(Var); + } + // Emit amdgpu_code_object_version module flag, which is code object version + // times 100. + if (getTarget().getTargetOpts().CodeObjectVersion != + TargetOptions::COV_None) { + getModule().addModuleFlag(llvm::Module::Error, + "amdgpu_code_object_version", + getTarget().getTargetOpts().CodeObjectVersion); + } + } + + // Emit a global array containing all external kernels or device variables + // used by host functions and mark it as used for CUDA/HIP. This is necessary + // to get kernels or device variables in archives linked in even if these + // kernels or device variables are only used in host functions. + if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { + SmallVector<llvm::Constant *, 8> UsedArray; + for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { + GlobalDecl GD; + if (auto *FD = dyn_cast<FunctionDecl>(D)) + GD = GlobalDecl(FD, KernelReferenceKind::Kernel); + else + GD = GlobalDecl(D); + UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( + GetAddrOfGlobal(GD), Int8PtrTy)); + } + + llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); + + auto *GV = new llvm::GlobalVariable( + getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, + llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); + addCompilerUsedGlobal(GV); + } + + emitLLVMUsed(); + if (SanStats) + SanStats->finish(); + + if (CodeGenOpts.Autolink && + (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { + EmitModuleLinkOptions(); + } + + // On ELF we pass the dependent library specifiers directly to the linker + // without manipulating them. This is in contrast to other platforms where + // they are mapped to a specific linker option by the compiler. This + // difference is a result of the greater variety of ELF linkers and the fact + // that ELF linkers tend to handle libraries in a more complicated fashion + // than on other platforms. This forces us to defer handling the dependent + // libs to the linker. + // + // CUDA/HIP device and host libraries are different. Currently there is no + // way to differentiate dependent libraries for host or device. Existing + // usage of #pragma comment(lib, *) is intended for host libraries on + // Windows. Therefore emit llvm.dependent-libraries only for host. + if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { + auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); + for (auto *MD : ELFDependentLibraries) + NMD->addOperand(MD); + } + + // Record mregparm value now so it is visible through rest of codegen. + if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) + getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", + CodeGenOpts.NumRegisterParameters); + + if (CodeGenOpts.DwarfVersion) { + getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", + CodeGenOpts.DwarfVersion); + } + + if (CodeGenOpts.Dwarf64) + getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); + + if (Context.getLangOpts().SemanticInterposition) + // Require various optimization to respect semantic interposition. + getModule().setSemanticInterposition(true); + + if (CodeGenOpts.EmitCodeView) { + // Indicate that we want CodeView in the metadata. + getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); + } + if (CodeGenOpts.CodeViewGHash) { + getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); + } + if (CodeGenOpts.ControlFlowGuard) { + // Function ID tables and checks for Control Flow Guard (cfguard=2). + getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); + } else if (CodeGenOpts.ControlFlowGuardNoChecks) { + // Function ID tables for Control Flow Guard (cfguard=1). + getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); + } + if (CodeGenOpts.EHContGuard) { + // Function ID tables for EH Continuation Guard. + getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); + } + if (Context.getLangOpts().Kernel) { + // Note if we are compiling with /kernel. + getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); + } + if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { + // We don't support LTO with 2 with different StrictVTablePointers + // FIXME: we could support it by stripping all the information introduced + // by StrictVTablePointers. + + getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); + + llvm::Metadata *Ops[2] = { + llvm::MDString::get(VMContext, "StrictVTablePointers"), + llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( + llvm::Type::getInt32Ty(VMContext), 1))}; + + getModule().addModuleFlag(llvm::Module::Require, + "StrictVTablePointersRequirement", + llvm::MDNode::get(VMContext, Ops)); + } + if (getModuleDebugInfo()) + // We support a single version in the linked module. The LLVM + // parser will drop debug info with a different version number + // (and warn about it, too). + getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", + llvm::DEBUG_METADATA_VERSION); + + // We need to record the widths of enums and wchar_t, so that we can generate + // the correct build attributes in the ARM backend. wchar_size is also used by + // TargetLibraryInfo. + uint64_t WCharWidth = + Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); + getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); + + llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); + if ( Arch == llvm::Triple::arm + || Arch == llvm::Triple::armeb + || Arch == llvm::Triple::thumb + || Arch == llvm::Triple::thumbeb) { + // The minimum width of an enum in bytes + uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; + getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); + } + + if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { + StringRef ABIStr = Target.getABI(); + llvm::LLVMContext &Ctx = TheModule.getContext(); + getModule().addModuleFlag(llvm::Module::Error, "target-abi", + llvm::MDString::get(Ctx, ABIStr)); + } + + if (CodeGenOpts.SanitizeCfiCrossDso) { + // Indicate that we want cross-DSO control flow integrity checks. + getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); + } + + if (CodeGenOpts.WholeProgramVTables) { + // Indicate whether VFE was enabled for this module, so that the + // vcall_visibility metadata added under whole program vtables is handled + // appropriately in the optimizer. + getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", + CodeGenOpts.VirtualFunctionElimination); + } + + if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { + getModule().addModuleFlag(llvm::Module::Override, + "CFI Canonical Jump Tables", + CodeGenOpts.SanitizeCfiCanonicalJumpTables); + } + + if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { + getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); + // KCFI assumes patchable-function-prefix is the same for all indirectly + // called functions. Store the expected offset for code generation. + if (CodeGenOpts.PatchableFunctionEntryOffset) + getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", + CodeGenOpts.PatchableFunctionEntryOffset); + } + + if (CodeGenOpts.CFProtectionReturn && + Target.checkCFProtectionReturnSupported(getDiags())) { + // Indicate that we want to instrument return control flow protection. + getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", + 1); + } + + if (CodeGenOpts.CFProtectionBranch && + Target.checkCFProtectionBranchSupported(getDiags())) { + // Indicate that we want to instrument branch control flow protection. + getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", + 1); + } + + if (CodeGenOpts.FunctionReturnThunks) + getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); + + if (CodeGenOpts.IndirectBranchCSPrefix) + getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); + + // Add module metadata for return address signing (ignoring + // non-leaf/all) and stack tagging. These are actually turned on by function + // attributes, but we use module metadata to emit build attributes. This is + // needed for LTO, where the function attributes are inside bitcode + // serialised into a global variable by the time build attributes are + // emitted, so we can't access them. LTO objects could be compiled with + // different flags therefore module flags are set to "Min" behavior to achieve + // the same end result of the normal build where e.g BTI is off if any object + // doesn't support it. + if (Context.getTargetInfo().hasFeature("ptrauth") && + LangOpts.getSignReturnAddressScope() != + LangOptions::SignReturnAddressScopeKind::None) + getModule().addModuleFlag(llvm::Module::Override, + "sign-return-address-buildattr", 1); + if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) + getModule().addModuleFlag(llvm::Module::Override, + "tag-stack-memory-buildattr", 1); + + if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || + Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || + Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || + Arch == llvm::Triple::aarch64_be) { + if (LangOpts.BranchTargetEnforcement) + getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", + 1); + if (LangOpts.hasSignReturnAddress()) + getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); + if (LangOpts.isSignReturnAddressScopeAll()) + getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", + 1); + if (!LangOpts.isSignReturnAddressWithAKey()) + getModule().addModuleFlag(llvm::Module::Min, + "sign-return-address-with-bkey", 1); + } + + if (!CodeGenOpts.MemoryProfileOutput.empty()) { + llvm::LLVMContext &Ctx = TheModule.getContext(); + getModule().addModuleFlag( + llvm::Module::Error, "MemProfProfileFilename", + llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); + } + + if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { + // Indicate whether __nvvm_reflect should be configured to flush denormal + // floating point values to 0. (This corresponds to its "__CUDA_FTZ" + // property.) + getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", + CodeGenOpts.FP32DenormalMode.Output != + llvm::DenormalMode::IEEE); + } + + if (LangOpts.EHAsynch) + getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); + + // Indicate whether this Module was compiled with -fopenmp + if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) + getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); + if (getLangOpts().OpenMPIsDevice) + getModule().addModuleFlag(llvm::Module::Max, "openmp-device", + LangOpts.OpenMP); + + // Emit OpenCL specific module metadata: OpenCL/SPIR version. + if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { + EmitOpenCLMetadata(); + // Emit SPIR version. + if (getTriple().isSPIR()) { + // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the + // opencl.spir.version named metadata. + // C++ for OpenCL has a distinct mapping for version compatibility with + // OpenCL. + auto Version = LangOpts.getOpenCLCompatibleVersion(); + llvm::Metadata *SPIRVerElts[] = { + llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( + Int32Ty, Version / 100)), + llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( + Int32Ty, (Version / 100 > 1) ? 0 : 2))}; + llvm::NamedMDNode *SPIRVerMD = + TheModule.getOrInsertNamedMetadata("opencl.spir.version"); + llvm::LLVMContext &Ctx = TheModule.getContext(); + SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); + } + } + + // HLSL related end of code gen work items. + if (LangOpts.HLSL) + getHLSLRuntime().finishCodeGen(); + + if (uint32_t PLevel = Context.getLangOpts().PICLevel) { + assert(PLevel < 3 && "Invalid PIC Level"); + getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); + if (Context.getLangOpts().PIE) + getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); + } + + if (getCodeGenOpts().CodeModel.size() > 0) { + unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) + .Case("tiny", llvm::CodeModel::Tiny) + .Case("small", llvm::CodeModel::Small) + .Case("kernel", llvm::CodeModel::Kernel) + .Case("medium", llvm::CodeModel::Medium) + .Case("large", llvm::CodeModel::Large) + .Default(~0u); + if (CM != ~0u) { + llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); + getModule().setCodeModel(codeModel); + } + } + + if (CodeGenOpts.NoPLT) + getModule().setRtLibUseGOT(); + if (CodeGenOpts.UnwindTables) + getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); + + switch (CodeGenOpts.getFramePointer()) { + case CodeGenOptions::FramePointerKind::None: + // 0 ("none") is the default. + break; + case CodeGenOptions::FramePointerKind::NonLeaf: + getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); + break; + case CodeGenOptions::FramePointerKind::All: + getModule().setFramePointer(llvm::FramePointerKind::All); + break; + } + + SimplifyPersonality(); + + if (getCodeGenOpts().EmitDeclMetadata) + EmitDeclMetadata(); + + if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) + EmitCoverageFile(); + + if (CGDebugInfo *DI = getModuleDebugInfo()) + DI->finalize(); + + if (getCodeGenOpts().EmitVersionIdentMetadata) + EmitVersionIdentMetadata(); + + if (!getCodeGenOpts().RecordCommandLine.empty()) + EmitCommandLineMetadata(); + + if (!getCodeGenOpts().StackProtectorGuard.empty()) + getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); + if (!getCodeGenOpts().StackProtectorGuardReg.empty()) + getModule().setStackProtectorGuardReg( + getCodeGenOpts().StackProtectorGuardReg); + if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) + getModule().setStackProtectorGuardSymbol( + getCodeGenOpts().StackProtectorGuardSymbol); + if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) + getModule().setStackProtectorGuardOffset( + getCodeGenOpts().StackProtectorGuardOffset); + if (getCodeGenOpts().StackAlignment) + getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); + if (getCodeGenOpts().SkipRaxSetup) + getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); + + getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); + + EmitBackendOptionsMetadata(getCodeGenOpts()); + + // If there is device offloading code embed it in the host now. + EmbedObject(&getModule(), CodeGenOpts, getDiags()); + + // Set visibility from DLL storage class + // We do this at the end of LLVM IR generation; after any operation + // that might affect the DLL storage class or the visibility, and + // before anything that might act on these. + setVisibilityFromDLLStorageClass(LangOpts, getModule()); +} + +void CodeGenModule::EmitOpenCLMetadata() { + // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the + // opencl.ocl.version named metadata node. + // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. + auto Version = LangOpts.getOpenCLCompatibleVersion(); + llvm::Metadata *OCLVerElts[] = { + llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( + Int32Ty, Version / 100)), + llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( + Int32Ty, (Version % 100) / 10))}; + llvm::NamedMDNode *OCLVerMD = + TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); + llvm::LLVMContext &Ctx = TheModule.getContext(); + OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); +} + +void CodeGenModule::EmitBackendOptionsMetadata( + const CodeGenOptions CodeGenOpts) { + if (getTriple().isRISCV()) { + getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", + CodeGenOpts.SmallDataLimit); + } +} + +void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { + // Make sure that this type is translated. + Types.UpdateCompletedType(TD); +} + +void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { + // Make sure that this type is translated. + Types.RefreshTypeCacheForClass(RD); +} + +llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { + if (!TBAA) + return nullptr; + return TBAA->getTypeInfo(QTy); +} + +TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { + if (!TBAA) + return TBAAAccessInfo(); + if (getLangOpts().CUDAIsDevice) { + // As CUDA builtin surface/texture types are replaced, skip generating TBAA + // access info. + if (AccessType->isCUDADeviceBuiltinSurfaceType()) { + if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != + nullptr) + return TBAAAccessInfo(); + } else if (AccessType->isCUDADeviceBuiltinTextureType()) { + if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != + nullptr) + return TBAAAccessInfo(); + } + } + return TBAA->getAccessInfo(AccessType); +} + +TBAAAccessInfo +CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { + if (!TBAA) + return TBAAAccessInfo(); + return TBAA->getVTablePtrAccessInfo(VTablePtrType); +} + +llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { + if (!TBAA) + return nullptr; + return TBAA->getTBAAStructInfo(QTy); +} + +llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { + if (!TBAA) + return nullptr; + return TBAA->getBaseTypeInfo(QTy); +} + +llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { + if (!TBAA) + return nullptr; + return TBAA->getAccessTagInfo(Info); +} + +TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, + TBAAAccessInfo TargetInfo) { + if (!TBAA) + return TBAAAccessInfo(); + return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); +} + +TBAAAccessInfo +CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, + TBAAAccessInfo InfoB) { + if (!TBAA) + return TBAAAccessInfo(); + return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); +} + +TBAAAccessInfo +CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, + TBAAAccessInfo SrcInfo) { + if (!TBAA) + return TBAAAccessInfo(); + return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); +} + +void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, + TBAAAccessInfo TBAAInfo) { + if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) + Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); +} + +void CodeGenModule::DecorateInstructionWithInvariantGroup( + llvm::Instruction *I, const CXXRecordDecl *RD) { + I->setMetadata(llvm::LLVMContext::MD_invariant_group, + llvm::MDNode::get(getLLVMContext(), {})); +} + +void CodeGenModule::Error(SourceLocation loc, StringRef message) { + unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); + getDiags().Report(Context.getFullLoc(loc), diagID) << message; +} + +/// ErrorUnsupported - Print out an error that codegen doesn't support the +/// specified stmt yet. +void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { + unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, + "cannot compile this %0 yet"); + std::string Msg = Type; + getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) + << Msg << S->getSourceRange(); +} + +/// ErrorUnsupported - Print out an error that codegen doesn't support the +/// specified decl yet. +void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { + unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, + "cannot compile this %0 yet"); + std::string Msg = Type; + getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; +} + +llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { + return llvm::ConstantInt::get(SizeTy, size.getQuantity()); +} + +void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, + const NamedDecl *D) const { + // Internal definitions always have default visibility. + if (GV->hasLocalLinkage()) { + GV->setVisibility(llvm::GlobalValue::DefaultVisibility); + return; + } + if (!D) + return; + // Set visibility for definitions, and for declarations if requested globally + // or set explicitly. + LinkageInfo LV = D->getLinkageAndVisibility(); + if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { + // Reject incompatible dlllstorage and visibility annotations. + if (!LV.isVisibilityExplicit()) + return; + if (GV->hasDLLExportStorageClass()) { + if (LV.getVisibility() == HiddenVisibility) + getDiags().Report(D->getLocation(), + diag::err_hidden_visibility_dllexport); + } else if (LV.getVisibility() != DefaultVisibility) { + getDiags().Report(D->getLocation(), + diag::err_non_default_visibility_dllimport); + } + return; + } + + if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || + !GV->isDeclarationForLinker()) + GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); +} + +static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, + llvm::GlobalValue *GV) { + if (GV->hasLocalLinkage()) + return true; + + if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) + return true; + + // DLLImport explicitly marks the GV as external. + if (GV->hasDLLImportStorageClass()) + return false; + + const llvm::Triple &TT = CGM.getTriple(); + if (TT.isWindowsGNUEnvironment()) { + // In MinGW, variables without DLLImport can still be automatically + // imported from a DLL by the linker; don't mark variables that + // potentially could come from another DLL as DSO local. + + // With EmulatedTLS, TLS variables can be autoimported from other DLLs + // (and this actually happens in the public interface of libstdc++), so + // such variables can't be marked as DSO local. (Native TLS variables + // can't be dllimported at all, though.) + if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && + (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) + return false; + } + + // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols + // remain unresolved in the link, they can be resolved to zero, which is + // outside the current DSO. + if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) + return false; + + // Every other GV is local on COFF. + // Make an exception for windows OS in the triple: Some firmware builds use + // *-win32-macho triples. This (accidentally?) produced windows relocations + // without GOT tables in older clang versions; Keep this behaviour. + // FIXME: even thread local variables? + if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) + return true; + + // Only handle COFF and ELF for now. + if (!TT.isOSBinFormatELF()) + return false; + + // If this is not an executable, don't assume anything is local. + const auto &CGOpts = CGM.getCodeGenOpts(); + llvm::Reloc::Model RM = CGOpts.RelocationModel; + const auto &LOpts = CGM.getLangOpts(); + if (RM != llvm::Reloc::Static && !LOpts.PIE) { + // On ELF, if -fno-semantic-interposition is specified and the target + // supports local aliases, there will be neither CC1 + // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set + // dso_local on the function if using a local alias is preferable (can avoid + // PLT indirection). + if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) + return false; + return !(CGM.getLangOpts().SemanticInterposition || + CGM.getLangOpts().HalfNoSemanticInterposition); + } + + // A definition cannot be preempted from an executable. + if (!GV->isDeclarationForLinker()) + return true; + + // Most PIC code sequences that assume that a symbol is local cannot produce a + // 0 if it turns out the symbol is undefined. While this is ABI and relocation + // depended, it seems worth it to handle it here. + if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) + return false; + + // PowerPC64 prefers TOC indirection to avoid copy relocations. + if (TT.isPPC64()) + return false; + + if (CGOpts.DirectAccessExternalData) { + // If -fdirect-access-external-data (default for -fno-pic), set dso_local + // for non-thread-local variables. If the symbol is not defined in the + // executable, a copy relocation will be needed at link time. dso_local is + // excluded for thread-local variables because they generally don't support + // copy relocations. + if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) + if (!Var->isThreadLocal()) + return true; + + // -fno-pic sets dso_local on a function declaration to allow direct + // accesses when taking its address (similar to a data symbol). If the + // function is not defined in the executable, a canonical PLT entry will be + // needed at link time. -fno-direct-access-external-data can avoid the + // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as + // it could just cause trouble without providing perceptible benefits. + if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) + return true; + } + + // If we can use copy relocations we can assume it is local. + + // Otherwise don't assume it is local. + return false; +} + +void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { + GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); +} + +void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, + GlobalDecl GD) const { + const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); + // C++ destructors have a few C++ ABI specific special cases. + if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { + getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); + return; + } + setDLLImportDLLExport(GV, D); +} + +void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, + const NamedDecl *D) const { + if (D && D->isExternallyVisible()) { + if (D->hasAttr<DLLImportAttr>()) + GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); + else if ((D->hasAttr<DLLExportAttr>() || + shouldMapVisibilityToDLLExport(D)) && + !GV->isDeclarationForLinker()) + GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); + } +} + +void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, + GlobalDecl GD) const { + setDLLImportDLLExport(GV, GD); + setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); +} + +void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, + const NamedDecl *D) const { + setDLLImportDLLExport(GV, D); + setGVPropertiesAux(GV, D); +} + +void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, + const NamedDecl *D) const { + setGlobalVisibility(GV, D); + setDSOLocal(GV); + GV->setPartition(CodeGenOpts.SymbolPartition); +} + +static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { + return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) + .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) + .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) + .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) + .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); +} + +llvm::GlobalVariable::ThreadLocalMode +CodeGenModule::GetDefaultLLVMTLSModel() const { + switch (CodeGenOpts.getDefaultTLSModel()) { + case CodeGenOptions::GeneralDynamicTLSModel: + return llvm::GlobalVariable::GeneralDynamicTLSModel; + case CodeGenOptions::LocalDynamicTLSModel: + return llvm::GlobalVariable::LocalDynamicTLSModel; + case CodeGenOptions::InitialExecTLSModel: + return llvm::GlobalVariable::InitialExecTLSModel; + case CodeGenOptions::LocalExecTLSModel: + return llvm::GlobalVariable::LocalExecTLSModel; + } + llvm_unreachable("Invalid TLS model!"); +} + +void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { + assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); + + llvm::GlobalValue::ThreadLocalMode TLM; + TLM = GetDefaultLLVMTLSModel(); + + // Override the TLS model if it is explicitly specified. + if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { + TLM = GetLLVMTLSModel(Attr->getModel()); + } + + GV->setThreadLocalMode(TLM); +} + +static std::string getCPUSpecificMangling(const CodeGenModule &CGM, + StringRef Name) { + const TargetInfo &Target = CGM.getTarget(); + return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); +} + +static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, + const CPUSpecificAttr *Attr, + unsigned CPUIndex, + raw_ostream &Out) { + // cpu_specific gets the current name, dispatch gets the resolver if IFunc is + // supported. + if (Attr) + Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); + else if (CGM.getTarget().supportsIFunc()) + Out << ".resolver"; +} + +static void AppendTargetVersionMangling(const CodeGenModule &CGM, + const TargetVersionAttr *Attr, + raw_ostream &Out) { + if (Attr->isDefaultVersion()) + return; + Out << "._"; + llvm::SmallVector<StringRef, 8> Feats; + Attr->getFeatures(Feats); + for (const auto &Feat : Feats) { + Out << 'M'; + Out << Feat; + } +} + +static void AppendTargetMangling(const CodeGenModule &CGM, + const TargetAttr *Attr, raw_ostream &Out) { + if (Attr->isDefaultVersion()) + return; + + Out << '.'; + const TargetInfo &Target = CGM.getTarget(); + ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr()); + llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) { + // Multiversioning doesn't allow "no-${feature}", so we can + // only have "+" prefixes here. + assert(LHS.startswith("+") && RHS.startswith("+") && + "Features should always have a prefix."); + return Target.multiVersionSortPriority(LHS.substr(1)) > + Target.multiVersionSortPriority(RHS.substr(1)); + }); + + bool IsFirst = true; + + if (!Info.CPU.empty()) { + IsFirst = false; + Out << "arch_" << Info.CPU; + } + + for (StringRef Feat : Info.Features) { + if (!IsFirst) + Out << '_'; + IsFirst = false; + Out << Feat.substr(1); + } +} + +// Returns true if GD is a function decl with internal linkage and +// needs a unique suffix after the mangled name. +static bool isUniqueInternalLinkageDecl(GlobalDecl GD, + CodeGenModule &CGM) { + const Decl *D = GD.getDecl(); + return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && + (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); +} + +static void AppendTargetClonesMangling(const CodeGenModule &CGM, + const TargetClonesAttr *Attr, + unsigned VersionIndex, + raw_ostream &Out) { + if (CGM.getTarget().getTriple().isAArch64()) { + StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); + if (FeatureStr == "default") + return; + Out << "._"; + SmallVector<StringRef, 8> Features; + FeatureStr.split(Features, "+"); + for (auto &Feat : Features) { + Out << 'M'; + Out << Feat; + } + } else { + Out << '.'; + StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); + if (FeatureStr.startswith("arch=")) + Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); + else + Out << FeatureStr; + + Out << '.' << Attr->getMangledIndex(VersionIndex); + } +} + +static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, + const NamedDecl *ND, + bool OmitMultiVersionMangling = false) { + SmallString<256> Buffer; + llvm::raw_svector_ostream Out(Buffer); + MangleContext &MC = CGM.getCXXABI().getMangleContext(); + if (!CGM.getModuleNameHash().empty()) + MC.needsUniqueInternalLinkageNames(); + bool ShouldMangle = MC.shouldMangleDeclName(ND); + if (ShouldMangle) + MC.mangleName(GD.getWithDecl(ND), Out); + else { + IdentifierInfo *II = ND->getIdentifier(); + assert(II && "Attempt to mangle unnamed decl."); + const auto *FD = dyn_cast<FunctionDecl>(ND); + + if (FD && + FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { + Out << "__regcall3__" << II->getName(); + } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && + GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { + Out << "__device_stub__" << II->getName(); + } else { + Out << II->getName(); + } + } + + // Check if the module name hash should be appended for internal linkage + // symbols. This should come before multi-version target suffixes are + // appended. This is to keep the name and module hash suffix of the + // internal linkage function together. The unique suffix should only be + // added when name mangling is done to make sure that the final name can + // be properly demangled. For example, for C functions without prototypes, + // name mangling is not done and the unique suffix should not be appeneded + // then. + if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { + assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && + "Hash computed when not explicitly requested"); + Out << CGM.getModuleNameHash(); + } + + if (const auto *FD = dyn_cast<FunctionDecl>(ND)) + if (FD->isMultiVersion() && !OmitMultiVersionMangling) { + switch (FD->getMultiVersionKind()) { + case MultiVersionKind::CPUDispatch: + case MultiVersionKind::CPUSpecific: + AppendCPUSpecificCPUDispatchMangling(CGM, + FD->getAttr<CPUSpecificAttr>(), + GD.getMultiVersionIndex(), Out); + break; + case MultiVersionKind::Target: + AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); + break; + case MultiVersionKind::TargetVersion: + AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out); + break; + case MultiVersionKind::TargetClones: + AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), + GD.getMultiVersionIndex(), Out); + break; + case MultiVersionKind::None: + llvm_unreachable("None multiversion type isn't valid here"); + } + } + + // Make unique name for device side static file-scope variable for HIP. + if (CGM.getContext().shouldExternalize(ND) && + CGM.getLangOpts().GPURelocatableDeviceCode && + CGM.getLangOpts().CUDAIsDevice) + CGM.printPostfixForExternalizedDecl(Out, ND); + + return std::string(Out.str()); +} + +void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, + const FunctionDecl *FD, + StringRef &CurName) { + if (!FD->isMultiVersion()) + return; + + // Get the name of what this would be without the 'target' attribute. This + // allows us to lookup the version that was emitted when this wasn't a + // multiversion function. + std::string NonTargetName = + getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); + GlobalDecl OtherGD; + if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { + assert(OtherGD.getCanonicalDecl() + .getDecl() + ->getAsFunction() + ->isMultiVersion() && + "Other GD should now be a multiversioned function"); + // OtherFD is the version of this function that was mangled BEFORE + // becoming a MultiVersion function. It potentially needs to be updated. + const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() + .getDecl() + ->getAsFunction() + ->getMostRecentDecl(); + std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); + // This is so that if the initial version was already the 'default' + // version, we don't try to update it. + if (OtherName != NonTargetName) { + // Remove instead of erase, since others may have stored the StringRef + // to this. + const auto ExistingRecord = Manglings.find(NonTargetName); + if (ExistingRecord != std::end(Manglings)) + Manglings.remove(&(*ExistingRecord)); + auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); + StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = + Result.first->first(); + // If this is the current decl is being created, make sure we update the name. + if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) + CurName = OtherNameRef; + if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) + Entry->setName(OtherName); + } + } +} + +StringRef CodeGenModule::getMangledName(GlobalDecl GD) { + GlobalDecl CanonicalGD = GD.getCanonicalDecl(); + + // Some ABIs don't have constructor variants. Make sure that base and + // complete constructors get mangled the same. + if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { + if (!getTarget().getCXXABI().hasConstructorVariants()) { + CXXCtorType OrigCtorType = GD.getCtorType(); + assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); + if (OrigCtorType == Ctor_Base) + CanonicalGD = GlobalDecl(CD, Ctor_Complete); + } + } + + // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a + // static device variable depends on whether the variable is referenced by + // a host or device host function. Therefore the mangled name cannot be + // cached. + if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { + auto FoundName = MangledDeclNames.find(CanonicalGD); + if (FoundName != MangledDeclNames.end()) + return FoundName->second; + } + + // Keep the first result in the case of a mangling collision. + const auto *ND = cast<NamedDecl>(GD.getDecl()); + std::string MangledName = getMangledNameImpl(*this, GD, ND); + + // Ensure either we have different ABIs between host and device compilations, + // says host compilation following MSVC ABI but device compilation follows + // Itanium C++ ABI or, if they follow the same ABI, kernel names after + // mangling should be the same after name stubbing. The later checking is + // very important as the device kernel name being mangled in host-compilation + // is used to resolve the device binaries to be executed. Inconsistent naming + // result in undefined behavior. Even though we cannot check that naming + // directly between host- and device-compilations, the host- and + // device-mangling in host compilation could help catching certain ones. + assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || + getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || + (getContext().getAuxTargetInfo() && + (getContext().getAuxTargetInfo()->getCXXABI() != + getContext().getTargetInfo().getCXXABI())) || + getCUDARuntime().getDeviceSideName(ND) == + getMangledNameImpl( + *this, + GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), + ND)); + + auto Result = Manglings.insert(std::make_pair(MangledName, GD)); + return MangledDeclNames[CanonicalGD] = Result.first->first(); +} + +StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, + const BlockDecl *BD) { + MangleContext &MangleCtx = getCXXABI().getMangleContext(); + const Decl *D = GD.getDecl(); + + SmallString<256> Buffer; + llvm::raw_svector_ostream Out(Buffer); + if (!D) + MangleCtx.mangleGlobalBlock(BD, + dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); + else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) + MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); + else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) + MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); + else + MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); + + auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); + return Result.first->first(); +} + +const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { + auto it = MangledDeclNames.begin(); + while (it != MangledDeclNames.end()) { + if (it->second == Name) + return it->first; + it++; + } + return GlobalDecl(); +} + +llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { + return getModule().getNamedValue(Name); +} + +/// AddGlobalCtor - Add a function to the list that will be called before +/// main() runs. +void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, + unsigned LexOrder, + llvm::Constant *AssociatedData) { + // FIXME: Type coercion of void()* types. + GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); +} + +/// AddGlobalDtor - Add a function to the list that will be called +/// when the module is unloaded. +void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, + bool IsDtorAttrFunc) { + if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && + (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { + DtorsUsingAtExit[Priority].push_back(Dtor); + return; + } + + // FIXME: Type coercion of void()* types. + GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); +} + +void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { + if (Fns.empty()) return; + + // Ctor function type is void()*. + llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); + llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, + TheModule.getDataLayout().getProgramAddressSpace()); + + // Get the type of a ctor entry, { i32, void ()*, i8* }. + llvm::StructType *CtorStructTy = llvm::StructType::get( + Int32Ty, CtorPFTy, VoidPtrTy); + + // Construct the constructor and destructor arrays. + ConstantInitBuilder builder(*this); + auto ctors = builder.beginArray(CtorStructTy); + for (const auto &I : Fns) { + auto ctor = ctors.beginStruct(CtorStructTy); + ctor.addInt(Int32Ty, I.Priority); + ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); + if (I.AssociatedData) + ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); + else + ctor.addNullPointer(VoidPtrTy); + ctor.finishAndAddTo(ctors); + } + + auto list = + ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), + /*constant*/ false, + llvm::GlobalValue::AppendingLinkage); + + // The LTO linker doesn't seem to like it when we set an alignment + // on appending variables. Take it off as a workaround. + list->setAlignment(std::nullopt); + + Fns.clear(); +} + +llvm::GlobalValue::LinkageTypes +CodeGenModule::getFunctionLinkage(GlobalDecl GD) { + const auto *D = cast<FunctionDecl>(GD.getDecl()); + + GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); + + if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) + return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); + + if (isa<CXXConstructorDecl>(D) && + cast<CXXConstructorDecl>(D)->isInheritingConstructor() && + Context.getTargetInfo().getCXXABI().isMicrosoft()) { + // Our approach to inheriting constructors is fundamentally different from + // that used by the MS ABI, so keep our inheriting constructor thunks + // internal rather than trying to pick an unambiguous mangling for them. + return llvm::GlobalValue::InternalLinkage; + } + + return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); +} + +llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { + llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); + if (!MDS) return nullptr; + + return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); +} + +llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { + if (auto *FnType = T->getAs<FunctionProtoType>()) + T = getContext().getFunctionType( + FnType->getReturnType(), FnType->getParamTypes(), + FnType->getExtProtoInfo().withExceptionSpec(EST_None)); + + std::string OutName; + llvm::raw_string_ostream Out(OutName); + getCXXABI().getMangleContext().mangleTypeName(T, Out); + + return llvm::ConstantInt::get(Int32Ty, + static_cast<uint32_t>(llvm::xxHash64(OutName))); +} + +void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, + const CGFunctionInfo &Info, + llvm::Function *F, bool IsThunk) { + unsigned CallingConv; + llvm::AttributeList PAL; + ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, + /*AttrOnCallSite=*/false, IsThunk); + F->setAttributes(PAL); + F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); +} + +static void removeImageAccessQualifier(std::string& TyName) { + std::string ReadOnlyQual("__read_only"); + std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); + if (ReadOnlyPos != std::string::npos) + // "+ 1" for the space after access qualifier. + TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); + else { + std::string WriteOnlyQual("__write_only"); + std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); + if (WriteOnlyPos != std::string::npos) + TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); + else { + std::string ReadWriteQual("__read_write"); + std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); + if (ReadWritePos != std::string::npos) + TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); + } + } +} + +// Returns the address space id that should be produced to the +// kernel_arg_addr_space metadata. This is always fixed to the ids +// as specified in the SPIR 2.0 specification in order to differentiate +// for example in clGetKernelArgInfo() implementation between the address +// spaces with targets without unique mapping to the OpenCL address spaces +// (basically all single AS CPUs). +static unsigned ArgInfoAddressSpace(LangAS AS) { + switch (AS) { + case LangAS::opencl_global: + return 1; + case LangAS::opencl_constant: + return 2; + case LangAS::opencl_local: + return 3; + case LangAS::opencl_generic: + return 4; // Not in SPIR 2.0 specs. + case LangAS::opencl_global_device: + return 5; + case LangAS::opencl_global_host: + return 6; + default: + return 0; // Assume private. + } +} + +void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, + const FunctionDecl *FD, + CodeGenFunction *CGF) { + assert(((FD && CGF) || (!FD && !CGF)) && + "Incorrect use - FD and CGF should either be both null or not!"); + // Create MDNodes that represent the kernel arg metadata. + // Each MDNode is a list in the form of "key", N number of values which is + // the same number of values as their are kernel arguments. + + const PrintingPolicy &Policy = Context.getPrintingPolicy(); + + // MDNode for the kernel argument address space qualifiers. + SmallVector<llvm::Metadata *, 8> addressQuals; + + // MDNode for the kernel argument access qualifiers (images only). + SmallVector<llvm::Metadata *, 8> accessQuals; + + // MDNode for the kernel argument type names. + SmallVector<llvm::Metadata *, 8> argTypeNames; + + // MDNode for the kernel argument base type names. + SmallVector<llvm::Metadata *, 8> argBaseTypeNames; + + // MDNode for the kernel argument type qualifiers. + SmallVector<llvm::Metadata *, 8> argTypeQuals; + + // MDNode for the kernel argument names. + SmallVector<llvm::Metadata *, 8> argNames; + + if (FD && CGF) + for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { + const ParmVarDecl *parm = FD->getParamDecl(i); + // Get argument name. + argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); + + if (!getLangOpts().OpenCL) + continue; + QualType ty = parm->getType(); + std::string typeQuals; + + // Get image and pipe access qualifier: + if (ty->isImageType() || ty->isPipeType()) { + const Decl *PDecl = parm; + if (const auto *TD = ty->getAs<TypedefType>()) + PDecl = TD->getDecl(); + const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); + if (A && A->isWriteOnly()) + accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); + else if (A && A->isReadWrite()) + accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); + else + accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); + } else + accessQuals.push_back(llvm::MDString::get(VMContext, "none")); + + auto getTypeSpelling = [&](QualType Ty) { + auto typeName = Ty.getUnqualifiedType().getAsString(Policy); + + if (Ty.isCanonical()) { + StringRef typeNameRef = typeName; + // Turn "unsigned type" to "utype" + if (typeNameRef.consume_front("unsigned ")) + return std::string("u") + typeNameRef.str(); + if (typeNameRef.consume_front("signed ")) + return typeNameRef.str(); + } + + return typeName; + }; + + if (ty->isPointerType()) { + QualType pointeeTy = ty->getPointeeType(); + + // Get address qualifier. + addressQuals.push_back( + llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( + ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); + + // Get argument type name. + std::string typeName = getTypeSpelling(pointeeTy) + "*"; + std::string baseTypeName = + getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; + argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); + argBaseTypeNames.push_back( + llvm::MDString::get(VMContext, baseTypeName)); + + // Get argument type qualifiers: + if (ty.isRestrictQualified()) + typeQuals = "restrict"; + if (pointeeTy.isConstQualified() || + (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) + typeQuals += typeQuals.empty() ? "const" : " const"; + if (pointeeTy.isVolatileQualified()) + typeQuals += typeQuals.empty() ? "volatile" : " volatile"; + } else { + uint32_t AddrSpc = 0; + bool isPipe = ty->isPipeType(); + if (ty->isImageType() || isPipe) + AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); + + addressQuals.push_back( + llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); + + // Get argument type name. + ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; + std::string typeName = getTypeSpelling(ty); + std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); + + // Remove access qualifiers on images + // (as they are inseparable from type in clang implementation, + // but OpenCL spec provides a special query to get access qualifier + // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): + if (ty->isImageType()) { + removeImageAccessQualifier(typeName); + removeImageAccessQualifier(baseTypeName); + } + + argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); + argBaseTypeNames.push_back( + llvm::MDString::get(VMContext, baseTypeName)); + + if (isPipe) + typeQuals = "pipe"; + } + argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); + } + + if (getLangOpts().OpenCL) { + Fn->setMetadata("kernel_arg_addr_space", + llvm::MDNode::get(VMContext, addressQuals)); + Fn->setMetadata("kernel_arg_access_qual", + llvm::MDNode::get(VMContext, accessQuals)); + Fn->setMetadata("kernel_arg_type", + llvm::MDNode::get(VMContext, argTypeNames)); + Fn->setMetadata("kernel_arg_base_type", + llvm::MDNode::get(VMContext, argBaseTypeNames)); + Fn->setMetadata("kernel_arg_type_qual", + llvm::MDNode::get(VMContext, argTypeQuals)); + } + if (getCodeGenOpts().EmitOpenCLArgMetadata || + getCodeGenOpts().HIPSaveKernelArgName) + Fn->setMetadata("kernel_arg_name", + llvm::MDNode::get(VMContext, argNames)); +} + +/// Determines whether the language options require us to model +/// unwind exceptions. We treat -fexceptions as mandating this +/// except under the fragile ObjC ABI with only ObjC exceptions +/// enabled. This means, for example, that C with -fexceptions +/// enables this. +static bool hasUnwindExceptions(const LangOptions &LangOpts) { + // If exceptions are completely disabled, obviously this is false. + if (!LangOpts.Exceptions) return false; + + // If C++ exceptions are enabled, this is true. + if (LangOpts.CXXExceptions) return true; + + // If ObjC exceptions are enabled, this depends on the ABI. + if (LangOpts.ObjCExceptions) { + return LangOpts.ObjCRuntime.hasUnwindExceptions(); + } + + return true; +} + +static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, + const CXXMethodDecl *MD) { + // Check that the type metadata can ever actually be used by a call. + if (!CGM.getCodeGenOpts().LTOUnit || + !CGM.HasHiddenLTOVisibility(MD->getParent())) + return false; + + // Only functions whose address can be taken with a member function pointer + // need this sort of type metadata. + return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && + !isa<CXXDestructorDecl>(MD); +} + +std::vector<const CXXRecordDecl *> +CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { + llvm::SetVector<const CXXRecordDecl *> MostBases; + + std::function<void (const CXXRecordDecl *)> CollectMostBases; + CollectMostBases = [&](const CXXRecordDecl *RD) { + if (RD->getNumBases() == 0) + MostBases.insert(RD); + for (const CXXBaseSpecifier &B : RD->bases()) + CollectMostBases(B.getType()->getAsCXXRecordDecl()); + }; + CollectMostBases(RD); + return MostBases.takeVector(); +} + +llvm::GlobalVariable * +CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) { + auto It = RTTIProxyMap.find(Addr); + if (It != RTTIProxyMap.end()) + return It->second; + + auto *FTRTTIProxy = new llvm::GlobalVariable( + TheModule, Addr->getType(), + /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr, + "__llvm_rtti_proxy"); + FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); + + RTTIProxyMap[Addr] = FTRTTIProxy; + return FTRTTIProxy; +} + +void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, + llvm::Function *F) { + llvm::AttrBuilder B(F->getContext()); + + if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) + B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); + + if (CodeGenOpts.StackClashProtector) + B.addAttribute("probe-stack", "inline-asm"); + + if (!hasUnwindExceptions(LangOpts)) + B.addAttribute(llvm::Attribute::NoUnwind); + + if (D && D->hasAttr<NoStackProtectorAttr>()) + ; // Do nothing. + else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && + LangOpts.getStackProtector() == LangOptions::SSPOn) + B.addAttribute(llvm::Attribute::StackProtectStrong); + else if (LangOpts.getStackProtector() == LangOptions::SSPOn) + B.addAttribute(llvm::Attribute::StackProtect); + else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) + B.addAttribute(llvm::Attribute::StackProtectStrong); + else if (LangOpts.getStackProtector() == LangOptions::SSPReq) + B.addAttribute(llvm::Attribute::StackProtectReq); + + if (!D) { + // If we don't have a declaration to control inlining, the function isn't + // explicitly marked as alwaysinline for semantic reasons, and inlining is + // disabled, mark the function as noinline. + if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && + CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) + B.addAttribute(llvm::Attribute::NoInline); + + F->addFnAttrs(B); + return; + } + + // Track whether we need to add the optnone LLVM attribute, + // starting with the default for this optimization level. + bool ShouldAddOptNone = + !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; + // We can't add optnone in the following cases, it won't pass the verifier. + ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); + ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); + + // Add optnone, but do so only if the function isn't always_inline. + if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && + !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { + B.addAttribute(llvm::Attribute::OptimizeNone); + + // OptimizeNone implies noinline; we should not be inlining such functions. + B.addAttribute(llvm::Attribute::NoInline); + + // We still need to handle naked functions even though optnone subsumes + // much of their semantics. + if (D->hasAttr<NakedAttr>()) + B.addAttribute(llvm::Attribute::Naked); + + // OptimizeNone wins over OptimizeForSize and MinSize. + F->removeFnAttr(llvm::Attribute::OptimizeForSize); + F->removeFnAttr(llvm::Attribute::MinSize); + } else if (D->hasAttr<NakedAttr>()) { + // Naked implies noinline: we should not be inlining such functions. + B.addAttribute(llvm::Attribute::Naked); + B.addAttribute(llvm::Attribute::NoInline); + } else if (D->hasAttr<NoDuplicateAttr>()) { + B.addAttribute(llvm::Attribute::NoDuplicate); + } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { + // Add noinline if the function isn't always_inline. + B.addAttribute(llvm::Attribute::NoInline); + } else if (D->hasAttr<AlwaysInlineAttr>() && + !F->hasFnAttribute(llvm::Attribute::NoInline)) { + // (noinline wins over always_inline, and we can't specify both in IR) + B.addAttribute(llvm::Attribute::AlwaysInline); + } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { + // If we're not inlining, then force everything that isn't always_inline to + // carry an explicit noinline attribute. + if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) + B.addAttribute(llvm::Attribute::NoInline); + } else { + // Otherwise, propagate the inline hint attribute and potentially use its + // absence to mark things as noinline. + if (auto *FD = dyn_cast<FunctionDecl>(D)) { + // Search function and template pattern redeclarations for inline. + auto CheckForInline = [](const FunctionDecl *FD) { + auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { + return Redecl->isInlineSpecified(); + }; + if (any_of(FD->redecls(), CheckRedeclForInline)) + return true; + const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); + if (!Pattern) + return false; + return any_of(Pattern->redecls(), CheckRedeclForInline); + }; + if (CheckForInline(FD)) { + B.addAttribute(llvm::Attribute::InlineHint); + } else if (CodeGenOpts.getInlining() == + CodeGenOptions::OnlyHintInlining && + !FD->isInlined() && + !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { + B.addAttribute(llvm::Attribute::NoInline); + } + } + } + + // Add other optimization related attributes if we are optimizing this + // function. + if (!D->hasAttr<OptimizeNoneAttr>()) { + if (D->hasAttr<ColdAttr>()) { + if (!ShouldAddOptNone) + B.addAttribute(llvm::Attribute::OptimizeForSize); + B.addAttribute(llvm::Attribute::Cold); + } + if (D->hasAttr<HotAttr>()) + B.addAttribute(llvm::Attribute::Hot); + if (D->hasAttr<MinSizeAttr>()) + B.addAttribute(llvm::Attribute::MinSize); + } + + F->addFnAttrs(B); + + unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); + if (alignment) + F->setAlignment(llvm::Align(alignment)); + + if (!D->hasAttr<AlignedAttr>()) + if (LangOpts.FunctionAlignment) + F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); + + // Some C++ ABIs require 2-byte alignment for member functions, in order to + // reserve a bit for differentiating between virtual and non-virtual member + // functions. If the current target's C++ ABI requires this and this is a + // member function, set its alignment accordingly. + if (getTarget().getCXXABI().areMemberFunctionsAligned()) { + if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) + F->setAlignment(llvm::Align(2)); + } + + // In the cross-dso CFI mode with canonical jump tables, we want !type + // attributes on definitions only. + if (CodeGenOpts.SanitizeCfiCrossDso && + CodeGenOpts.SanitizeCfiCanonicalJumpTables) { + if (auto *FD = dyn_cast<FunctionDecl>(D)) { + // Skip available_externally functions. They won't be codegen'ed in the + // current module anyway. + if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) + CreateFunctionTypeMetadataForIcall(FD, F); + } + } + + // Emit type metadata on member functions for member function pointer checks. + // These are only ever necessary on definitions; we're guaranteed that the + // definition will be present in the LTO unit as a result of LTO visibility. + auto *MD = dyn_cast<CXXMethodDecl>(D); + if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { + for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { + llvm::Metadata *Id = + CreateMetadataIdentifierForType(Context.getMemberPointerType( + MD->getType(), Context.getRecordType(Base).getTypePtr())); + F->addTypeMetadata(0, Id); + } + } +} + +void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, + llvm::Function *F) { + if (D->hasAttr<StrictFPAttr>()) { + llvm::AttrBuilder FuncAttrs(F->getContext()); + FuncAttrs.addAttribute("strictfp"); + F->addFnAttrs(FuncAttrs); + } +} + +void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { + const Decl *D = GD.getDecl(); + if (isa_and_nonnull<NamedDecl>(D)) + setGVProperties(GV, GD); + else + GV->setVisibility(llvm::GlobalValue::DefaultVisibility); + + if (D && D->hasAttr<UsedAttr>()) + addUsedOrCompilerUsedGlobal(GV); + + if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { + const auto *VD = cast<VarDecl>(D); + if (VD->getType().isConstQualified() && + VD->getStorageDuration() == SD_Static) + addUsedOrCompilerUsedGlobal(GV); + } +} + +bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, + llvm::AttrBuilder &Attrs) { + // Add target-cpu and target-features attributes to functions. If + // we have a decl for the function and it has a target attribute then + // parse that and add it to the feature set. + StringRef TargetCPU = getTarget().getTargetOpts().CPU; + StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; + std::vector<std::string> Features; + const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); + FD = FD ? FD->getMostRecentDecl() : FD; + const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; + const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; + assert((!TD || !TV) && "both target_version and target specified"); + const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; + const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; + bool AddedAttr = false; + if (TD || TV || SD || TC) { + llvm::StringMap<bool> FeatureMap; + getContext().getFunctionFeatureMap(FeatureMap, GD); + + // Produce the canonical string for this set of features. + for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) + Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); + + // Now add the target-cpu and target-features to the function. + // While we populated the feature map above, we still need to + // get and parse the target attribute so we can get the cpu for + // the function. + if (TD) { + ParsedTargetAttr ParsedAttr = + Target.parseTargetAttr(TD->getFeaturesStr()); + if (!ParsedAttr.CPU.empty() && + getTarget().isValidCPUName(ParsedAttr.CPU)) { + TargetCPU = ParsedAttr.CPU; + TuneCPU = ""; // Clear the tune CPU. + } + if (!ParsedAttr.Tune.empty() && + getTarget().isValidCPUName(ParsedAttr.Tune)) + TuneCPU = ParsedAttr.Tune; + } + + if (SD) { + // Apply the given CPU name as the 'tune-cpu' so that the optimizer can + // favor this processor. + TuneCPU = getTarget().getCPUSpecificTuneName( + SD->getCPUName(GD.getMultiVersionIndex())->getName()); + } + } else { + // Otherwise just add the existing target cpu and target features to the + // function. + Features = getTarget().getTargetOpts().Features; + } + + if (!TargetCPU.empty()) { + Attrs.addAttribute("target-cpu", TargetCPU); + AddedAttr = true; + } + if (!TuneCPU.empty()) { + Attrs.addAttribute("tune-cpu", TuneCPU); + AddedAttr = true; + } + if (!Features.empty()) { + llvm::sort(Features); + Attrs.addAttribute("target-features", llvm::join(Features, ",")); + AddedAttr = true; + } + + return AddedAttr; +} + +void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, + llvm::GlobalObject *GO) { + const Decl *D = GD.getDecl(); + SetCommonAttributes(GD, GO); + + if (D) { + if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { + if (D->hasAttr<RetainAttr>()) + addUsedGlobal(GV); + if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) + GV->addAttribute("bss-section", SA->getName()); + if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) + GV->addAttribute("data-section", SA->getName()); + if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) + GV->addAttribute("rodata-section", SA->getName()); + if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) + GV->addAttribute("relro-section", SA->getName()); + } + + if (auto *F = dyn_cast<llvm::Function>(GO)) { + if (D->hasAttr<RetainAttr>()) + addUsedGlobal(F); + if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) + if (!D->getAttr<SectionAttr>()) + F->addFnAttr("implicit-section-name", SA->getName()); + + llvm::AttrBuilder Attrs(F->getContext()); + if (GetCPUAndFeaturesAttributes(GD, Attrs)) { + // We know that GetCPUAndFeaturesAttributes will always have the + // newest set, since it has the newest possible FunctionDecl, so the + // new ones should replace the old. + llvm::AttributeMask RemoveAttrs; + RemoveAttrs.addAttribute("target-cpu"); + RemoveAttrs.addAttribute("target-features"); + RemoveAttrs.addAttribute("tune-cpu"); + F->removeFnAttrs(RemoveAttrs); + F->addFnAttrs(Attrs); + } + } + + if (const auto *CSA = D->getAttr<CodeSegAttr>()) + GO->setSection(CSA->getName()); + else if (const auto *SA = D->getAttr<SectionAttr>()) + GO->setSection(SA->getName()); + } + + getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); +} + +void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, + llvm::Function *F, + const CGFunctionInfo &FI) { + const Decl *D = GD.getDecl(); + SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); + SetLLVMFunctionAttributesForDefinition(D, F); + + F->setLinkage(llvm::Function::InternalLinkage); + + setNonAliasAttributes(GD, F); +} + +static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { + // Set linkage and visibility in case we never see a definition. + LinkageInfo LV = ND->getLinkageAndVisibility(); + // Don't set internal linkage on declarations. + // "extern_weak" is overloaded in LLVM; we probably should have + // separate linkage types for this. + if (isExternallyVisible(LV.getLinkage()) && + (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) + GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); +} + +void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, + llvm::Function *F) { + // Only if we are checking indirect calls. + if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) + return; + + // Non-static class methods are handled via vtable or member function pointer + // checks elsewhere. + if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) + return; + + llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); + F->addTypeMetadata(0, MD); + F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); + + // Emit a hash-based bit set entry for cross-DSO calls. + if (CodeGenOpts.SanitizeCfiCrossDso) + if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) + F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); +} + +void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { + if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) + return; + + llvm::LLVMContext &Ctx = F->getContext(); + llvm::MDBuilder MDB(Ctx); + F->setMetadata(llvm::LLVMContext::MD_kcfi_type, + llvm::MDNode::get( + Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); +} + +static bool allowKCFIIdentifier(StringRef Name) { + // KCFI type identifier constants are only necessary for external assembly + // functions, which means it's safe to skip unusual names. Subset of + // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). + return llvm::all_of(Name, [](const char &C) { + return llvm::isAlnum(C) || C == '_' || C == '.'; + }); +} + +void CodeGenModule::finalizeKCFITypes() { + llvm::Module &M = getModule(); + for (auto &F : M.functions()) { + // Remove KCFI type metadata from non-address-taken local functions. + bool AddressTaken = F.hasAddressTaken(); + if (!AddressTaken && F.hasLocalLinkage()) + F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); + + // Generate a constant with the expected KCFI type identifier for all + // address-taken function declarations to support annotating indirectly + // called assembly functions. + if (!AddressTaken || !F.isDeclaration()) + continue; + + const llvm::ConstantInt *Type; + if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) + Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); + else + continue; + + StringRef Name = F.getName(); + if (!allowKCFIIdentifier(Name)) + continue; + + std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + + Name + ", " + Twine(Type->getZExtValue()) + "\n") + .str(); + M.appendModuleInlineAsm(Asm); + } +} + +void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, + bool IsIncompleteFunction, + bool IsThunk) { + + if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { + // If this is an intrinsic function, set the function's attributes + // to the intrinsic's attributes. + F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); + return; + } + + const auto *FD = cast<FunctionDecl>(GD.getDecl()); + + if (!IsIncompleteFunction) + SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, + IsThunk); + + // Add the Returned attribute for "this", except for iOS 5 and earlier + // where substantial code, including the libstdc++ dylib, was compiled with + // GCC and does not actually return "this". + if (!IsThunk && getCXXABI().HasThisReturn(GD) && + !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { + assert(!F->arg_empty() && + F->arg_begin()->getType() + ->canLosslesslyBitCastTo(F->getReturnType()) && + "unexpected this return"); + F->addParamAttr(0, llvm::Attribute::Returned); + } + + // Only a few attributes are set on declarations; these may later be + // overridden by a definition. + + setLinkageForGV(F, FD); + setGVProperties(F, FD); + + // Setup target-specific attributes. + if (!IsIncompleteFunction && F->isDeclaration()) + getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); + + if (const auto *CSA = FD->getAttr<CodeSegAttr>()) + F->setSection(CSA->getName()); + else if (const auto *SA = FD->getAttr<SectionAttr>()) + F->setSection(SA->getName()); + + if (const auto *EA = FD->getAttr<ErrorAttr>()) { + if (EA->isError()) + F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); + else if (EA->isWarning()) + F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); + } + + // If we plan on emitting this inline builtin, we can't treat it as a builtin. + if (FD->isInlineBuiltinDeclaration()) { + const FunctionDecl *FDBody; + bool HasBody = FD->hasBody(FDBody); + (void)HasBody; + assert(HasBody && "Inline builtin declarations should always have an " + "available body!"); + if (shouldEmitFunction(FDBody)) + F->addFnAttr(llvm::Attribute::NoBuiltin); + } + + if (FD->isReplaceableGlobalAllocationFunction()) { + // A replaceable global allocation function does not act like a builtin by + // default, only if it is invoked by a new-expression or delete-expression. + F->addFnAttr(llvm::Attribute::NoBuiltin); + } + + if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) + F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); + else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) + if (MD->isVirtual()) + F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); + + // Don't emit entries for function declarations in the cross-DSO mode. This + // is handled with better precision by the receiving DSO. But if jump tables + // are non-canonical then we need type metadata in order to produce the local + // jump table. + if (!CodeGenOpts.SanitizeCfiCrossDso || + !CodeGenOpts.SanitizeCfiCanonicalJumpTables) + CreateFunctionTypeMetadataForIcall(FD, F); + + if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) + setKCFIType(FD, F); + + if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) + getOpenMPRuntime().emitDeclareSimdFunction(FD, F); + + if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) + F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); + + if (const auto *CB = FD->getAttr<CallbackAttr>()) { + // Annotate the callback behavior as metadata: + // - The callback callee (as argument number). + // - The callback payloads (as argument numbers). + llvm::LLVMContext &Ctx = F->getContext(); + llvm::MDBuilder MDB(Ctx); + + // The payload indices are all but the first one in the encoding. The first + // identifies the callback callee. + int CalleeIdx = *CB->encoding_begin(); + ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); + F->addMetadata(llvm::LLVMContext::MD_callback, + *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( + CalleeIdx, PayloadIndices, + /* VarArgsArePassed */ false)})); + } +} + +void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { + assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && + "Only globals with definition can force usage."); + LLVMUsed.emplace_back(GV); +} + +void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { + assert(!GV->isDeclaration() && + "Only globals with definition can force usage."); + LLVMCompilerUsed.emplace_back(GV); +} + +void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { + assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && + "Only globals with definition can force usage."); + if (getTriple().isOSBinFormatELF()) + LLVMCompilerUsed.emplace_back(GV); + else + LLVMUsed.emplace_back(GV); +} + +static void emitUsed(CodeGenModule &CGM, StringRef Name, + std::vector<llvm::WeakTrackingVH> &List) { + // Don't create llvm.used if there is no need. + if (List.empty()) + return; + + // Convert List to what ConstantArray needs. + SmallVector<llvm::Constant*, 8> UsedArray; + UsedArray.resize(List.size()); + for (unsigned i = 0, e = List.size(); i != e; ++i) { + UsedArray[i] = + llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( + cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); + } + + if (UsedArray.empty()) + return; + llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); + + auto *GV = new llvm::GlobalVariable( + CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, + llvm::ConstantArray::get(ATy, UsedArray), Name); + + GV->setSection("llvm.metadata"); +} + +void CodeGenModule::emitLLVMUsed() { + emitUsed(*this, "llvm.used", LLVMUsed); + emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); +} + +void CodeGenModule::AppendLinkerOptions(StringRef Opts) { + auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); + LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); +} + +void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { + llvm::SmallString<32> Opt; + getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); + if (Opt.empty()) + return; + auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); + LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); +} + +void CodeGenModule::AddDependentLib(StringRef Lib) { + auto &C = getLLVMContext(); + if (getTarget().getTriple().isOSBinFormatELF()) { + ELFDependentLibraries.push_back( + llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); + return; + } + + llvm::SmallString<24> Opt; + getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); + auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); + LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); +} + +/// Add link options implied by the given module, including modules +/// it depends on, using a postorder walk. +static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, + SmallVectorImpl<llvm::MDNode *> &Metadata, + llvm::SmallPtrSet<Module *, 16> &Visited) { + // Import this module's parent. + if (Mod->Parent && Visited.insert(Mod->Parent).second) { + addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); + } + + // Import this module's dependencies. + for (Module *Import : llvm::reverse(Mod->Imports)) { + if (Visited.insert(Import).second) + addLinkOptionsPostorder(CGM, Import, Metadata, Visited); + } + + // Add linker options to link against the libraries/frameworks + // described by this module. + llvm::LLVMContext &Context = CGM.getLLVMContext(); + bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); + + // For modules that use export_as for linking, use that module + // name instead. + if (Mod->UseExportAsModuleLinkName) + return; + + for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { + // Link against a framework. Frameworks are currently Darwin only, so we + // don't to ask TargetCodeGenInfo for the spelling of the linker option. + if (LL.IsFramework) { + llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), + llvm::MDString::get(Context, LL.Library)}; + + Metadata.push_back(llvm::MDNode::get(Context, Args)); + continue; + } + + // Link against a library. + if (IsELF) { + llvm::Metadata *Args[2] = { + llvm::MDString::get(Context, "lib"), + llvm::MDString::get(Context, LL.Library), + }; + Metadata.push_back(llvm::MDNode::get(Context, Args)); + } else { + llvm::SmallString<24> Opt; + CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); + auto *OptString = llvm::MDString::get(Context, Opt); + Metadata.push_back(llvm::MDNode::get(Context, OptString)); + } + } +} + +void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { + // Emit the initializers in the order that sub-modules appear in the + // source, first Global Module Fragments, if present. + if (auto GMF = Primary->getGlobalModuleFragment()) { + for (Decl *D : getContext().getModuleInitializers(GMF)) { + if (isa<ImportDecl>(D)) + continue; + assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); + EmitTopLevelDecl(D); + } + } + // Second any associated with the module, itself. + for (Decl *D : getContext().getModuleInitializers(Primary)) { + // Skip import decls, the inits for those are called explicitly. + if (isa<ImportDecl>(D)) + continue; + EmitTopLevelDecl(D); + } + // Third any associated with the Privat eMOdule Fragment, if present. + if (auto PMF = Primary->getPrivateModuleFragment()) { + for (Decl *D : getContext().getModuleInitializers(PMF)) { + assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); + EmitTopLevelDecl(D); + } + } +} + +void CodeGenModule::EmitModuleLinkOptions() { + // Collect the set of all of the modules we want to visit to emit link + // options, which is essentially the imported modules and all of their + // non-explicit child modules. + llvm::SetVector<clang::Module *> LinkModules; + llvm::SmallPtrSet<clang::Module *, 16> Visited; + SmallVector<clang::Module *, 16> Stack; + + // Seed the stack with imported modules. + for (Module *M : ImportedModules) { + // Do not add any link flags when an implementation TU of a module imports + // a header of that same module. + if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && + !getLangOpts().isCompilingModule()) + continue; + if (Visited.insert(M).second) + Stack.push_back(M); + } + + // Find all of the modules to import, making a little effort to prune + // non-leaf modules. + while (!Stack.empty()) { + clang::Module *Mod = Stack.pop_back_val(); + + bool AnyChildren = false; + + // Visit the submodules of this module. + for (const auto &SM : Mod->submodules()) { + // Skip explicit children; they need to be explicitly imported to be + // linked against. + if (SM->IsExplicit) + continue; + + if (Visited.insert(SM).second) { + Stack.push_back(SM); + AnyChildren = true; + } + } + + // We didn't find any children, so add this module to the list of + // modules to link against. + if (!AnyChildren) { + LinkModules.insert(Mod); + } + } + + // Add link options for all of the imported modules in reverse topological + // order. We don't do anything to try to order import link flags with respect + // to linker options inserted by things like #pragma comment(). + SmallVector<llvm::MDNode *, 16> MetadataArgs; + Visited.clear(); + for (Module *M : LinkModules) + if (Visited.insert(M).second) + addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); + std::reverse(MetadataArgs.begin(), MetadataArgs.end()); + LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); + + // Add the linker options metadata flag. + auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); + for (auto *MD : LinkerOptionsMetadata) + NMD->addOperand(MD); +} + +void CodeGenModule::EmitDeferred() { + // Emit deferred declare target declarations. + if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) + getOpenMPRuntime().emitDeferredTargetDecls(); + + // Emit code for any potentially referenced deferred decls. Since a + // previously unused static decl may become used during the generation of code + // for a static function, iterate until no changes are made. + + if (!DeferredVTables.empty()) { + EmitDeferredVTables(); + + // Emitting a vtable doesn't directly cause more vtables to + // become deferred, although it can cause functions to be + // emitted that then need those vtables. + assert(DeferredVTables.empty()); + } + + // Emit CUDA/HIP static device variables referenced by host code only. + // Note we should not clear CUDADeviceVarODRUsedByHost since it is still + // needed for further handling. + if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) + llvm::append_range(DeferredDeclsToEmit, + getContext().CUDADeviceVarODRUsedByHost); + + // Stop if we're out of both deferred vtables and deferred declarations. + if (DeferredDeclsToEmit.empty()) + return; + + // Grab the list of decls to emit. If EmitGlobalDefinition schedules more + // work, it will not interfere with this. + std::vector<GlobalDecl> CurDeclsToEmit; + CurDeclsToEmit.swap(DeferredDeclsToEmit); + + for (GlobalDecl &D : CurDeclsToEmit) { + // We should call GetAddrOfGlobal with IsForDefinition set to true in order + // to get GlobalValue with exactly the type we need, not something that + // might had been created for another decl with the same mangled name but + // different type. + llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( + GetAddrOfGlobal(D, ForDefinition)); + + // In case of different address spaces, we may still get a cast, even with + // IsForDefinition equal to true. Query mangled names table to get + // GlobalValue. + if (!GV) + GV = GetGlobalValue(getMangledName(D)); + + // Make sure GetGlobalValue returned non-null. + assert(GV); + + // Check to see if we've already emitted this. This is necessary + // for a couple of reasons: first, decls can end up in the + // deferred-decls queue multiple times, and second, decls can end + // up with definitions in unusual ways (e.g. by an extern inline + // function acquiring a strong function redefinition). Just + // ignore these cases. + if (!GV->isDeclaration()) + continue; + + // If this is OpenMP, check if it is legal to emit this global normally. + if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) + continue; + + // Otherwise, emit the definition and move on to the next one. + EmitGlobalDefinition(D, GV); + + // If we found out that we need to emit more decls, do that recursively. + // This has the advantage that the decls are emitted in a DFS and related + // ones are close together, which is convenient for testing. + if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { + EmitDeferred(); + assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); + } + } +} + +void CodeGenModule::EmitVTablesOpportunistically() { + // Try to emit external vtables as available_externally if they have emitted + // all inlined virtual functions. It runs after EmitDeferred() and therefore + // is not allowed to create new references to things that need to be emitted + // lazily. Note that it also uses fact that we eagerly emitting RTTI. + + assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) + && "Only emit opportunistic vtables with optimizations"); + + for (const CXXRecordDecl *RD : OpportunisticVTables) { + assert(getVTables().isVTableExternal(RD) && + "This queue should only contain external vtables"); + if (getCXXABI().canSpeculativelyEmitVTable(RD)) + VTables.GenerateClassData(RD); + } + OpportunisticVTables.clear(); +} + +void CodeGenModule::EmitGlobalAnnotations() { + if (Annotations.empty()) + return; + + // Create a new global variable for the ConstantStruct in the Module. + llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( + Annotations[0]->getType(), Annotations.size()), Annotations); + auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, + llvm::GlobalValue::AppendingLinkage, + Array, "llvm.global.annotations"); + gv->setSection(AnnotationSection); +} + +llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { + llvm::Constant *&AStr = AnnotationStrings[Str]; + if (AStr) + return AStr; + + // Not found yet, create a new global. + llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); + auto *gv = new llvm::GlobalVariable( + getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, + ".str", nullptr, llvm::GlobalValue::NotThreadLocal, + ConstGlobalsPtrTy->getAddressSpace()); + gv->setSection(AnnotationSection); + gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); + AStr = gv; + return gv; +} + +llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { + SourceManager &SM = getContext().getSourceManager(); + PresumedLoc PLoc = SM.getPresumedLoc(Loc); + if (PLoc.isValid()) + return EmitAnnotationString(PLoc.getFilename()); + return EmitAnnotationString(SM.getBufferName(Loc)); +} + +llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { + SourceManager &SM = getContext().getSourceManager(); + PresumedLoc PLoc = SM.getPresumedLoc(L); + unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : + SM.getExpansionLineNumber(L); + return llvm::ConstantInt::get(Int32Ty, LineNo); +} + +llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { + ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; + if (Exprs.empty()) + return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); + + llvm::FoldingSetNodeID ID; + for (Expr *E : Exprs) { + ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); + } + llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; + if (Lookup) + return Lookup; + + llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; + LLVMArgs.reserve(Exprs.size()); + ConstantEmitter ConstEmiter(*this); + llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { + const auto *CE = cast<clang::ConstantExpr>(E); + return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), + CE->getType()); + }); + auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); + auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, + llvm::GlobalValue::PrivateLinkage, Struct, + ".args"); + GV->setSection(AnnotationSection); + GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); + auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); + + Lookup = Bitcasted; + return Bitcasted; +} + +llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, + const AnnotateAttr *AA, + SourceLocation L) { + // Get the globals for file name, annotation, and the line number. + llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), + *UnitGV = EmitAnnotationUnit(L), + *LineNoCst = EmitAnnotationLineNo(L), + *Args = EmitAnnotationArgs(AA); + + llvm::Constant *GVInGlobalsAS = GV; + if (GV->getAddressSpace() != + getDataLayout().getDefaultGlobalsAddressSpace()) { + GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( + GV, GV->getValueType()->getPointerTo( + getDataLayout().getDefaultGlobalsAddressSpace())); + } + + // Create the ConstantStruct for the global annotation. + llvm::Constant *Fields[] = { + llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), + llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy), + llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy), + LineNoCst, + Args, + }; + return llvm::ConstantStruct::getAnon(Fields); +} + +void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, + llvm::GlobalValue *GV) { + assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); + // Get the struct elements for these annotations. + for (const auto *I : D->specific_attrs<AnnotateAttr>()) + Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); +} + +bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, + SourceLocation Loc) const { + const auto &NoSanitizeL = getContext().getNoSanitizeList(); + // NoSanitize by function name. + if (NoSanitizeL.containsFunction(Kind, Fn->getName())) + return true; + // NoSanitize by location. Check "mainfile" prefix. + auto &SM = Context.getSourceManager(); + const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID()); + if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) + return true; + + // Check "src" prefix. + if (Loc.isValid()) + return NoSanitizeL.containsLocation(Kind, Loc); + // If location is unknown, this may be a compiler-generated function. Assume + // it's located in the main file. + return NoSanitizeL.containsFile(Kind, MainFile.getName()); +} + +bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, + llvm::GlobalVariable *GV, + SourceLocation Loc, QualType Ty, + StringRef Category) const { + const auto &NoSanitizeL = getContext().getNoSanitizeList(); + if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) + return true; + auto &SM = Context.getSourceManager(); + if (NoSanitizeL.containsMainFile( + Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category)) + return true; + if (NoSanitizeL.containsLocation(Kind, Loc, Category)) + return true; + + // Check global type. + if (!Ty.isNull()) { + // Drill down the array types: if global variable of a fixed type is + // not sanitized, we also don't instrument arrays of them. + while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) + Ty = AT->getElementType(); + Ty = Ty.getCanonicalType().getUnqualifiedType(); + // Only record types (classes, structs etc.) are ignored. + if (Ty->isRecordType()) { + std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); + if (NoSanitizeL.containsType(Kind, TypeStr, Category)) + return true; + } + } + return false; +} + +bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, + StringRef Category) const { + const auto &XRayFilter = getContext().getXRayFilter(); + using ImbueAttr = XRayFunctionFilter::ImbueAttribute; + auto Attr = ImbueAttr::NONE; + if (Loc.isValid()) + Attr = XRayFilter.shouldImbueLocation(Loc, Category); + if (Attr == ImbueAttr::NONE) + Attr = XRayFilter.shouldImbueFunction(Fn->getName()); + switch (Attr) { + case ImbueAttr::NONE: + return false; + case ImbueAttr::ALWAYS: + Fn->addFnAttr("function-instrument", "xray-always"); + break; + case ImbueAttr::ALWAYS_ARG1: + Fn->addFnAttr("function-instrument", "xray-always"); + Fn->addFnAttr("xray-log-args", "1"); + break; + case ImbueAttr::NEVER: + Fn->addFnAttr("function-instrument", "xray-never"); + break; + } + return true; +} + +ProfileList::ExclusionType +CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, + SourceLocation Loc) const { + const auto &ProfileList = getContext().getProfileList(); + // If the profile list is empty, then instrument everything. + if (ProfileList.isEmpty()) + return ProfileList::Allow; + CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); + // First, check the function name. + if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) + return *V; + // Next, check the source location. + if (Loc.isValid()) + if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) + return *V; + // If location is unknown, this may be a compiler-generated function. Assume + // it's located in the main file. + auto &SM = Context.getSourceManager(); + if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) + if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) + return *V; + return ProfileList.getDefault(Kind); +} + +ProfileList::ExclusionType +CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, + SourceLocation Loc) const { + auto V = isFunctionBlockedByProfileList(Fn, Loc); + if (V != ProfileList::Allow) + return V; + + auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; + if (NumGroups > 1) { + auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; + if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) + return ProfileList::Skip; + } + return ProfileList::Allow; +} + +bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { + // Never defer when EmitAllDecls is specified. + if (LangOpts.EmitAllDecls) + return true; + + if (CodeGenOpts.KeepStaticConsts) { + const auto *VD = dyn_cast<VarDecl>(Global); + if (VD && VD->getType().isConstQualified() && + VD->getStorageDuration() == SD_Static) + return true; + } + + return getContext().DeclMustBeEmitted(Global); +} + +bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { + // In OpenMP 5.0 variables and function may be marked as + // device_type(host/nohost) and we should not emit them eagerly unless we sure + // that they must be emitted on the host/device. To be sure we need to have + // seen a declare target with an explicit mentioning of the function, we know + // we have if the level of the declare target attribute is -1. Note that we + // check somewhere else if we should emit this at all. + if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { + std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = + OMPDeclareTargetDeclAttr::getActiveAttr(Global); + if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) + return false; + } + + if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { + if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) + // Implicit template instantiations may change linkage if they are later + // explicitly instantiated, so they should not be emitted eagerly. + return false; + } + if (const auto *VD = dyn_cast<VarDecl>(Global)) { + if (Context.getInlineVariableDefinitionKind(VD) == + ASTContext::InlineVariableDefinitionKind::WeakUnknown) + // A definition of an inline constexpr static data member may change + // linkage later if it's redeclared outside the class. + return false; + if (CXX20ModuleInits && VD->getOwningModule() && + !VD->getOwningModule()->isModuleMapModule()) { + // For CXX20, module-owned initializers need to be deferred, since it is + // not known at this point if they will be run for the current module or + // as part of the initializer for an imported one. + return false; + } + } + // If OpenMP is enabled and threadprivates must be generated like TLS, delay + // codegen for global variables, because they may be marked as threadprivate. + if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && + getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && + !isTypeConstant(Global->getType(), false) && + !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) + return false; + + return true; +} + +ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { + StringRef Name = getMangledName(GD); + + // The UUID descriptor should be pointer aligned. + CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); + + // Look for an existing global. + if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) + return ConstantAddress(GV, GV->getValueType(), Alignment); + + ConstantEmitter Emitter(*this); + llvm::Constant *Init; + + APValue &V = GD->getAsAPValue(); + if (!V.isAbsent()) { + // If possible, emit the APValue version of the initializer. In particular, + // this gets the type of the constant right. + Init = Emitter.emitForInitializer( + GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); + } else { + // As a fallback, directly construct the constant. + // FIXME: This may get padding wrong under esoteric struct layout rules. + // MSVC appears to create a complete type 'struct __s_GUID' that it + // presumably uses to represent these constants. + MSGuidDecl::Parts Parts = GD->getParts(); + llvm::Constant *Fields[4] = { + llvm::ConstantInt::get(Int32Ty, Parts.Part1), + llvm::ConstantInt::get(Int16Ty, Parts.Part2), + llvm::ConstantInt::get(Int16Ty, Parts.Part3), + llvm::ConstantDataArray::getRaw( + StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, + Int8Ty)}; + Init = llvm::ConstantStruct::getAnon(Fields); + } + + auto *GV = new llvm::GlobalVariable( + getModule(), Init->getType(), + /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); + if (supportsCOMDAT()) + GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); + setDSOLocal(GV); + + if (!V.isAbsent()) { + Emitter.finalize(GV); + return ConstantAddress(GV, GV->getValueType(), Alignment); + } + + llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); + llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( + GV, Ty->getPointerTo(GV->getAddressSpace())); + return ConstantAddress(Addr, Ty, Alignment); +} + +ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( + const UnnamedGlobalConstantDecl *GCD) { + CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); + + llvm::GlobalVariable **Entry = nullptr; + Entry = &UnnamedGlobalConstantDeclMap[GCD]; + if (*Entry) + return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); + + ConstantEmitter Emitter(*this); + llvm::Constant *Init; + + const APValue &V = GCD->getValue(); + + assert(!V.isAbsent()); + Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), + GCD->getType()); + + auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), + /*isConstant=*/true, + llvm::GlobalValue::PrivateLinkage, Init, + ".constant"); + GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); + GV->setAlignment(Alignment.getAsAlign()); + + Emitter.finalize(GV); + + *Entry = GV; + return ConstantAddress(GV, GV->getValueType(), Alignment); +} + +ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( + const TemplateParamObjectDecl *TPO) { + StringRef Name = getMangledName(TPO); + CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); + + if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) + return ConstantAddress(GV, GV->getValueType(), Alignment); + + ConstantEmitter Emitter(*this); + llvm::Constant *Init = Emitter.emitForInitializer( + TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); + + if (!Init) { + ErrorUnsupported(TPO, "template parameter object"); + return ConstantAddress::invalid(); + } + + auto *GV = new llvm::GlobalVariable( + getModule(), Init->getType(), + /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); + if (supportsCOMDAT()) + GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); + Emitter.finalize(GV); + + return ConstantAddress(GV, GV->getValueType(), Alignment); +} + +ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { + const AliasAttr *AA = VD->getAttr<AliasAttr>(); + assert(AA && "No alias?"); + + CharUnits Alignment = getContext().getDeclAlign(VD); + llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); + + // See if there is already something with the target's name in the module. + llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); + if (Entry) { + unsigned AS = getTypes().getTargetAddressSpace(VD->getType()); + auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); + return ConstantAddress(Ptr, DeclTy, Alignment); + } + + llvm::Constant *Aliasee; + if (isa<llvm::FunctionType>(DeclTy)) + Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, + GlobalDecl(cast<FunctionDecl>(VD)), + /*ForVTable=*/false); + else + Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, + nullptr); + + auto *F = cast<llvm::GlobalValue>(Aliasee); + F->setLinkage(llvm::Function::ExternalWeakLinkage); + WeakRefReferences.insert(F); + + return ConstantAddress(Aliasee, DeclTy, Alignment); +} + +void CodeGenModule::EmitGlobal(GlobalDecl GD) { + const auto *Global = cast<ValueDecl>(GD.getDecl()); + + // Weak references don't produce any output by themselves. + if (Global->hasAttr<WeakRefAttr>()) + return; + + // If this is an alias definition (which otherwise looks like a declaration) + // emit it now. + if (Global->hasAttr<AliasAttr>()) + return EmitAliasDefinition(GD); + + // IFunc like an alias whose value is resolved at runtime by calling resolver. + if (Global->hasAttr<IFuncAttr>()) + return emitIFuncDefinition(GD); + + // If this is a cpu_dispatch multiversion function, emit the resolver. + if (Global->hasAttr<CPUDispatchAttr>()) + return emitCPUDispatchDefinition(GD); + + // If this is CUDA, be selective about which declarations we emit. + if (LangOpts.CUDA) { + if (LangOpts.CUDAIsDevice) { + if (!Global->hasAttr<CUDADeviceAttr>() && + !Global->hasAttr<CUDAGlobalAttr>() && + !Global->hasAttr<CUDAConstantAttr>() && + !Global->hasAttr<CUDASharedAttr>() && + !Global->getType()->isCUDADeviceBuiltinSurfaceType() && + !Global->getType()->isCUDADeviceBuiltinTextureType()) + return; + } else { + // We need to emit host-side 'shadows' for all global + // device-side variables because the CUDA runtime needs their + // size and host-side address in order to provide access to + // their device-side incarnations. + + // So device-only functions are the only things we skip. + if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && + Global->hasAttr<CUDADeviceAttr>()) + return; + + assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && + "Expected Variable or Function"); + } + } + + if (LangOpts.OpenMP) { + // If this is OpenMP, check if it is legal to emit this global normally. + if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) + return; + if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { + if (MustBeEmitted(Global)) + EmitOMPDeclareReduction(DRD); + return; + } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { + if (MustBeEmitted(Global)) + EmitOMPDeclareMapper(DMD); + return; + } + } + + // Ignore declarations, they will be emitted on their first use. + if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { + // Forward declarations are emitted lazily on first use. + if (!FD->doesThisDeclarationHaveABody()) { + if (!FD->doesDeclarationForceExternallyVisibleDefinition()) + return; + + StringRef MangledName = getMangledName(GD); + + // Compute the function info and LLVM type. + const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); + llvm::Type *Ty = getTypes().GetFunctionType(FI); + + GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, + /*DontDefer=*/false); + return; + } + } else { + const auto *VD = cast<VarDecl>(Global); + assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); + if (VD->isThisDeclarationADefinition() != VarDecl::Definition && + !Context.isMSStaticDataMemberInlineDefinition(VD)) { + if (LangOpts.OpenMP) { + // Emit declaration of the must-be-emitted declare target variable. + if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = + OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { + bool UnifiedMemoryEnabled = + getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); + if ((*Res == OMPDeclareTargetDeclAttr::MT_To || + *Res == OMPDeclareTargetDeclAttr::MT_Enter) && + !UnifiedMemoryEnabled) { + (void)GetAddrOfGlobalVar(VD); + } else { + assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || + ((*Res == OMPDeclareTargetDeclAttr::MT_To || + *Res == OMPDeclareTargetDeclAttr::MT_Enter) && + UnifiedMemoryEnabled)) && + "Link clause or to clause with unified memory expected."); + (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); + } + + return; + } + } + // If this declaration may have caused an inline variable definition to + // change linkage, make sure that it's emitted. + if (Context.getInlineVariableDefinitionKind(VD) == + ASTContext::InlineVariableDefinitionKind::Strong) + GetAddrOfGlobalVar(VD); + return; + } + } + + // Defer code generation to first use when possible, e.g. if this is an inline + // function. If the global must always be emitted, do it eagerly if possible + // to benefit from cache locality. + if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { + // Emit the definition if it can't be deferred. + EmitGlobalDefinition(GD); + return; + } + + // If we're deferring emission of a C++ variable with an + // initializer, remember the order in which it appeared in the file. + if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && + cast<VarDecl>(Global)->hasInit()) { + DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); + CXXGlobalInits.push_back(nullptr); + } + + StringRef MangledName = getMangledName(GD); + if (GetGlobalValue(MangledName) != nullptr) { + // The value has already been used and should therefore be emitted. + addDeferredDeclToEmit(GD); + } else if (MustBeEmitted(Global)) { + // The value must be emitted, but cannot be emitted eagerly. + assert(!MayBeEmittedEagerly(Global)); + addDeferredDeclToEmit(GD); + EmittedDeferredDecls[MangledName] = GD; + } else { + // Otherwise, remember that we saw a deferred decl with this name. The + // first use of the mangled name will cause it to move into + // DeferredDeclsToEmit. + DeferredDecls[MangledName] = GD; + } +} + +// Check if T is a class type with a destructor that's not dllimport. +static bool HasNonDllImportDtor(QualType T) { + if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) + if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) + if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) + return true; + + return false; +} + +namespace { + struct FunctionIsDirectlyRecursive + : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { + const StringRef Name; + const Builtin::Context &BI; + FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) + : Name(N), BI(C) {} + + bool VisitCallExpr(const CallExpr *E) { + const FunctionDecl *FD = E->getDirectCallee(); + if (!FD) + return false; + AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); + if (Attr && Name == Attr->getLabel()) + return true; + unsigned BuiltinID = FD->getBuiltinID(); + if (!BuiltinID || !BI.isLibFunction(BuiltinID)) + return false; + StringRef BuiltinName = BI.getName(BuiltinID); + if (BuiltinName.startswith("__builtin_") && + Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { + return true; + } + return false; + } + + bool VisitStmt(const Stmt *S) { + for (const Stmt *Child : S->children()) + if (Child && this->Visit(Child)) + return true; + return false; + } + }; + + // Make sure we're not referencing non-imported vars or functions. + struct DLLImportFunctionVisitor + : public RecursiveASTVisitor<DLLImportFunctionVisitor> { + bool SafeToInline = true; + + bool shouldVisitImplicitCode() const { return true; } + + bool VisitVarDecl(VarDecl *VD) { + if (VD->getTLSKind()) { + // A thread-local variable cannot be imported. + SafeToInline = false; + return SafeToInline; + } + + // A variable definition might imply a destructor call. + if (VD->isThisDeclarationADefinition()) + SafeToInline = !HasNonDllImportDtor(VD->getType()); + + return SafeToInline; + } + + bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { + if (const auto *D = E->getTemporary()->getDestructor()) + SafeToInline = D->hasAttr<DLLImportAttr>(); + return SafeToInline; + } + + bool VisitDeclRefExpr(DeclRefExpr *E) { + ValueDecl *VD = E->getDecl(); + if (isa<FunctionDecl>(VD)) + SafeToInline = VD->hasAttr<DLLImportAttr>(); + else if (VarDecl *V = dyn_cast<VarDecl>(VD)) + SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); + return SafeToInline; + } + + bool VisitCXXConstructExpr(CXXConstructExpr *E) { + SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); + return SafeToInline; + } + + bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { + CXXMethodDecl *M = E->getMethodDecl(); + if (!M) { + // Call through a pointer to member function. This is safe to inline. + SafeToInline = true; + } else { + SafeToInline = M->hasAttr<DLLImportAttr>(); + } + return SafeToInline; + } + + bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { + SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); + return SafeToInline; + } + + bool VisitCXXNewExpr(CXXNewExpr *E) { + SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); + return SafeToInline; + } + }; +} + +// isTriviallyRecursive - Check if this function calls another +// decl that, because of the asm attribute or the other decl being a builtin, +// ends up pointing to itself. +bool +CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { + StringRef Name; + if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { + // asm labels are a special kind of mangling we have to support. + AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); + if (!Attr) + return false; + Name = Attr->getLabel(); + } else { + Name = FD->getName(); + } + + FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); + const Stmt *Body = FD->getBody(); + return Body ? Walker.Visit(Body) : false; +} + +bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { + if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) + return true; + const auto *F = cast<FunctionDecl>(GD.getDecl()); + if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) + return false; + + if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { + // Check whether it would be safe to inline this dllimport function. + DLLImportFunctionVisitor Visitor; + Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); + if (!Visitor.SafeToInline) + return false; + + if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { + // Implicit destructor invocations aren't captured in the AST, so the + // check above can't see them. Check for them manually here. + for (const Decl *Member : Dtor->getParent()->decls()) + if (isa<FieldDecl>(Member)) + if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) + return false; + for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) + if (HasNonDllImportDtor(B.getType())) + return false; + } + } + + // Inline builtins declaration must be emitted. They often are fortified + // functions. + if (F->isInlineBuiltinDeclaration()) + return true; + + // PR9614. Avoid cases where the source code is lying to us. An available + // externally function should have an equivalent function somewhere else, + // but a function that calls itself through asm label/`__builtin_` trickery is + // clearly not equivalent to the real implementation. + // This happens in glibc's btowc and in some configure checks. + return !isTriviallyRecursive(F); +} + +bool CodeGenModule::shouldOpportunisticallyEmitVTables() { + return CodeGenOpts.OptimizationLevel > 0; +} + +void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, + llvm::GlobalValue *GV) { + const auto *FD = cast<FunctionDecl>(GD.getDecl()); + + if (FD->isCPUSpecificMultiVersion()) { + auto *Spec = FD->getAttr<CPUSpecificAttr>(); + for (unsigned I = 0; I < Spec->cpus_size(); ++I) + EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); + } else if (FD->isTargetClonesMultiVersion()) { + auto *Clone = FD->getAttr<TargetClonesAttr>(); + for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) + if (Clone->isFirstOfVersion(I)) + EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); + // Ensure that the resolver function is also emitted. + GetOrCreateMultiVersionResolver(GD); + } else + EmitGlobalFunctionDefinition(GD, GV); +} + +void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { + const auto *D = cast<ValueDecl>(GD.getDecl()); + + PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), + Context.getSourceManager(), + "Generating code for declaration"); + + if (const auto *FD = dyn_cast<FunctionDecl>(D)) { + // At -O0, don't generate IR for functions with available_externally + // linkage. + if (!shouldEmitFunction(GD)) + return; + + llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { + std::string Name; + llvm::raw_string_ostream OS(Name); + FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), + /*Qualified=*/true); + return Name; + }); + + if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { + // Make sure to emit the definition(s) before we emit the thunks. + // This is necessary for the generation of certain thunks. + if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) + ABI->emitCXXStructor(GD); + else if (FD->isMultiVersion()) + EmitMultiVersionFunctionDefinition(GD, GV); + else + EmitGlobalFunctionDefinition(GD, GV); + + if (Method->isVirtual()) + getVTables().EmitThunks(GD); + + return; + } + + if (FD->isMultiVersion()) + return EmitMultiVersionFunctionDefinition(GD, GV); + return EmitGlobalFunctionDefinition(GD, GV); + } + + if (const auto *VD = dyn_cast<VarDecl>(D)) + return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); + + llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); +} + +static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, + llvm::Function *NewFn); + +static unsigned +TargetMVPriority(const TargetInfo &TI, + const CodeGenFunction::MultiVersionResolverOption &RO) { + unsigned Priority = 0; + unsigned NumFeatures = 0; + for (StringRef Feat : RO.Conditions.Features) { + Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); + NumFeatures++; + } + + if (!RO.Conditions.Architecture.empty()) + Priority = std::max( + Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); + + Priority += TI.multiVersionFeatureCost() * NumFeatures; + + return Priority; +} + +// Multiversion functions should be at most 'WeakODRLinkage' so that a different +// TU can forward declare the function without causing problems. Particularly +// in the cases of CPUDispatch, this causes issues. This also makes sure we +// work with internal linkage functions, so that the same function name can be +// used with internal linkage in multiple TUs. +llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, + GlobalDecl GD) { + const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); + if (FD->getFormalLinkage() == InternalLinkage) + return llvm::GlobalValue::InternalLinkage; + return llvm::GlobalValue::WeakODRLinkage; +} + +void CodeGenModule::emitMultiVersionFunctions() { + std::vector<GlobalDecl> MVFuncsToEmit; + MultiVersionFuncs.swap(MVFuncsToEmit); + for (GlobalDecl GD : MVFuncsToEmit) { + const auto *FD = cast<FunctionDecl>(GD.getDecl()); + assert(FD && "Expected a FunctionDecl"); + + SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; + if (FD->isTargetMultiVersion()) { + getContext().forEachMultiversionedFunctionVersion( + FD, [this, &GD, &Options](const FunctionDecl *CurFD) { + GlobalDecl CurGD{ + (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; + StringRef MangledName = getMangledName(CurGD); + llvm::Constant *Func = GetGlobalValue(MangledName); + if (!Func) { + if (CurFD->isDefined()) { + EmitGlobalFunctionDefinition(CurGD, nullptr); + Func = GetGlobalValue(MangledName); + } else { + const CGFunctionInfo &FI = + getTypes().arrangeGlobalDeclaration(GD); + llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); + Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, + /*DontDefer=*/false, ForDefinition); + } + assert(Func && "This should have just been created"); + } + if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) { + const auto *TA = CurFD->getAttr<TargetAttr>(); + llvm::SmallVector<StringRef, 8> Feats; + TA->getAddedFeatures(Feats); + Options.emplace_back(cast<llvm::Function>(Func), + TA->getArchitecture(), Feats); + } else { + const auto *TVA = CurFD->getAttr<TargetVersionAttr>(); + llvm::SmallVector<StringRef, 8> Feats; + TVA->getFeatures(Feats); + Options.emplace_back(cast<llvm::Function>(Func), + /*Architecture*/ "", Feats); + } + }); + } else if (FD->isTargetClonesMultiVersion()) { + const auto *TC = FD->getAttr<TargetClonesAttr>(); + for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); + ++VersionIndex) { + if (!TC->isFirstOfVersion(VersionIndex)) + continue; + GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), + VersionIndex}; + StringRef Version = TC->getFeatureStr(VersionIndex); + StringRef MangledName = getMangledName(CurGD); + llvm::Constant *Func = GetGlobalValue(MangledName); + if (!Func) { + if (FD->isDefined()) { + EmitGlobalFunctionDefinition(CurGD, nullptr); + Func = GetGlobalValue(MangledName); + } else { + const CGFunctionInfo &FI = + getTypes().arrangeGlobalDeclaration(CurGD); + llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); + Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, + /*DontDefer=*/false, ForDefinition); + } + assert(Func && "This should have just been created"); + } + + StringRef Architecture; + llvm::SmallVector<StringRef, 1> Feature; + + if (getTarget().getTriple().isAArch64()) { + if (Version != "default") { + llvm::SmallVector<StringRef, 8> VerFeats; + Version.split(VerFeats, "+"); + for (auto &CurFeat : VerFeats) + Feature.push_back(CurFeat.trim()); + } + } else { + if (Version.startswith("arch=")) + Architecture = Version.drop_front(sizeof("arch=") - 1); + else if (Version != "default") + Feature.push_back(Version); + } + + Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); + } + } else { + assert(0 && "Expected a target or target_clones multiversion function"); + continue; + } + + llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); + if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) + ResolverConstant = IFunc->getResolver(); + llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); + + ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); + + if (supportsCOMDAT()) + ResolverFunc->setComdat( + getModule().getOrInsertComdat(ResolverFunc->getName())); + + const TargetInfo &TI = getTarget(); + llvm::stable_sort( + Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, + const CodeGenFunction::MultiVersionResolverOption &RHS) { + return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); + }); + CodeGenFunction CGF(*this); + CGF.EmitMultiVersionResolver(ResolverFunc, Options); + } + + // Ensure that any additions to the deferred decls list caused by emitting a + // variant are emitted. This can happen when the variant itself is inline and + // calls a function without linkage. + if (!MVFuncsToEmit.empty()) + EmitDeferred(); + + // Ensure that any additions to the multiversion funcs list from either the + // deferred decls or the multiversion functions themselves are emitted. + if (!MultiVersionFuncs.empty()) + emitMultiVersionFunctions(); +} + +void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { + const auto *FD = cast<FunctionDecl>(GD.getDecl()); + assert(FD && "Not a FunctionDecl?"); + assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); + const auto *DD = FD->getAttr<CPUDispatchAttr>(); + assert(DD && "Not a cpu_dispatch Function?"); + + const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); + llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); + + StringRef ResolverName = getMangledName(GD); + UpdateMultiVersionNames(GD, FD, ResolverName); + + llvm::Type *ResolverType; + GlobalDecl ResolverGD; + if (getTarget().supportsIFunc()) { + ResolverType = llvm::FunctionType::get( + llvm::PointerType::get(DeclTy, + getTypes().getTargetAddressSpace(FD->getType())), + false); + } + else { + ResolverType = DeclTy; + ResolverGD = GD; + } + + auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( + ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); + ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); + if (supportsCOMDAT()) + ResolverFunc->setComdat( + getModule().getOrInsertComdat(ResolverFunc->getName())); + + SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; + const TargetInfo &Target = getTarget(); + unsigned Index = 0; + for (const IdentifierInfo *II : DD->cpus()) { + // Get the name of the target function so we can look it up/create it. + std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + + getCPUSpecificMangling(*this, II->getName()); + + llvm::Constant *Func = GetGlobalValue(MangledName); + + if (!Func) { + GlobalDecl ExistingDecl = Manglings.lookup(MangledName); + if (ExistingDecl.getDecl() && + ExistingDecl.getDecl()->getAsFunction()->isDefined()) { + EmitGlobalFunctionDefinition(ExistingDecl, nullptr); + Func = GetGlobalValue(MangledName); + } else { + if (!ExistingDecl.getDecl()) + ExistingDecl = GD.getWithMultiVersionIndex(Index); + + Func = GetOrCreateLLVMFunction( + MangledName, DeclTy, ExistingDecl, + /*ForVTable=*/false, /*DontDefer=*/true, + /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); + } + } + + llvm::SmallVector<StringRef, 32> Features; + Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); + llvm::transform(Features, Features.begin(), + [](StringRef Str) { return Str.substr(1); }); + llvm::erase_if(Features, [&Target](StringRef Feat) { + return !Target.validateCpuSupports(Feat); + }); + Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); + ++Index; + } + + llvm::stable_sort( + Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, + const CodeGenFunction::MultiVersionResolverOption &RHS) { + return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > + llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); + }); + + // If the list contains multiple 'default' versions, such as when it contains + // 'pentium' and 'generic', don't emit the call to the generic one (since we + // always run on at least a 'pentium'). We do this by deleting the 'least + // advanced' (read, lowest mangling letter). + while (Options.size() > 1 && + llvm::X86::getCpuSupportsMask( + (Options.end() - 2)->Conditions.Features) == 0) { + StringRef LHSName = (Options.end() - 2)->Function->getName(); + StringRef RHSName = (Options.end() - 1)->Function->getName(); + if (LHSName.compare(RHSName) < 0) + Options.erase(Options.end() - 2); + else + Options.erase(Options.end() - 1); + } + + CodeGenFunction CGF(*this); + CGF.EmitMultiVersionResolver(ResolverFunc, Options); + + if (getTarget().supportsIFunc()) { + llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); + auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); + + // Fix up function declarations that were created for cpu_specific before + // cpu_dispatch was known + if (!isa<llvm::GlobalIFunc>(IFunc)) { + assert(cast<llvm::Function>(IFunc)->isDeclaration()); + auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, + &getModule()); + GI->takeName(IFunc); + IFunc->replaceAllUsesWith(GI); + IFunc->eraseFromParent(); + IFunc = GI; + } + + std::string AliasName = getMangledNameImpl( + *this, GD, FD, /*OmitMultiVersionMangling=*/true); + llvm::Constant *AliasFunc = GetGlobalValue(AliasName); + if (!AliasFunc) { + auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, + &getModule()); + SetCommonAttributes(GD, GA); + } + } +} + +/// If a dispatcher for the specified mangled name is not in the module, create +/// and return an llvm Function with the specified type. +llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { + const auto *FD = cast<FunctionDecl>(GD.getDecl()); + assert(FD && "Not a FunctionDecl?"); + + std::string MangledName = + getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); + + // Holds the name of the resolver, in ifunc mode this is the ifunc (which has + // a separate resolver). + std::string ResolverName = MangledName; + if (getTarget().supportsIFunc()) + ResolverName += ".ifunc"; + else if (FD->isTargetMultiVersion()) + ResolverName += ".resolver"; + + // If the resolver has already been created, just return it. + if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) + return ResolverGV; + + const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); + llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); + + // The resolver needs to be created. For target and target_clones, defer + // creation until the end of the TU. + if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) + MultiVersionFuncs.push_back(GD); + + // For cpu_specific, don't create an ifunc yet because we don't know if the + // cpu_dispatch will be emitted in this translation unit. + if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { + llvm::Type *ResolverType = llvm::FunctionType::get( + llvm::PointerType::get(DeclTy, + getTypes().getTargetAddressSpace(FD->getType())), + false); + llvm::Constant *Resolver = GetOrCreateLLVMFunction( + MangledName + ".resolver", ResolverType, GlobalDecl{}, + /*ForVTable=*/false); + llvm::GlobalIFunc *GIF = + llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), + "", Resolver, &getModule()); + GIF->setName(ResolverName); + SetCommonAttributes(FD, GIF); + + return GIF; + } + + llvm::Constant *Resolver = GetOrCreateLLVMFunction( + ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); + assert(isa<llvm::GlobalValue>(Resolver) && + "Resolver should be created for the first time"); + SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); + return Resolver; +} + +/// GetOrCreateLLVMFunction - If the specified mangled name is not in the +/// module, create and return an llvm Function with the specified type. If there +/// is something in the module with the specified name, return it potentially +/// bitcasted to the right type. +/// +/// If D is non-null, it specifies a decl that correspond to this. This is used +/// to set the attributes on the function when it is first created. +llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( + StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, + bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, + ForDefinition_t IsForDefinition) { + const Decl *D = GD.getDecl(); + + // Any attempts to use a MultiVersion function should result in retrieving + // the iFunc instead. Name Mangling will handle the rest of the changes. + if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { + // For the device mark the function as one that should be emitted. + if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && + !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && + !DontDefer && !IsForDefinition) { + if (const FunctionDecl *FDDef = FD->getDefinition()) { + GlobalDecl GDDef; + if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) + GDDef = GlobalDecl(CD, GD.getCtorType()); + else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) + GDDef = GlobalDecl(DD, GD.getDtorType()); + else + GDDef = GlobalDecl(FDDef); + EmitGlobal(GDDef); + } + } + + if (FD->isMultiVersion()) { + UpdateMultiVersionNames(GD, FD, MangledName); + if (!IsForDefinition) + return GetOrCreateMultiVersionResolver(GD); + } + } + + // Lookup the entry, lazily creating it if necessary. + llvm::GlobalValue *Entry = GetGlobalValue(MangledName); + if (Entry) { + if (WeakRefReferences.erase(Entry)) { + const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); + if (FD && !FD->hasAttr<WeakAttr>()) + Entry->setLinkage(llvm::Function::ExternalLinkage); + } + + // Handle dropped DLL attributes. + if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && + !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { + Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); + setDSOLocal(Entry); + } + + // If there are two attempts to define the same mangled name, issue an + // error. + if (IsForDefinition && !Entry->isDeclaration()) { + GlobalDecl OtherGD; + // Check that GD is not yet in DiagnosedConflictingDefinitions is required + // to make sure that we issue an error only once. + if (lookupRepresentativeDecl(MangledName, OtherGD) && + (GD.getCanonicalDecl().getDecl() != + OtherGD.getCanonicalDecl().getDecl()) && + DiagnosedConflictingDefinitions.insert(GD).second) { + getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) + << MangledName; + getDiags().Report(OtherGD.getDecl()->getLocation(), + diag::note_previous_definition); + } + } + + if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && + (Entry->getValueType() == Ty)) { + return Entry; + } + + // Make sure the result is of the correct type. + // (If function is requested for a definition, we always need to create a new + // function, not just return a bitcast.) + if (!IsForDefinition) + return llvm::ConstantExpr::getBitCast( + Entry, Ty->getPointerTo(Entry->getAddressSpace())); + } + + // This function doesn't have a complete type (for example, the return + // type is an incomplete struct). Use a fake type instead, and make + // sure not to try to set attributes. + bool IsIncompleteFunction = false; + + llvm::FunctionType *FTy; + if (isa<llvm::FunctionType>(Ty)) { + FTy = cast<llvm::FunctionType>(Ty); + } else { + FTy = llvm::FunctionType::get(VoidTy, false); + IsIncompleteFunction = true; + } + + llvm::Function *F = + llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, + Entry ? StringRef() : MangledName, &getModule()); + + // If we already created a function with the same mangled name (but different + // type) before, take its name and add it to the list of functions to be + // replaced with F at the end of CodeGen. + // + // This happens if there is a prototype for a function (e.g. "int f()") and + // then a definition of a different type (e.g. "int f(int x)"). + if (Entry) { + F->takeName(Entry); + + // This might be an implementation of a function without a prototype, in + // which case, try to do special replacement of calls which match the new + // prototype. The really key thing here is that we also potentially drop + // arguments from the call site so as to make a direct call, which makes the + // inliner happier and suppresses a number of optimizer warnings (!) about + // dropping arguments. + if (!Entry->use_empty()) { + ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); + Entry->removeDeadConstantUsers(); + } + + llvm::Constant *BC = llvm::ConstantExpr::getBitCast( + F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace())); + addGlobalValReplacement(Entry, BC); + } + + assert(F->getName() == MangledName && "name was uniqued!"); + if (D) + SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); + if (ExtraAttrs.hasFnAttrs()) { + llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); + F->addFnAttrs(B); + } + + if (!DontDefer) { + // All MSVC dtors other than the base dtor are linkonce_odr and delegate to + // each other bottoming out with the base dtor. Therefore we emit non-base + // dtors on usage, even if there is no dtor definition in the TU. + if (isa_and_nonnull<CXXDestructorDecl>(D) && + getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), + GD.getDtorType())) + addDeferredDeclToEmit(GD); + + // This is the first use or definition of a mangled name. If there is a + // deferred decl with this name, remember that we need to emit it at the end + // of the file. + auto DDI = DeferredDecls.find(MangledName); + if (DDI != DeferredDecls.end()) { + // Move the potentially referenced deferred decl to the + // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we + // don't need it anymore). + addDeferredDeclToEmit(DDI->second); + EmittedDeferredDecls[DDI->first] = DDI->second; + DeferredDecls.erase(DDI); + + // Otherwise, there are cases we have to worry about where we're + // using a declaration for which we must emit a definition but where + // we might not find a top-level definition: + // - member functions defined inline in their classes + // - friend functions defined inline in some class + // - special member functions with implicit definitions + // If we ever change our AST traversal to walk into class methods, + // this will be unnecessary. + // + // We also don't emit a definition for a function if it's going to be an + // entry in a vtable, unless it's already marked as used. + } else if (getLangOpts().CPlusPlus && D) { + // Look for a declaration that's lexically in a record. + for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; + FD = FD->getPreviousDecl()) { + if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { + if (FD->doesThisDeclarationHaveABody()) { + addDeferredDeclToEmit(GD.getWithDecl(FD)); + break; + } + } + } + } + } + + // Make sure the result is of the requested type. + if (!IsIncompleteFunction) { + assert(F->getFunctionType() == Ty); + return F; + } + + return llvm::ConstantExpr::getBitCast(F, + Ty->getPointerTo(F->getAddressSpace())); +} + +/// GetAddrOfFunction - Return the address of the given function. If Ty is +/// non-null, then this function will use the specified type if it has to +/// create it (this occurs when we see a definition of the function). +llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, + llvm::Type *Ty, + bool ForVTable, + bool DontDefer, + ForDefinition_t IsForDefinition) { + assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && + "consteval function should never be emitted"); + // If there was no specific requested type, just convert it now. + if (!Ty) { + const auto *FD = cast<FunctionDecl>(GD.getDecl()); + Ty = getTypes().ConvertType(FD->getType()); + } + + // Devirtualized destructor calls may come through here instead of via + // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead + // of the complete destructor when necessary. + if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { + if (getTarget().getCXXABI().isMicrosoft() && + GD.getDtorType() == Dtor_Complete && + DD->getParent()->getNumVBases() == 0) + GD = GlobalDecl(DD, Dtor_Base); + } + + StringRef MangledName = getMangledName(GD); + auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, + /*IsThunk=*/false, llvm::AttributeList(), + IsForDefinition); + // Returns kernel handle for HIP kernel stub function. + if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && + cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { + auto *Handle = getCUDARuntime().getKernelHandle( + cast<llvm::Function>(F->stripPointerCasts()), GD); + if (IsForDefinition) + return F; + return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); + } + return F; +} + +llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { + llvm::GlobalValue *F = + cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); + + return llvm::ConstantExpr::getBitCast( + llvm::NoCFIValue::get(F), + llvm::Type::getInt8PtrTy(VMContext, F->getAddressSpace())); +} + +static const FunctionDecl * +GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { + TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); + DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); + + IdentifierInfo &CII = C.Idents.get(Name); + for (const auto *Result : DC->lookup(&CII)) + if (const auto *FD = dyn_cast<FunctionDecl>(Result)) + return FD; + + if (!C.getLangOpts().CPlusPlus) + return nullptr; + + // Demangle the premangled name from getTerminateFn() + IdentifierInfo &CXXII = + (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") + ? C.Idents.get("terminate") + : C.Idents.get(Name); + + for (const auto &N : {"__cxxabiv1", "std"}) { + IdentifierInfo &NS = C.Idents.get(N); + for (const auto *Result : DC->lookup(&NS)) { + const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); + if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) + for (const auto *Result : LSD->lookup(&NS)) + if ((ND = dyn_cast<NamespaceDecl>(Result))) + break; + + if (ND) + for (const auto *Result : ND->lookup(&CXXII)) + if (const auto *FD = dyn_cast<FunctionDecl>(Result)) + return FD; + } + } + + return nullptr; +} + +/// CreateRuntimeFunction - Create a new runtime function with the specified +/// type and name. +llvm::FunctionCallee +CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, + llvm::AttributeList ExtraAttrs, bool Local, + bool AssumeConvergent) { + if (AssumeConvergent) { + ExtraAttrs = + ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); + } + + llvm::Constant *C = + GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, + /*DontDefer=*/false, /*IsThunk=*/false, + ExtraAttrs); + + if (auto *F = dyn_cast<llvm::Function>(C)) { + if (F->empty()) { + F->setCallingConv(getRuntimeCC()); + + // In Windows Itanium environments, try to mark runtime functions + // dllimport. For Mingw and MSVC, don't. We don't really know if the user + // will link their standard library statically or dynamically. Marking + // functions imported when they are not imported can cause linker errors + // and warnings. + if (!Local && getTriple().isWindowsItaniumEnvironment() && + !getCodeGenOpts().LTOVisibilityPublicStd) { + const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); + if (!FD || FD->hasAttr<DLLImportAttr>()) { + F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); + F->setLinkage(llvm::GlobalValue::ExternalLinkage); + } + } + setDSOLocal(F); + } + } + + return {FTy, C}; +} + +/// isTypeConstant - Determine whether an object of this type can be emitted +/// as a constant. +/// +/// If ExcludeCtor is true, the duration when the object's constructor runs +/// will not be considered. The caller will need to verify that the object is +/// not written to during its construction. +bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { + if (!Ty.isConstant(Context) && !Ty->isReferenceType()) + return false; + + if (Context.getLangOpts().CPlusPlus) { + if (const CXXRecordDecl *Record + = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) + return ExcludeCtor && !Record->hasMutableFields() && + Record->hasTrivialDestructor(); + } + + return true; +} + +/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, +/// create and return an llvm GlobalVariable with the specified type and address +/// space. If there is something in the module with the specified name, return +/// it potentially bitcasted to the right type. +/// +/// If D is non-null, it specifies a decl that correspond to this. This is used +/// to set the attributes on the global when it is first created. +/// +/// If IsForDefinition is true, it is guaranteed that an actual global with +/// type Ty will be returned, not conversion of a variable with the same +/// mangled name but some other type. +llvm::Constant * +CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, + LangAS AddrSpace, const VarDecl *D, + ForDefinition_t IsForDefinition) { + // Lookup the entry, lazily creating it if necessary. + llvm::GlobalValue *Entry = GetGlobalValue(MangledName); + unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); + if (Entry) { + if (WeakRefReferences.erase(Entry)) { + if (D && !D->hasAttr<WeakAttr>()) + Entry->setLinkage(llvm::Function::ExternalLinkage); + } + + // Handle dropped DLL attributes. + if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && + !shouldMapVisibilityToDLLExport(D)) + Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); + + if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) + getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); + + if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) + return Entry; + + // If there are two attempts to define the same mangled name, issue an + // error. + if (IsForDefinition && !Entry->isDeclaration()) { + GlobalDecl OtherGD; + const VarDecl *OtherD; + + // Check that D is not yet in DiagnosedConflictingDefinitions is required + // to make sure that we issue an error only once. + if (D && lookupRepresentativeDecl(MangledName, OtherGD) && + (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && + (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && + OtherD->hasInit() && + DiagnosedConflictingDefinitions.insert(D).second) { + getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) + << MangledName; + getDiags().Report(OtherGD.getDecl()->getLocation(), + diag::note_previous_definition); + } + } + + // Make sure the result is of the correct type. + if (Entry->getType()->getAddressSpace() != TargetAS) { + return llvm::ConstantExpr::getAddrSpaceCast(Entry, + Ty->getPointerTo(TargetAS)); + } + + // (If global is requested for a definition, we always need to create a new + // global, not just return a bitcast.) + if (!IsForDefinition) + return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); + } + + auto DAddrSpace = GetGlobalVarAddressSpace(D); + + auto *GV = new llvm::GlobalVariable( + getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, + MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, + getContext().getTargetAddressSpace(DAddrSpace)); + + // If we already created a global with the same mangled name (but different + // type) before, take its name and remove it from its parent. + if (Entry) { + GV->takeName(Entry); + + if (!Entry->use_empty()) { + llvm::Constant *NewPtrForOldDecl = + llvm::ConstantExpr::getBitCast(GV, Entry->getType()); + Entry->replaceAllUsesWith(NewPtrForOldDecl); + } + + Entry->eraseFromParent(); + } + + // This is the first use or definition of a mangled name. If there is a + // deferred decl with this name, remember that we need to emit it at the end + // of the file. + auto DDI = DeferredDecls.find(MangledName); + if (DDI != DeferredDecls.end()) { + // Move the potentially referenced deferred decl to the DeferredDeclsToEmit + // list, and remove it from DeferredDecls (since we don't need it anymore). + addDeferredDeclToEmit(DDI->second); + EmittedDeferredDecls[DDI->first] = DDI->second; + DeferredDecls.erase(DDI); + } + + // Handle things which are present even on external declarations. + if (D) { + if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) + getOpenMPRuntime().registerTargetGlobalVariable(D, GV); + + // FIXME: This code is overly simple and should be merged with other global + // handling. + GV->setConstant(isTypeConstant(D->getType(), false)); + + GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); + + setLinkageForGV(GV, D); + + if (D->getTLSKind()) { + if (D->getTLSKind() == VarDecl::TLS_Dynamic) + CXXThreadLocals.push_back(D); + setTLSMode(GV, *D); + } + + setGVProperties(GV, D); + + // If required by the ABI, treat declarations of static data members with + // inline initializers as definitions. + if (getContext().isMSStaticDataMemberInlineDefinition(D)) { + EmitGlobalVarDefinition(D); + } + + // Emit section information for extern variables. + if (D->hasExternalStorage()) { + if (const SectionAttr *SA = D->getAttr<SectionAttr>()) + GV->setSection(SA->getName()); + } + + // Handle XCore specific ABI requirements. + if (getTriple().getArch() == llvm::Triple::xcore && + D->getLanguageLinkage() == CLanguageLinkage && + D->getType().isConstant(Context) && + isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) + GV->setSection(".cp.rodata"); + + // Check if we a have a const declaration with an initializer, we may be + // able to emit it as available_externally to expose it's value to the + // optimizer. + if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && + D->getType().isConstQualified() && !GV->hasInitializer() && + !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { + const auto *Record = + Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); + bool HasMutableFields = Record && Record->hasMutableFields(); + if (!HasMutableFields) { + const VarDecl *InitDecl; + const Expr *InitExpr = D->getAnyInitializer(InitDecl); + if (InitExpr) { + ConstantEmitter emitter(*this); + llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); + if (Init) { + auto *InitType = Init->getType(); + if (GV->getValueType() != InitType) { + // The type of the initializer does not match the definition. + // This happens when an initializer has a different type from + // the type of the global (because of padding at the end of a + // structure for instance). + GV->setName(StringRef()); + // Make a new global with the correct type, this is now guaranteed + // to work. + auto *NewGV = cast<llvm::GlobalVariable>( + GetAddrOfGlobalVar(D, InitType, IsForDefinition) + ->stripPointerCasts()); + + // Erase the old global, since it is no longer used. + GV->eraseFromParent(); + GV = NewGV; + } else { + GV->setInitializer(Init); + GV->setConstant(true); + GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); + } + emitter.finalize(GV); + } + } + } + } + } + + if (GV->isDeclaration()) { + getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); + // External HIP managed variables needed to be recorded for transformation + // in both device and host compilations. + if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && + D->hasExternalStorage()) + getCUDARuntime().handleVarRegistration(D, *GV); + } + + if (D) + SanitizerMD->reportGlobal(GV, *D); + + LangAS ExpectedAS = + D ? D->getType().getAddressSpace() + : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); + assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); + if (DAddrSpace != ExpectedAS) { + return getTargetCodeGenInfo().performAddrSpaceCast( + *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); + } + + return GV; +} + +llvm::Constant * +CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { + const Decl *D = GD.getDecl(); + + if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) + return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, + /*DontDefer=*/false, IsForDefinition); + + if (isa<CXXMethodDecl>(D)) { + auto FInfo = + &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); + auto Ty = getTypes().GetFunctionType(*FInfo); + return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, + IsForDefinition); + } + + if (isa<FunctionDecl>(D)) { + const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); + llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); + return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, + IsForDefinition); + } + + return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); +} + +llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( + StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, + llvm::Align Alignment) { + llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); + llvm::GlobalVariable *OldGV = nullptr; + + if (GV) { + // Check if the variable has the right type. + if (GV->getValueType() == Ty) + return GV; + + // Because C++ name mangling, the only way we can end up with an already + // existing global with the same name is if it has been declared extern "C". + assert(GV->isDeclaration() && "Declaration has wrong type!"); + OldGV = GV; + } + + // Create a new variable. + GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, + Linkage, nullptr, Name); + + if (OldGV) { + // Replace occurrences of the old variable if needed. + GV->takeName(OldGV); + + if (!OldGV->use_empty()) { + llvm::Constant *NewPtrForOldDecl = + llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); + OldGV->replaceAllUsesWith(NewPtrForOldDecl); + } + + OldGV->eraseFromParent(); + } + + if (supportsCOMDAT() && GV->isWeakForLinker() && + !GV->hasAvailableExternallyLinkage()) + GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); + + GV->setAlignment(Alignment); + + return GV; +} + +/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the +/// given global variable. If Ty is non-null and if the global doesn't exist, +/// then it will be created with the specified type instead of whatever the +/// normal requested type would be. If IsForDefinition is true, it is guaranteed +/// that an actual global with type Ty will be returned, not conversion of a +/// variable with the same mangled name but some other type. +llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, + llvm::Type *Ty, + ForDefinition_t IsForDefinition) { + assert(D->hasGlobalStorage() && "Not a global variable"); + QualType ASTTy = D->getType(); + if (!Ty) + Ty = getTypes().ConvertTypeForMem(ASTTy); + + StringRef MangledName = getMangledName(D); + return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, + IsForDefinition); +} + +/// CreateRuntimeVariable - Create a new runtime global variable with the +/// specified type and name. +llvm::Constant * +CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, + StringRef Name) { + LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global + : LangAS::Default; + auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); + setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); + return Ret; +} + +void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { + assert(!D->getInit() && "Cannot emit definite definitions here!"); + + StringRef MangledName = getMangledName(D); + llvm::GlobalValue *GV = GetGlobalValue(MangledName); + + // We already have a definition, not declaration, with the same mangled name. + // Emitting of declaration is not required (and actually overwrites emitted + // definition). + if (GV && !GV->isDeclaration()) + return; + + // If we have not seen a reference to this variable yet, place it into the + // deferred declarations table to be emitted if needed later. + if (!MustBeEmitted(D) && !GV) { + DeferredDecls[MangledName] = D; + return; + } + + // The tentative definition is the only definition. + EmitGlobalVarDefinition(D); +} + +void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { + EmitExternalVarDeclaration(D); +} + +CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { + return Context.toCharUnitsFromBits( + getDataLayout().getTypeStoreSizeInBits(Ty)); +} + +LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { + if (LangOpts.OpenCL) { + LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; + assert(AS == LangAS::opencl_global || + AS == LangAS::opencl_global_device || + AS == LangAS::opencl_global_host || + AS == LangAS::opencl_constant || + AS == LangAS::opencl_local || + AS >= LangAS::FirstTargetAddressSpace); + return AS; + } + + if (LangOpts.SYCLIsDevice && + (!D || D->getType().getAddressSpace() == LangAS::Default)) + return LangAS::sycl_global; + + if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { + if (D && D->hasAttr<CUDAConstantAttr>()) + return LangAS::cuda_constant; + else if (D && D->hasAttr<CUDASharedAttr>()) + return LangAS::cuda_shared; + else if (D && D->hasAttr<CUDADeviceAttr>()) + return LangAS::cuda_device; + else if (D && D->getType().isConstQualified()) + return LangAS::cuda_constant; + else + return LangAS::cuda_device; + } + + if (LangOpts.OpenMP) { + LangAS AS; + if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) + return AS; + } + return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); +} + +LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { + // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. + if (LangOpts.OpenCL) + return LangAS::opencl_constant; + if (LangOpts.SYCLIsDevice) + return LangAS::sycl_global; + if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) + // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) + // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up + // with OpVariable instructions with Generic storage class which is not + // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V + // UniformConstant storage class is not viable as pointers to it may not be + // casted to Generic pointers which are used to model HIP's "flat" pointers. + return LangAS::cuda_device; + if (auto AS = getTarget().getConstantAddressSpace()) + return *AS; + return LangAS::Default; +} + +// In address space agnostic languages, string literals are in default address +// space in AST. However, certain targets (e.g. amdgcn) request them to be +// emitted in constant address space in LLVM IR. To be consistent with other +// parts of AST, string literal global variables in constant address space +// need to be casted to default address space before being put into address +// map and referenced by other part of CodeGen. +// In OpenCL, string literals are in constant address space in AST, therefore +// they should not be casted to default address space. +static llvm::Constant * +castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, + llvm::GlobalVariable *GV) { + llvm::Constant *Cast = GV; + if (!CGM.getLangOpts().OpenCL) { + auto AS = CGM.GetGlobalConstantAddressSpace(); + if (AS != LangAS::Default) + Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( + CGM, GV, AS, LangAS::Default, + GV->getValueType()->getPointerTo( + CGM.getContext().getTargetAddressSpace(LangAS::Default))); + } + return Cast; +} + +template<typename SomeDecl> +void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, + llvm::GlobalValue *GV) { + if (!getLangOpts().CPlusPlus) + return; + + // Must have 'used' attribute, or else inline assembly can't rely on + // the name existing. + if (!D->template hasAttr<UsedAttr>()) + return; + + // Must have internal linkage and an ordinary name. + if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) + return; + + // Must be in an extern "C" context. Entities declared directly within + // a record are not extern "C" even if the record is in such a context. + const SomeDecl *First = D->getFirstDecl(); + if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) + return; + + // OK, this is an internal linkage entity inside an extern "C" linkage + // specification. Make a note of that so we can give it the "expected" + // mangled name if nothing else is using that name. + std::pair<StaticExternCMap::iterator, bool> R = + StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); + + // If we have multiple internal linkage entities with the same name + // in extern "C" regions, none of them gets that name. + if (!R.second) + R.first->second = nullptr; +} + +static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { + if (!CGM.supportsCOMDAT()) + return false; + + if (D.hasAttr<SelectAnyAttr>()) + return true; + + GVALinkage Linkage; + if (auto *VD = dyn_cast<VarDecl>(&D)) + Linkage = CGM.getContext().GetGVALinkageForVariable(VD); + else + Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); + + switch (Linkage) { + case GVA_Internal: + case GVA_AvailableExternally: + case GVA_StrongExternal: + return false; + case GVA_DiscardableODR: + case GVA_StrongODR: + return true; + } + llvm_unreachable("No such linkage"); +} + +void CodeGenModule::maybeSetTrivialComdat(const Decl &D, + llvm::GlobalObject &GO) { + if (!shouldBeInCOMDAT(*this, D)) + return; + GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); +} + +/// Pass IsTentative as true if you want to create a tentative definition. +void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, + bool IsTentative) { + // OpenCL global variables of sampler type are translated to function calls, + // therefore no need to be translated. + QualType ASTTy = D->getType(); + if (getLangOpts().OpenCL && ASTTy->isSamplerT()) + return; + + // If this is OpenMP device, check if it is legal to emit this global + // normally. + if (LangOpts.OpenMPIsDevice && OpenMPRuntime && + OpenMPRuntime->emitTargetGlobalVariable(D)) + return; + + llvm::TrackingVH<llvm::Constant> Init; + bool NeedsGlobalCtor = false; + // Whether the definition of the variable is available externally. + // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable + // since this is the job for its original source. + bool IsDefinitionAvailableExternally = + getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; + bool NeedsGlobalDtor = + !IsDefinitionAvailableExternally && + D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; + + const VarDecl *InitDecl; + const Expr *InitExpr = D->getAnyInitializer(InitDecl); + + std::optional<ConstantEmitter> emitter; + + // CUDA E.2.4.1 "__shared__ variables cannot have an initialization + // as part of their declaration." Sema has already checked for + // error cases, so we just need to set Init to UndefValue. + bool IsCUDASharedVar = + getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); + // Shadows of initialized device-side global variables are also left + // undefined. + // Managed Variables should be initialized on both host side and device side. + bool IsCUDAShadowVar = + !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && + (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || + D->hasAttr<CUDASharedAttr>()); + bool IsCUDADeviceShadowVar = + getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && + (D->getType()->isCUDADeviceBuiltinSurfaceType() || + D->getType()->isCUDADeviceBuiltinTextureType()); + if (getLangOpts().CUDA && + (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) + Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); + else if (D->hasAttr<LoaderUninitializedAttr>()) + Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); + else if (!InitExpr) { + // This is a tentative definition; tentative definitions are + // implicitly initialized with { 0 }. + // + // Note that tentative definitions are only emitted at the end of + // a translation unit, so they should never have incomplete + // type. In addition, EmitTentativeDefinition makes sure that we + // never attempt to emit a tentative definition if a real one + // exists. A use may still exists, however, so we still may need + // to do a RAUW. + assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); + Init = EmitNullConstant(D->getType()); + } else { + initializedGlobalDecl = GlobalDecl(D); + emitter.emplace(*this); + llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); + if (!Initializer) { + QualType T = InitExpr->getType(); + if (D->getType()->isReferenceType()) + T = D->getType(); + + if (getLangOpts().CPlusPlus) { + if (InitDecl->hasFlexibleArrayInit(getContext())) + ErrorUnsupported(D, "flexible array initializer"); + Init = EmitNullConstant(T); + + if (!IsDefinitionAvailableExternally) + NeedsGlobalCtor = true; + } else { + ErrorUnsupported(D, "static initializer"); + Init = llvm::UndefValue::get(getTypes().ConvertType(T)); + } + } else { + Init = Initializer; + // We don't need an initializer, so remove the entry for the delayed + // initializer position (just in case this entry was delayed) if we + // also don't need to register a destructor. + if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) + DelayedCXXInitPosition.erase(D); + +#ifndef NDEBUG + CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + + InitDecl->getFlexibleArrayInitChars(getContext()); + CharUnits CstSize = CharUnits::fromQuantity( + getDataLayout().getTypeAllocSize(Init->getType())); + assert(VarSize == CstSize && "Emitted constant has unexpected size"); +#endif + } + } + + llvm::Type* InitType = Init->getType(); + llvm::Constant *Entry = + GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); + + // Strip off pointer casts if we got them. + Entry = Entry->stripPointerCasts(); + + // Entry is now either a Function or GlobalVariable. + auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); + + // We have a definition after a declaration with the wrong type. + // We must make a new GlobalVariable* and update everything that used OldGV + // (a declaration or tentative definition) with the new GlobalVariable* + // (which will be a definition). + // + // This happens if there is a prototype for a global (e.g. + // "extern int x[];") and then a definition of a different type (e.g. + // "int x[10];"). This also happens when an initializer has a different type + // from the type of the global (this happens with unions). + if (!GV || GV->getValueType() != InitType || + GV->getType()->getAddressSpace() != + getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { + + // Move the old entry aside so that we'll create a new one. + Entry->setName(StringRef()); + + // Make a new global with the correct type, this is now guaranteed to work. + GV = cast<llvm::GlobalVariable>( + GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) + ->stripPointerCasts()); + + // Replace all uses of the old global with the new global + llvm::Constant *NewPtrForOldDecl = + llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, + Entry->getType()); + Entry->replaceAllUsesWith(NewPtrForOldDecl); + + // Erase the old global, since it is no longer used. + cast<llvm::GlobalValue>(Entry)->eraseFromParent(); + } + + MaybeHandleStaticInExternC(D, GV); + + if (D->hasAttr<AnnotateAttr>()) + AddGlobalAnnotations(D, GV); + + // Set the llvm linkage type as appropriate. + llvm::GlobalValue::LinkageTypes Linkage = + getLLVMLinkageVarDefinition(D, GV->isConstant()); + + // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on + // the device. [...]" + // CUDA B.2.2 "The __constant__ qualifier, optionally used together with + // __device__, declares a variable that: [...] + // Is accessible from all the threads within the grid and from the host + // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() + // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." + if (GV && LangOpts.CUDA) { + if (LangOpts.CUDAIsDevice) { + if (Linkage != llvm::GlobalValue::InternalLinkage && + (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || + D->getType()->isCUDADeviceBuiltinSurfaceType() || + D->getType()->isCUDADeviceBuiltinTextureType())) + GV->setExternallyInitialized(true); + } else { + getCUDARuntime().internalizeDeviceSideVar(D, Linkage); + } + getCUDARuntime().handleVarRegistration(D, *GV); + } + + GV->setInitializer(Init); + if (emitter) + emitter->finalize(GV); + + // If it is safe to mark the global 'constant', do so now. + GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && + isTypeConstant(D->getType(), true)); + + // If it is in a read-only section, mark it 'constant'. + if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { + const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; + if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) + GV->setConstant(true); + } + + CharUnits AlignVal = getContext().getDeclAlign(D); + // Check for alignment specifed in an 'omp allocate' directive. + if (std::optional<CharUnits> AlignValFromAllocate = + getOMPAllocateAlignment(D)) + AlignVal = *AlignValFromAllocate; + GV->setAlignment(AlignVal.getAsAlign()); + + // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper + // function is only defined alongside the variable, not also alongside + // callers. Normally, all accesses to a thread_local go through the + // thread-wrapper in order to ensure initialization has occurred, underlying + // variable will never be used other than the thread-wrapper, so it can be + // converted to internal linkage. + // + // However, if the variable has the 'constinit' attribute, it _can_ be + // referenced directly, without calling the thread-wrapper, so the linkage + // must not be changed. + // + // Additionally, if the variable isn't plain external linkage, e.g. if it's + // weak or linkonce, the de-duplication semantics are important to preserve, + // so we don't change the linkage. + if (D->getTLSKind() == VarDecl::TLS_Dynamic && + Linkage == llvm::GlobalValue::ExternalLinkage && + Context.getTargetInfo().getTriple().isOSDarwin() && + !D->hasAttr<ConstInitAttr>()) + Linkage = llvm::GlobalValue::InternalLinkage; + + GV->setLinkage(Linkage); + if (D->hasAttr<DLLImportAttr>()) + GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); + else if (D->hasAttr<DLLExportAttr>()) + GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); + else + GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); + + if (Linkage == llvm::GlobalVariable::CommonLinkage) { + // common vars aren't constant even if declared const. + GV->setConstant(false); + // Tentative definition of global variables may be initialized with + // non-zero null pointers. In this case they should have weak linkage + // since common linkage must have zero initializer and must not have + // explicit section therefore cannot have non-zero initial value. + if (!GV->getInitializer()->isNullValue()) + GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); + } + + setNonAliasAttributes(D, GV); + + if (D->getTLSKind() && !GV->isThreadLocal()) { + if (D->getTLSKind() == VarDecl::TLS_Dynamic) + CXXThreadLocals.push_back(D); + setTLSMode(GV, *D); + } + + maybeSetTrivialComdat(*D, *GV); + + // Emit the initializer function if necessary. + if (NeedsGlobalCtor || NeedsGlobalDtor) + EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); + + SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); + + // Emit global variable debug information. + if (CGDebugInfo *DI = getModuleDebugInfo()) + if (getCodeGenOpts().hasReducedDebugInfo()) + DI->EmitGlobalVariable(GV, D); +} + +void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { + if (CGDebugInfo *DI = getModuleDebugInfo()) + if (getCodeGenOpts().hasReducedDebugInfo()) { + QualType ASTTy = D->getType(); + llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); + llvm::Constant *GV = + GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); + DI->EmitExternalVariable( + cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); + } +} + +static bool isVarDeclStrongDefinition(const ASTContext &Context, + CodeGenModule &CGM, const VarDecl *D, + bool NoCommon) { + // Don't give variables common linkage if -fno-common was specified unless it + // was overridden by a NoCommon attribute. + if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) + return true; + + // C11 6.9.2/2: + // A declaration of an identifier for an object that has file scope without + // an initializer, and without a storage-class specifier or with the + // storage-class specifier static, constitutes a tentative definition. + if (D->getInit() || D->hasExternalStorage()) + return true; + + // A variable cannot be both common and exist in a section. + if (D->hasAttr<SectionAttr>()) + return true; + + // A variable cannot be both common and exist in a section. + // We don't try to determine which is the right section in the front-end. + // If no specialized section name is applicable, it will resort to default. + if (D->hasAttr<PragmaClangBSSSectionAttr>() || + D->hasAttr<PragmaClangDataSectionAttr>() || + D->hasAttr<PragmaClangRelroSectionAttr>() || + D->hasAttr<PragmaClangRodataSectionAttr>()) + return true; + + // Thread local vars aren't considered common linkage. + if (D->getTLSKind()) + return true; + + // Tentative definitions marked with WeakImportAttr are true definitions. + if (D->hasAttr<WeakImportAttr>()) + return true; + + // A variable cannot be both common and exist in a comdat. + if (shouldBeInCOMDAT(CGM, *D)) + return true; + + // Declarations with a required alignment do not have common linkage in MSVC + // mode. + if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { + if (D->hasAttr<AlignedAttr>()) + return true; + QualType VarType = D->getType(); + if (Context.isAlignmentRequired(VarType)) + return true; + + if (const auto *RT = VarType->getAs<RecordType>()) { + const RecordDecl *RD = RT->getDecl(); + for (const FieldDecl *FD : RD->fields()) { + if (FD->isBitField()) + continue; + if (FD->hasAttr<AlignedAttr>()) + return true; + if (Context.isAlignmentRequired(FD->getType())) + return true; + } + } + } + + // Microsoft's link.exe doesn't support alignments greater than 32 bytes for + // common symbols, so symbols with greater alignment requirements cannot be + // common. + // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two + // alignments for common symbols via the aligncomm directive, so this + // restriction only applies to MSVC environments. + if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && + Context.getTypeAlignIfKnown(D->getType()) > + Context.toBits(CharUnits::fromQuantity(32))) + return true; + + return false; +} + +llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( + const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { + if (Linkage == GVA_Internal) + return llvm::Function::InternalLinkage; + + if (D->hasAttr<WeakAttr>()) + return llvm::GlobalVariable::WeakAnyLinkage; + + if (const auto *FD = D->getAsFunction()) + if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) + return llvm::GlobalVariable::LinkOnceAnyLinkage; + + // We are guaranteed to have a strong definition somewhere else, + // so we can use available_externally linkage. + if (Linkage == GVA_AvailableExternally) + return llvm::GlobalValue::AvailableExternallyLinkage; + + // Note that Apple's kernel linker doesn't support symbol + // coalescing, so we need to avoid linkonce and weak linkages there. + // Normally, this means we just map to internal, but for explicit + // instantiations we'll map to external. + + // In C++, the compiler has to emit a definition in every translation unit + // that references the function. We should use linkonce_odr because + // a) if all references in this translation unit are optimized away, we + // don't need to codegen it. b) if the function persists, it needs to be + // merged with other definitions. c) C++ has the ODR, so we know the + // definition is dependable. + if (Linkage == GVA_DiscardableODR) + return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage + : llvm::Function::InternalLinkage; + + // An explicit instantiation of a template has weak linkage, since + // explicit instantiations can occur in multiple translation units + // and must all be equivalent. However, we are not allowed to + // throw away these explicit instantiations. + // + // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, + // so say that CUDA templates are either external (for kernels) or internal. + // This lets llvm perform aggressive inter-procedural optimizations. For + // -fgpu-rdc case, device function calls across multiple TU's are allowed, + // therefore we need to follow the normal linkage paradigm. + if (Linkage == GVA_StrongODR) { + if (getLangOpts().AppleKext) + return llvm::Function::ExternalLinkage; + if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && + !getLangOpts().GPURelocatableDeviceCode) + return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage + : llvm::Function::InternalLinkage; + return llvm::Function::WeakODRLinkage; + } + + // C++ doesn't have tentative definitions and thus cannot have common + // linkage. + if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && + !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), + CodeGenOpts.NoCommon)) + return llvm::GlobalVariable::CommonLinkage; + + // selectany symbols are externally visible, so use weak instead of + // linkonce. MSVC optimizes away references to const selectany globals, so + // all definitions should be the same and ODR linkage should be used. + // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx + if (D->hasAttr<SelectAnyAttr>()) + return llvm::GlobalVariable::WeakODRLinkage; + + // Otherwise, we have strong external linkage. + assert(Linkage == GVA_StrongExternal); + return llvm::GlobalVariable::ExternalLinkage; +} + +llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( + const VarDecl *VD, bool IsConstant) { + GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); + return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); +} + +/// Replace the uses of a function that was declared with a non-proto type. +/// We want to silently drop extra arguments from call sites +static void replaceUsesOfNonProtoConstant(llvm::Constant *old, + llvm::Function *newFn) { + // Fast path. + if (old->use_empty()) return; + + llvm::Type *newRetTy = newFn->getReturnType(); + SmallVector<llvm::Value*, 4> newArgs; + + for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); + ui != ue; ) { + llvm::Value::use_iterator use = ui++; // Increment before the use is erased. + llvm::User *user = use->getUser(); + + // Recognize and replace uses of bitcasts. Most calls to + // unprototyped functions will use bitcasts. + if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { + if (bitcast->getOpcode() == llvm::Instruction::BitCast) + replaceUsesOfNonProtoConstant(bitcast, newFn); + continue; + } + + // Recognize calls to the function. + llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); + if (!callSite) continue; + if (!callSite->isCallee(&*use)) + continue; + + // If the return types don't match exactly, then we can't + // transform this call unless it's dead. + if (callSite->getType() != newRetTy && !callSite->use_empty()) + continue; + + // Get the call site's attribute list. + SmallVector<llvm::AttributeSet, 8> newArgAttrs; + llvm::AttributeList oldAttrs = callSite->getAttributes(); + + // If the function was passed too few arguments, don't transform. + unsigned newNumArgs = newFn->arg_size(); + if (callSite->arg_size() < newNumArgs) + continue; + + // If extra arguments were passed, we silently drop them. + // If any of the types mismatch, we don't transform. + unsigned argNo = 0; + bool dontTransform = false; + for (llvm::Argument &A : newFn->args()) { + if (callSite->getArgOperand(argNo)->getType() != A.getType()) { + dontTransform = true; + break; + } + + // Add any parameter attributes. + newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); + argNo++; + } + if (dontTransform) + continue; + + // Okay, we can transform this. Create the new call instruction and copy + // over the required information. + newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); + + // Copy over any operand bundles. + SmallVector<llvm::OperandBundleDef, 1> newBundles; + callSite->getOperandBundlesAsDefs(newBundles); + + llvm::CallBase *newCall; + if (isa<llvm::CallInst>(callSite)) { + newCall = + llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); + } else { + auto *oldInvoke = cast<llvm::InvokeInst>(callSite); + newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), + oldInvoke->getUnwindDest(), newArgs, + newBundles, "", callSite); + } + newArgs.clear(); // for the next iteration + + if (!newCall->getType()->isVoidTy()) + newCall->takeName(callSite); + newCall->setAttributes( + llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), + oldAttrs.getRetAttrs(), newArgAttrs)); + newCall->setCallingConv(callSite->getCallingConv()); + + // Finally, remove the old call, replacing any uses with the new one. + if (!callSite->use_empty()) + callSite->replaceAllUsesWith(newCall); + + // Copy debug location attached to CI. + if (callSite->getDebugLoc()) + newCall->setDebugLoc(callSite->getDebugLoc()); + + callSite->eraseFromParent(); + } +} + +/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we +/// implement a function with no prototype, e.g. "int foo() {}". If there are +/// existing call uses of the old function in the module, this adjusts them to +/// call the new function directly. +/// +/// This is not just a cleanup: the always_inline pass requires direct calls to +/// functions to be able to inline them. If there is a bitcast in the way, it +/// won't inline them. Instcombine normally deletes these calls, but it isn't +/// run at -O0. +static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, + llvm::Function *NewFn) { + // If we're redefining a global as a function, don't transform it. + if (!isa<llvm::Function>(Old)) return; + + replaceUsesOfNonProtoConstant(Old, NewFn); +} + +void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { + auto DK = VD->isThisDeclarationADefinition(); + if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) + return; + + TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); + // If we have a definition, this might be a deferred decl. If the + // instantiation is explicit, make sure we emit it at the end. + if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) + GetAddrOfGlobalVar(VD); + + EmitTopLevelDecl(VD); +} + +void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, + llvm::GlobalValue *GV) { + const auto *D = cast<FunctionDecl>(GD.getDecl()); + + // Compute the function info and LLVM type. + const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); + llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); + + // Get or create the prototype for the function. + if (!GV || (GV->getValueType() != Ty)) + GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, + /*DontDefer=*/true, + ForDefinition)); + + // Already emitted. + if (!GV->isDeclaration()) + return; + + // We need to set linkage and visibility on the function before + // generating code for it because various parts of IR generation + // want to propagate this information down (e.g. to local static + // declarations). + auto *Fn = cast<llvm::Function>(GV); + setFunctionLinkage(GD, Fn); + + // FIXME: this is redundant with part of setFunctionDefinitionAttributes + setGVProperties(Fn, GD); + + MaybeHandleStaticInExternC(D, Fn); + + maybeSetTrivialComdat(*D, *Fn); + + // Set CodeGen attributes that represent floating point environment. + setLLVMFunctionFEnvAttributes(D, Fn); + + CodeGenFunction(*this).GenerateCode(GD, Fn, FI); + + setNonAliasAttributes(GD, Fn); + SetLLVMFunctionAttributesForDefinition(D, Fn); + + if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) + AddGlobalCtor(Fn, CA->getPriority()); + if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) + AddGlobalDtor(Fn, DA->getPriority(), true); + if (D->hasAttr<AnnotateAttr>()) + AddGlobalAnnotations(D, Fn); +} + +void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { + const auto *D = cast<ValueDecl>(GD.getDecl()); + const AliasAttr *AA = D->getAttr<AliasAttr>(); + assert(AA && "Not an alias?"); + + StringRef MangledName = getMangledName(GD); + + if (AA->getAliasee() == MangledName) { + Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; + return; + } + + // If there is a definition in the module, then it wins over the alias. + // This is dubious, but allow it to be safe. Just ignore the alias. + llvm::GlobalValue *Entry = GetGlobalValue(MangledName); + if (Entry && !Entry->isDeclaration()) + return; + + Aliases.push_back(GD); + + llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); + + // Create a reference to the named value. This ensures that it is emitted + // if a deferred decl. + llvm::Constant *Aliasee; + llvm::GlobalValue::LinkageTypes LT; + if (isa<llvm::FunctionType>(DeclTy)) { + Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, + /*ForVTable=*/false); + LT = getFunctionLinkage(GD); + } else { + Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, + /*D=*/nullptr); + if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) + LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); + else + LT = getFunctionLinkage(GD); + } + + // Create the new alias itself, but don't set a name yet. + unsigned AS = Aliasee->getType()->getPointerAddressSpace(); + auto *GA = + llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); + + if (Entry) { + if (GA->getAliasee() == Entry) { + Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; + return; + } + + assert(Entry->isDeclaration()); + + // If there is a declaration in the module, then we had an extern followed + // by the alias, as in: + // extern int test6(); + // ... + // int test6() __attribute__((alias("test7"))); + // + // Remove it and replace uses of it with the alias. + GA->takeName(Entry); + + Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, + Entry->getType())); + Entry->eraseFromParent(); + } else { + GA->setName(MangledName); + } + + // Set attributes which are particular to an alias; this is a + // specialization of the attributes which may be set on a global + // variable/function. + if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || + D->isWeakImported()) { + GA->setLinkage(llvm::Function::WeakAnyLinkage); + } + + if (const auto *VD = dyn_cast<VarDecl>(D)) + if (VD->getTLSKind()) + setTLSMode(GA, *VD); + + SetCommonAttributes(GD, GA); + + // Emit global alias debug information. + if (isa<VarDecl>(D)) + if (CGDebugInfo *DI = getModuleDebugInfo()) + DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); +} + +void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { + const auto *D = cast<ValueDecl>(GD.getDecl()); + const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); + assert(IFA && "Not an ifunc?"); + + StringRef MangledName = getMangledName(GD); + + if (IFA->getResolver() == MangledName) { + Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; + return; + } + + // Report an error if some definition overrides ifunc. + llvm::GlobalValue *Entry = GetGlobalValue(MangledName); + if (Entry && !Entry->isDeclaration()) { + GlobalDecl OtherGD; + if (lookupRepresentativeDecl(MangledName, OtherGD) && + DiagnosedConflictingDefinitions.insert(GD).second) { + Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) + << MangledName; + Diags.Report(OtherGD.getDecl()->getLocation(), + diag::note_previous_definition); + } + return; + } + + Aliases.push_back(GD); + + llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); + llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); + llvm::Constant *Resolver = + GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, + /*ForVTable=*/false); + llvm::GlobalIFunc *GIF = + llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, + "", Resolver, &getModule()); + if (Entry) { + if (GIF->getResolver() == Entry) { + Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; + return; + } + assert(Entry->isDeclaration()); + + // If there is a declaration in the module, then we had an extern followed + // by the ifunc, as in: + // extern int test(); + // ... + // int test() __attribute__((ifunc("resolver"))); + // + // Remove it and replace uses of it with the ifunc. + GIF->takeName(Entry); + + Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, + Entry->getType())); + Entry->eraseFromParent(); + } else + GIF->setName(MangledName); + + SetCommonAttributes(GD, GIF); +} + +llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, + ArrayRef<llvm::Type*> Tys) { + return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, + Tys); +} + +static llvm::StringMapEntry<llvm::GlobalVariable *> & +GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, + const StringLiteral *Literal, bool TargetIsLSB, + bool &IsUTF16, unsigned &StringLength) { + StringRef String = Literal->getString(); + unsigned NumBytes = String.size(); + + // Check for simple case. + if (!Literal->containsNonAsciiOrNull()) { + StringLength = NumBytes; + return *Map.insert(std::make_pair(String, nullptr)).first; + } + + // Otherwise, convert the UTF8 literals into a string of shorts. + IsUTF16 = true; + + SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. + const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); + llvm::UTF16 *ToPtr = &ToBuf[0]; + + (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, + ToPtr + NumBytes, llvm::strictConversion); + + // ConvertUTF8toUTF16 returns the length in ToPtr. + StringLength = ToPtr - &ToBuf[0]; + + // Add an explicit null. + *ToPtr = 0; + return *Map.insert(std::make_pair( + StringRef(reinterpret_cast<const char *>(ToBuf.data()), + (StringLength + 1) * 2), + nullptr)).first; +} + +ConstantAddress +CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { + unsigned StringLength = 0; + bool isUTF16 = false; + llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = + GetConstantCFStringEntry(CFConstantStringMap, Literal, + getDataLayout().isLittleEndian(), isUTF16, + StringLength); + + if (auto *C = Entry.second) + return ConstantAddress( + C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); + + llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); + llvm::Constant *Zeros[] = { Zero, Zero }; + + const ASTContext &Context = getContext(); + const llvm::Triple &Triple = getTriple(); + + const auto CFRuntime = getLangOpts().CFRuntime; + const bool IsSwiftABI = + static_cast<unsigned>(CFRuntime) >= + static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); + const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; + + // If we don't already have it, get __CFConstantStringClassReference. + if (!CFConstantStringClassRef) { + const char *CFConstantStringClassName = "__CFConstantStringClassReference"; + llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); + Ty = llvm::ArrayType::get(Ty, 0); + + switch (CFRuntime) { + default: break; + case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; + case LangOptions::CoreFoundationABI::Swift5_0: + CFConstantStringClassName = + Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" + : "$s10Foundation19_NSCFConstantStringCN"; + Ty = IntPtrTy; + break; + case LangOptions::CoreFoundationABI::Swift4_2: + CFConstantStringClassName = + Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" + : "$S10Foundation19_NSCFConstantStringCN"; + Ty = IntPtrTy; + break; + case LangOptions::CoreFoundationABI::Swift4_1: + CFConstantStringClassName = + Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" + : "__T010Foundation19_NSCFConstantStringCN"; + Ty = IntPtrTy; + break; + } + + llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); + + if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { + llvm::GlobalValue *GV = nullptr; + + if ((GV = dyn_cast<llvm::GlobalValue>(C))) { + IdentifierInfo &II = Context.Idents.get(GV->getName()); + TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); + DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); + + const VarDecl *VD = nullptr; + for (const auto *Result : DC->lookup(&II)) + if ((VD = dyn_cast<VarDecl>(Result))) + break; + + if (Triple.isOSBinFormatELF()) { + if (!VD) + GV->setLinkage(llvm::GlobalValue::ExternalLinkage); + } else { + GV->setLinkage(llvm::GlobalValue::ExternalLinkage); + if (!VD || !VD->hasAttr<DLLExportAttr>()) + GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); + else + GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); + } + + setDSOLocal(GV); + } + } + + // Decay array -> ptr + CFConstantStringClassRef = + IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) + : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); + } + + QualType CFTy = Context.getCFConstantStringType(); + + auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); + + ConstantInitBuilder Builder(*this); + auto Fields = Builder.beginStruct(STy); + + // Class pointer. + Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); + + // Flags. + if (IsSwiftABI) { + Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); + Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); + } else { + Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); + } + + // String pointer. + llvm::Constant *C = nullptr; + if (isUTF16) { + auto Arr = llvm::ArrayRef( + reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), + Entry.first().size() / 2); + C = llvm::ConstantDataArray::get(VMContext, Arr); + } else { + C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); + } + + // Note: -fwritable-strings doesn't make the backing store strings of + // CFStrings writable. (See <rdar://problem/10657500>) + auto *GV = + new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, + llvm::GlobalValue::PrivateLinkage, C, ".str"); + GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); + // Don't enforce the target's minimum global alignment, since the only use + // of the string is via this class initializer. + CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) + : Context.getTypeAlignInChars(Context.CharTy); + GV->setAlignment(Align.getAsAlign()); + + // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. + // Without it LLVM can merge the string with a non unnamed_addr one during + // LTO. Doing that changes the section it ends in, which surprises ld64. + if (Triple.isOSBinFormatMachO()) + GV->setSection(isUTF16 ? "__TEXT,__ustring" + : "__TEXT,__cstring,cstring_literals"); + // Make sure the literal ends up in .rodata to allow for safe ICF and for + // the static linker to adjust permissions to read-only later on. + else if (Triple.isOSBinFormatELF()) + GV->setSection(".rodata"); + + // String. + llvm::Constant *Str = + llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); + + if (isUTF16) + // Cast the UTF16 string to the correct type. + Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); + Fields.add(Str); + + // String length. + llvm::IntegerType *LengthTy = + llvm::IntegerType::get(getModule().getContext(), + Context.getTargetInfo().getLongWidth()); + if (IsSwiftABI) { + if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || + CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) + LengthTy = Int32Ty; + else + LengthTy = IntPtrTy; + } + Fields.addInt(LengthTy, StringLength); + + // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is + // properly aligned on 32-bit platforms. + CharUnits Alignment = + IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); + + // The struct. + GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, + /*isConstant=*/false, + llvm::GlobalVariable::PrivateLinkage); + GV->addAttribute("objc_arc_inert"); + switch (Triple.getObjectFormat()) { + case llvm::Triple::UnknownObjectFormat: + llvm_unreachable("unknown file format"); + case llvm::Triple::DXContainer: + case llvm::Triple::GOFF: + case llvm::Triple::SPIRV: + case llvm::Triple::XCOFF: + llvm_unreachable("unimplemented"); + case llvm::Triple::COFF: + case llvm::Triple::ELF: + case llvm::Triple::Wasm: + GV->setSection("cfstring"); + break; + case llvm::Triple::MachO: + GV->setSection("__DATA,__cfstring"); + break; + } + Entry.second = GV; + + return ConstantAddress(GV, GV->getValueType(), Alignment); +} + +bool CodeGenModule::getExpressionLocationsEnabled() const { + return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; +} + +QualType CodeGenModule::getObjCFastEnumerationStateType() { + if (ObjCFastEnumerationStateType.isNull()) { + RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); + D->startDefinition(); + + QualType FieldTypes[] = { + Context.UnsignedLongTy, + Context.getPointerType(Context.getObjCIdType()), + Context.getPointerType(Context.UnsignedLongTy), + Context.getConstantArrayType(Context.UnsignedLongTy, + llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) + }; + + for (size_t i = 0; i < 4; ++i) { + FieldDecl *Field = FieldDecl::Create(Context, + D, + SourceLocation(), + SourceLocation(), nullptr, + FieldTypes[i], /*TInfo=*/nullptr, + /*BitWidth=*/nullptr, + /*Mutable=*/false, + ICIS_NoInit); + Field->setAccess(AS_public); + D->addDecl(Field); + } + + D->completeDefinition(); + ObjCFastEnumerationStateType = Context.getTagDeclType(D); + } + + return ObjCFastEnumerationStateType; +} + +llvm::Constant * +CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { + assert(!E->getType()->isPointerType() && "Strings are always arrays"); + + // Don't emit it as the address of the string, emit the string data itself + // as an inline array. + if (E->getCharByteWidth() == 1) { + SmallString<64> Str(E->getString()); + + // Resize the string to the right size, which is indicated by its type. + const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); + Str.resize(CAT->getSize().getZExtValue()); + return llvm::ConstantDataArray::getString(VMContext, Str, false); + } + + auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); + llvm::Type *ElemTy = AType->getElementType(); + unsigned NumElements = AType->getNumElements(); + + // Wide strings have either 2-byte or 4-byte elements. + if (ElemTy->getPrimitiveSizeInBits() == 16) { + SmallVector<uint16_t, 32> Elements; + Elements.reserve(NumElements); + + for(unsigned i = 0, e = E->getLength(); i != e; ++i) + Elements.push_back(E->getCodeUnit(i)); + Elements.resize(NumElements); + return llvm::ConstantDataArray::get(VMContext, Elements); + } + + assert(ElemTy->getPrimitiveSizeInBits() == 32); + SmallVector<uint32_t, 32> Elements; + Elements.reserve(NumElements); + + for(unsigned i = 0, e = E->getLength(); i != e; ++i) + Elements.push_back(E->getCodeUnit(i)); + Elements.resize(NumElements); + return llvm::ConstantDataArray::get(VMContext, Elements); +} + +static llvm::GlobalVariable * +GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, + CodeGenModule &CGM, StringRef GlobalName, + CharUnits Alignment) { + unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( + CGM.GetGlobalConstantAddressSpace()); + + llvm::Module &M = CGM.getModule(); + // Create a global variable for this string + auto *GV = new llvm::GlobalVariable( + M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, + nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); + GV->setAlignment(Alignment.getAsAlign()); + GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); + if (GV->isWeakForLinker()) { + assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); + GV->setComdat(M.getOrInsertComdat(GV->getName())); + } + CGM.setDSOLocal(GV); + + return GV; +} + +/// GetAddrOfConstantStringFromLiteral - Return a pointer to a +/// constant array for the given string literal. +ConstantAddress +CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, + StringRef Name) { + CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); + + llvm::Constant *C = GetConstantArrayFromStringLiteral(S); + llvm::GlobalVariable **Entry = nullptr; + if (!LangOpts.WritableStrings) { + Entry = &ConstantStringMap[C]; + if (auto GV = *Entry) { + if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) + GV->setAlignment(Alignment.getAsAlign()); + return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), + GV->getValueType(), Alignment); + } + } + + SmallString<256> MangledNameBuffer; + StringRef GlobalVariableName; + llvm::GlobalValue::LinkageTypes LT; + + // Mangle the string literal if that's how the ABI merges duplicate strings. + // Don't do it if they are writable, since we don't want writes in one TU to + // affect strings in another. + if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && + !LangOpts.WritableStrings) { + llvm::raw_svector_ostream Out(MangledNameBuffer); + getCXXABI().getMangleContext().mangleStringLiteral(S, Out); + LT = llvm::GlobalValue::LinkOnceODRLinkage; + GlobalVariableName = MangledNameBuffer; + } else { + LT = llvm::GlobalValue::PrivateLinkage; + GlobalVariableName = Name; + } + + auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); + + CGDebugInfo *DI = getModuleDebugInfo(); + if (DI && getCodeGenOpts().hasReducedDebugInfo()) + DI->AddStringLiteralDebugInfo(GV, S); + + if (Entry) + *Entry = GV; + + SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); + + return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), + GV->getValueType(), Alignment); +} + +/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant +/// array for the given ObjCEncodeExpr node. +ConstantAddress +CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { + std::string Str; + getContext().getObjCEncodingForType(E->getEncodedType(), Str); + + return GetAddrOfConstantCString(Str); +} + +/// GetAddrOfConstantCString - Returns a pointer to a character array containing +/// the literal and a terminating '\0' character. +/// The result has pointer to array type. +ConstantAddress CodeGenModule::GetAddrOfConstantCString( + const std::string &Str, const char *GlobalName) { + StringRef StrWithNull(Str.c_str(), Str.size() + 1); + CharUnits Alignment = + getContext().getAlignOfGlobalVarInChars(getContext().CharTy); + + llvm::Constant *C = + llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); + + // Don't share any string literals if strings aren't constant. + llvm::GlobalVariable **Entry = nullptr; + if (!LangOpts.WritableStrings) { + Entry = &ConstantStringMap[C]; + if (auto GV = *Entry) { + if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) + GV->setAlignment(Alignment.getAsAlign()); + return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), + GV->getValueType(), Alignment); + } + } + + // Get the default prefix if a name wasn't specified. + if (!GlobalName) + GlobalName = ".str"; + // Create a global variable for this. + auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, + GlobalName, Alignment); + if (Entry) + *Entry = GV; + + return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), + GV->getValueType(), Alignment); +} + +ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( + const MaterializeTemporaryExpr *E, const Expr *Init) { + assert((E->getStorageDuration() == SD_Static || + E->getStorageDuration() == SD_Thread) && "not a global temporary"); + const auto *VD = cast<VarDecl>(E->getExtendingDecl()); + + // If we're not materializing a subobject of the temporary, keep the + // cv-qualifiers from the type of the MaterializeTemporaryExpr. + QualType MaterializedType = Init->getType(); + if (Init == E->getSubExpr()) + MaterializedType = E->getType(); + + CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); + + auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); + if (!InsertResult.second) { + // We've seen this before: either we already created it or we're in the + // process of doing so. + if (!InsertResult.first->second) { + // We recursively re-entered this function, probably during emission of + // the initializer. Create a placeholder. We'll clean this up in the + // outer call, at the end of this function. + llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); + InsertResult.first->second = new llvm::GlobalVariable( + getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, + nullptr); + } + return ConstantAddress(InsertResult.first->second, + llvm::cast<llvm::GlobalVariable>( + InsertResult.first->second->stripPointerCasts()) + ->getValueType(), + Align); + } + + // FIXME: If an externally-visible declaration extends multiple temporaries, + // we need to give each temporary the same name in every translation unit (and + // we also need to make the temporaries externally-visible). + SmallString<256> Name; + llvm::raw_svector_ostream Out(Name); + getCXXABI().getMangleContext().mangleReferenceTemporary( + VD, E->getManglingNumber(), Out); + + APValue *Value = nullptr; + if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { + // If the initializer of the extending declaration is a constant + // initializer, we should have a cached constant initializer for this + // temporary. Note that this might have a different value from the value + // computed by evaluating the initializer if the surrounding constant + // expression modifies the temporary. + Value = E->getOrCreateValue(false); + } + + // Try evaluating it now, it might have a constant initializer. + Expr::EvalResult EvalResult; + if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && + !EvalResult.hasSideEffects()) + Value = &EvalResult.Val; + + LangAS AddrSpace = + VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); + + std::optional<ConstantEmitter> emitter; + llvm::Constant *InitialValue = nullptr; + bool Constant = false; + llvm::Type *Type; + if (Value) { + // The temporary has a constant initializer, use it. + emitter.emplace(*this); + InitialValue = emitter->emitForInitializer(*Value, AddrSpace, + MaterializedType); + Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); + Type = InitialValue->getType(); + } else { + // No initializer, the initialization will be provided when we + // initialize the declaration which performed lifetime extension. + Type = getTypes().ConvertTypeForMem(MaterializedType); + } + + // Create a global variable for this lifetime-extended temporary. + llvm::GlobalValue::LinkageTypes Linkage = + getLLVMLinkageVarDefinition(VD, Constant); + if (Linkage == llvm::GlobalVariable::ExternalLinkage) { + const VarDecl *InitVD; + if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && + isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { + // Temporaries defined inside a class get linkonce_odr linkage because the + // class can be defined in multiple translation units. + Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; + } else { + // There is no need for this temporary to have external linkage if the + // VarDecl has external linkage. + Linkage = llvm::GlobalVariable::InternalLinkage; + } + } + auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); + auto *GV = new llvm::GlobalVariable( + getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), + /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); + if (emitter) emitter->finalize(GV); + // Don't assign dllimport or dllexport to local linkage globals. + if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { + setGVProperties(GV, VD); + if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) + // The reference temporary should never be dllexport. + GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); + } + GV->setAlignment(Align.getAsAlign()); + if (supportsCOMDAT() && GV->isWeakForLinker()) + GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); + if (VD->getTLSKind()) + setTLSMode(GV, *VD); + llvm::Constant *CV = GV; + if (AddrSpace != LangAS::Default) + CV = getTargetCodeGenInfo().performAddrSpaceCast( + *this, GV, AddrSpace, LangAS::Default, + Type->getPointerTo( + getContext().getTargetAddressSpace(LangAS::Default))); + + // Update the map with the new temporary. If we created a placeholder above, + // replace it with the new global now. + llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; + if (Entry) { + Entry->replaceAllUsesWith( + llvm::ConstantExpr::getBitCast(CV, Entry->getType())); + llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); + } + Entry = CV; + + return ConstantAddress(CV, Type, Align); +} + +/// EmitObjCPropertyImplementations - Emit information for synthesized +/// properties for an implementation. +void CodeGenModule::EmitObjCPropertyImplementations(const + ObjCImplementationDecl *D) { + for (const auto *PID : D->property_impls()) { + // Dynamic is just for type-checking. + if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { + ObjCPropertyDecl *PD = PID->getPropertyDecl(); + + // Determine which methods need to be implemented, some may have + // been overridden. Note that ::isPropertyAccessor is not the method + // we want, that just indicates if the decl came from a + // property. What we want to know is if the method is defined in + // this implementation. + auto *Getter = PID->getGetterMethodDecl(); + if (!Getter || Getter->isSynthesizedAccessorStub()) + CodeGenFunction(*this).GenerateObjCGetter( + const_cast<ObjCImplementationDecl *>(D), PID); + auto *Setter = PID->getSetterMethodDecl(); + if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) + CodeGenFunction(*this).GenerateObjCSetter( + const_cast<ObjCImplementationDecl *>(D), PID); + } + } +} + +static bool needsDestructMethod(ObjCImplementationDecl *impl) { + const ObjCInterfaceDecl *iface = impl->getClassInterface(); + for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); + ivar; ivar = ivar->getNextIvar()) + if (ivar->getType().isDestructedType()) + return true; + + return false; +} + +static bool AllTrivialInitializers(CodeGenModule &CGM, + ObjCImplementationDecl *D) { + CodeGenFunction CGF(CGM); + for (ObjCImplementationDecl::init_iterator B = D->init_begin(), + E = D->init_end(); B != E; ++B) { + CXXCtorInitializer *CtorInitExp = *B; + Expr *Init = CtorInitExp->getInit(); + if (!CGF.isTrivialInitializer(Init)) + return false; + } + return true; +} + +/// EmitObjCIvarInitializations - Emit information for ivar initialization +/// for an implementation. +void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { + // We might need a .cxx_destruct even if we don't have any ivar initializers. + if (needsDestructMethod(D)) { + IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); + Selector cxxSelector = getContext().Selectors.getSelector(0, &II); + ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( + getContext(), D->getLocation(), D->getLocation(), cxxSelector, + getContext().VoidTy, nullptr, D, + /*isInstance=*/true, /*isVariadic=*/false, + /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, + /*isImplicitlyDeclared=*/true, + /*isDefined=*/false, ObjCMethodDecl::Required); + D->addInstanceMethod(DTORMethod); + CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); + D->setHasDestructors(true); + } + + // If the implementation doesn't have any ivar initializers, we don't need + // a .cxx_construct. + if (D->getNumIvarInitializers() == 0 || + AllTrivialInitializers(*this, D)) + return; + + IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); + Selector cxxSelector = getContext().Selectors.getSelector(0, &II); + // The constructor returns 'self'. + ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( + getContext(), D->getLocation(), D->getLocation(), cxxSelector, + getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, + /*isVariadic=*/false, + /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, + /*isImplicitlyDeclared=*/true, + /*isDefined=*/false, ObjCMethodDecl::Required); + D->addInstanceMethod(CTORMethod); + CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); + D->setHasNonZeroConstructors(true); +} + +// EmitLinkageSpec - Emit all declarations in a linkage spec. +void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { + if (LSD->getLanguage() != LinkageSpecDecl::lang_c && + LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { + ErrorUnsupported(LSD, "linkage spec"); + return; + } + + EmitDeclContext(LSD); +} + +void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { + std::unique_ptr<CodeGenFunction> &CurCGF = + GlobalTopLevelStmtBlockInFlight.first; + + // We emitted a top-level stmt but after it there is initialization. + // Stop squashing the top-level stmts into a single function. + if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { + CurCGF->FinishFunction(D->getEndLoc()); + CurCGF = nullptr; + } + + if (!CurCGF) { + // void __stmts__N(void) + // FIXME: Ask the ABI name mangler to pick a name. + std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); + FunctionArgList Args; + QualType RetTy = getContext().VoidTy; + const CGFunctionInfo &FnInfo = + getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); + llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); + llvm::Function *Fn = llvm::Function::Create( + FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); + + CurCGF.reset(new CodeGenFunction(*this)); + GlobalTopLevelStmtBlockInFlight.second = D; + CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, + D->getBeginLoc(), D->getBeginLoc()); + CXXGlobalInits.push_back(Fn); + } + + CurCGF->EmitStmt(D->getStmt()); +} + +void CodeGenModule::EmitDeclContext(const DeclContext *DC) { + for (auto *I : DC->decls()) { + // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope + // are themselves considered "top-level", so EmitTopLevelDecl on an + // ObjCImplDecl does not recursively visit them. We need to do that in + // case they're nested inside another construct (LinkageSpecDecl / + // ExportDecl) that does stop them from being considered "top-level". + if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { + for (auto *M : OID->methods()) + EmitTopLevelDecl(M); + } + + EmitTopLevelDecl(I); + } +} + +/// EmitTopLevelDecl - Emit code for a single top level declaration. +void CodeGenModule::EmitTopLevelDecl(Decl *D) { + // Ignore dependent declarations. + if (D->isTemplated()) + return; + + // Consteval function shouldn't be emitted. + if (auto *FD = dyn_cast<FunctionDecl>(D)) + if (FD->isConsteval()) + return; + + switch (D->getKind()) { + case Decl::CXXConversion: + case Decl::CXXMethod: + case Decl::Function: + EmitGlobal(cast<FunctionDecl>(D)); + // Always provide some coverage mapping + // even for the functions that aren't emitted. + AddDeferredUnusedCoverageMapping(D); + break; + + case Decl::CXXDeductionGuide: + // Function-like, but does not result in code emission. + break; + + case Decl::Var: + case Decl::Decomposition: + case Decl::VarTemplateSpecialization: + EmitGlobal(cast<VarDecl>(D)); + if (auto *DD = dyn_cast<DecompositionDecl>(D)) + for (auto *B : DD->bindings()) + if (auto *HD = B->getHoldingVar()) + EmitGlobal(HD); + break; + + // Indirect fields from global anonymous structs and unions can be + // ignored; only the actual variable requires IR gen support. + case Decl::IndirectField: + break; + + // C++ Decls + case Decl::Namespace: + EmitDeclContext(cast<NamespaceDecl>(D)); + break; + case Decl::ClassTemplateSpecialization: { + const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); + if (CGDebugInfo *DI = getModuleDebugInfo()) + if (Spec->getSpecializationKind() == + TSK_ExplicitInstantiationDefinition && + Spec->hasDefinition()) + DI->completeTemplateDefinition(*Spec); + } [[fallthrough]]; + case Decl::CXXRecord: { + CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); + if (CGDebugInfo *DI = getModuleDebugInfo()) { + if (CRD->hasDefinition()) + DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); + if (auto *ES = D->getASTContext().getExternalSource()) + if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) + DI->completeUnusedClass(*CRD); + } + // Emit any static data members, they may be definitions. + for (auto *I : CRD->decls()) + if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) + EmitTopLevelDecl(I); + break; + } + // No code generation needed. + case Decl::UsingShadow: + case Decl::ClassTemplate: + case Decl::VarTemplate: + case Decl::Concept: + case Decl::VarTemplatePartialSpecialization: + case Decl::FunctionTemplate: + case Decl::TypeAliasTemplate: + case Decl::Block: + case Decl::Empty: + case Decl::Binding: + break; + case Decl::Using: // using X; [C++] + if (CGDebugInfo *DI = getModuleDebugInfo()) + DI->EmitUsingDecl(cast<UsingDecl>(*D)); + break; + case Decl::UsingEnum: // using enum X; [C++] + if (CGDebugInfo *DI = getModuleDebugInfo()) + DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); + break; + case Decl::NamespaceAlias: + if (CGDebugInfo *DI = getModuleDebugInfo()) + DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); + break; + case Decl::UsingDirective: // using namespace X; [C++] + if (CGDebugInfo *DI = getModuleDebugInfo()) + DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); + break; + case Decl::CXXConstructor: + getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); + break; + case Decl::CXXDestructor: + getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); + break; + + case Decl::StaticAssert: + // Nothing to do. + break; + + // Objective-C Decls + + // Forward declarations, no (immediate) code generation. + case Decl::ObjCInterface: + case Decl::ObjCCategory: + break; + + case Decl::ObjCProtocol: { + auto *Proto = cast<ObjCProtocolDecl>(D); + if (Proto->isThisDeclarationADefinition()) + ObjCRuntime->GenerateProtocol(Proto); + break; + } + + case Decl::ObjCCategoryImpl: + // Categories have properties but don't support synthesize so we + // can ignore them here. + ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); + break; + + case Decl::ObjCImplementation: { + auto *OMD = cast<ObjCImplementationDecl>(D); + EmitObjCPropertyImplementations(OMD); + EmitObjCIvarInitializations(OMD); + ObjCRuntime->GenerateClass(OMD); + // Emit global variable debug information. + if (CGDebugInfo *DI = getModuleDebugInfo()) + if (getCodeGenOpts().hasReducedDebugInfo()) + DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( + OMD->getClassInterface()), OMD->getLocation()); + break; + } + case Decl::ObjCMethod: { + auto *OMD = cast<ObjCMethodDecl>(D); + // If this is not a prototype, emit the body. + if (OMD->getBody()) + CodeGenFunction(*this).GenerateObjCMethod(OMD); + break; + } + case Decl::ObjCCompatibleAlias: + ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); + break; + + case Decl::PragmaComment: { + const auto *PCD = cast<PragmaCommentDecl>(D); + switch (PCD->getCommentKind()) { + case PCK_Unknown: + llvm_unreachable("unexpected pragma comment kind"); + case PCK_Linker: + AppendLinkerOptions(PCD->getArg()); + break; + case PCK_Lib: + AddDependentLib(PCD->getArg()); + break; + case PCK_Compiler: + case PCK_ExeStr: + case PCK_User: + break; // We ignore all of these. + } + break; + } + + case Decl::PragmaDetectMismatch: { + const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); + AddDetectMismatch(PDMD->getName(), PDMD->getValue()); + break; + } + + case Decl::LinkageSpec: + EmitLinkageSpec(cast<LinkageSpecDecl>(D)); + break; + + case Decl::FileScopeAsm: { + // File-scope asm is ignored during device-side CUDA compilation. + if (LangOpts.CUDA && LangOpts.CUDAIsDevice) + break; + // File-scope asm is ignored during device-side OpenMP compilation. + if (LangOpts.OpenMPIsDevice) + break; + // File-scope asm is ignored during device-side SYCL compilation. + if (LangOpts.SYCLIsDevice) + break; + auto *AD = cast<FileScopeAsmDecl>(D); + getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); + break; + } + + case Decl::TopLevelStmt: + EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); + break; + + case Decl::Import: { + auto *Import = cast<ImportDecl>(D); + + // If we've already imported this module, we're done. + if (!ImportedModules.insert(Import->getImportedModule())) + break; + + // Emit debug information for direct imports. + if (!Import->getImportedOwningModule()) { + if (CGDebugInfo *DI = getModuleDebugInfo()) + DI->EmitImportDecl(*Import); + } + + // For C++ standard modules we are done - we will call the module + // initializer for imported modules, and that will likewise call those for + // any imports it has. + if (CXX20ModuleInits && Import->getImportedOwningModule() && + !Import->getImportedOwningModule()->isModuleMapModule()) + break; + + // For clang C++ module map modules the initializers for sub-modules are + // emitted here. + + // Find all of the submodules and emit the module initializers. + llvm::SmallPtrSet<clang::Module *, 16> Visited; + SmallVector<clang::Module *, 16> Stack; + Visited.insert(Import->getImportedModule()); + Stack.push_back(Import->getImportedModule()); + + while (!Stack.empty()) { + clang::Module *Mod = Stack.pop_back_val(); + if (!EmittedModuleInitializers.insert(Mod).second) + continue; + + for (auto *D : Context.getModuleInitializers(Mod)) + EmitTopLevelDecl(D); + + // Visit the submodules of this module. + for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), + SubEnd = Mod->submodule_end(); + Sub != SubEnd; ++Sub) { + // Skip explicit children; they need to be explicitly imported to emit + // the initializers. + if ((*Sub)->IsExplicit) + continue; + + if (Visited.insert(*Sub).second) + Stack.push_back(*Sub); + } + } + break; + } + + case Decl::Export: + EmitDeclContext(cast<ExportDecl>(D)); + break; + + case Decl::OMPThreadPrivate: + EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); + break; + + case Decl::OMPAllocate: + EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); + break; + + case Decl::OMPDeclareReduction: + EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); + break; + + case Decl::OMPDeclareMapper: + EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); + break; + + case Decl::OMPRequires: + EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); + break; + + case Decl::Typedef: + case Decl::TypeAlias: // using foo = bar; [C++11] + if (CGDebugInfo *DI = getModuleDebugInfo()) + DI->EmitAndRetainType( + getContext().getTypedefType(cast<TypedefNameDecl>(D))); + break; + + case Decl::Record: + if (CGDebugInfo *DI = getModuleDebugInfo()) + if (cast<RecordDecl>(D)->getDefinition()) + DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); + break; + + case Decl::Enum: + if (CGDebugInfo *DI = getModuleDebugInfo()) + if (cast<EnumDecl>(D)->getDefinition()) + DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); + break; + + case Decl::HLSLBuffer: + getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); + break; + + default: + // Make sure we handled everything we should, every other kind is a + // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind + // function. Need to recode Decl::Kind to do that easily. + assert(isa<TypeDecl>(D) && "Unsupported decl kind"); + break; + } +} + +void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { + // Do we need to generate coverage mapping? + if (!CodeGenOpts.CoverageMapping) + return; + switch (D->getKind()) { + case Decl::CXXConversion: + case Decl::CXXMethod: + case Decl::Function: + case Decl::ObjCMethod: + case Decl::CXXConstructor: + case Decl::CXXDestructor: { + if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) + break; + SourceManager &SM = getContext().getSourceManager(); + if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) + break; + auto I = DeferredEmptyCoverageMappingDecls.find(D); + if (I == DeferredEmptyCoverageMappingDecls.end()) + DeferredEmptyCoverageMappingDecls[D] = true; + break; + } + default: + break; + }; +} + +void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { + // Do we need to generate coverage mapping? + if (!CodeGenOpts.CoverageMapping) + return; + if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { + if (Fn->isTemplateInstantiation()) + ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); + } + auto I = DeferredEmptyCoverageMappingDecls.find(D); + if (I == DeferredEmptyCoverageMappingDecls.end()) + DeferredEmptyCoverageMappingDecls[D] = false; + else + I->second = false; +} + +void CodeGenModule::EmitDeferredUnusedCoverageMappings() { + // We call takeVector() here to avoid use-after-free. + // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because + // we deserialize function bodies to emit coverage info for them, and that + // deserializes more declarations. How should we handle that case? + for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { + if (!Entry.second) + continue; + const Decl *D = Entry.first; + switch (D->getKind()) { + case Decl::CXXConversion: + case Decl::CXXMethod: + case Decl::Function: + case Decl::ObjCMethod: { + CodeGenPGO PGO(*this); + GlobalDecl GD(cast<FunctionDecl>(D)); + PGO.emitEmptyCounterMapping(D, getMangledName(GD), + getFunctionLinkage(GD)); + break; + } + case Decl::CXXConstructor: { + CodeGenPGO PGO(*this); + GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); + PGO.emitEmptyCounterMapping(D, getMangledName(GD), + getFunctionLinkage(GD)); + break; + } + case Decl::CXXDestructor: { + CodeGenPGO PGO(*this); + GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); + PGO.emitEmptyCounterMapping(D, getMangledName(GD), + getFunctionLinkage(GD)); + break; + } + default: + break; + }; + } +} + +void CodeGenModule::EmitMainVoidAlias() { + // In order to transition away from "__original_main" gracefully, emit an + // alias for "main" in the no-argument case so that libc can detect when + // new-style no-argument main is in used. + if (llvm::Function *F = getModule().getFunction("main")) { + if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && + F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { + auto *GA = llvm::GlobalAlias::create("__main_void", F); + GA->setVisibility(llvm::GlobalValue::HiddenVisibility); + } + } +} + +/// Turns the given pointer into a constant. +static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, + const void *Ptr) { + uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); + llvm::Type *i64 = llvm::Type::getInt64Ty(Context); + return llvm::ConstantInt::get(i64, PtrInt); +} + +static void EmitGlobalDeclMetadata(CodeGenModule &CGM, + llvm::NamedMDNode *&GlobalMetadata, + GlobalDecl D, + llvm::GlobalValue *Addr) { + if (!GlobalMetadata) + GlobalMetadata = + CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); + + // TODO: should we report variant information for ctors/dtors? + llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), + llvm::ConstantAsMetadata::get(GetPointerConstant( + CGM.getLLVMContext(), D.getDecl()))}; + GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); +} + +bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, + llvm::GlobalValue *CppFunc) { + // Store the list of ifuncs we need to replace uses in. + llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; + // List of ConstantExprs that we should be able to delete when we're done + // here. + llvm::SmallVector<llvm::ConstantExpr *> CEs; + + // It isn't valid to replace the extern-C ifuncs if all we find is itself! + if (Elem == CppFunc) + return false; + + // First make sure that all users of this are ifuncs (or ifuncs via a + // bitcast), and collect the list of ifuncs and CEs so we can work on them + // later. + for (llvm::User *User : Elem->users()) { + // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an + // ifunc directly. In any other case, just give up, as we don't know what we + // could break by changing those. + if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { + if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) + return false; + + for (llvm::User *CEUser : ConstExpr->users()) { + if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { + IFuncs.push_back(IFunc); + } else { + return false; + } + } + CEs.push_back(ConstExpr); + } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { + IFuncs.push_back(IFunc); + } else { + // This user is one we don't know how to handle, so fail redirection. This + // will result in an ifunc retaining a resolver name that will ultimately + // fail to be resolved to a defined function. + return false; + } + } + + // Now we know this is a valid case where we can do this alias replacement, we + // need to remove all of the references to Elem (and the bitcasts!) so we can + // delete it. + for (llvm::GlobalIFunc *IFunc : IFuncs) + IFunc->setResolver(nullptr); + for (llvm::ConstantExpr *ConstExpr : CEs) + ConstExpr->destroyConstant(); + + // We should now be out of uses for the 'old' version of this function, so we + // can erase it as well. + Elem->eraseFromParent(); + + for (llvm::GlobalIFunc *IFunc : IFuncs) { + // The type of the resolver is always just a function-type that returns the + // type of the IFunc, so create that here. If the type of the actual + // resolver doesn't match, it just gets bitcast to the right thing. + auto *ResolverTy = + llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); + llvm::Constant *Resolver = GetOrCreateLLVMFunction( + CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); + IFunc->setResolver(Resolver); + } + return true; +} + +/// For each function which is declared within an extern "C" region and marked +/// as 'used', but has internal linkage, create an alias from the unmangled +/// name to the mangled name if possible. People expect to be able to refer +/// to such functions with an unmangled name from inline assembly within the +/// same translation unit. +void CodeGenModule::EmitStaticExternCAliases() { + if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) + return; + for (auto &I : StaticExternCValues) { + IdentifierInfo *Name = I.first; + llvm::GlobalValue *Val = I.second; + + // If Val is null, that implies there were multiple declarations that each + // had a claim to the unmangled name. In this case, generation of the alias + // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. + if (!Val) + break; + + llvm::GlobalValue *ExistingElem = + getModule().getNamedValue(Name->getName()); + + // If there is either not something already by this name, or we were able to + // replace all uses from IFuncs, create the alias. + if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) + addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); + } +} + +bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, + GlobalDecl &Result) const { + auto Res = Manglings.find(MangledName); + if (Res == Manglings.end()) + return false; + Result = Res->getValue(); + return true; +} + +/// Emits metadata nodes associating all the global values in the +/// current module with the Decls they came from. This is useful for +/// projects using IR gen as a subroutine. +/// +/// Since there's currently no way to associate an MDNode directly +/// with an llvm::GlobalValue, we create a global named metadata +/// with the name 'clang.global.decl.ptrs'. +void CodeGenModule::EmitDeclMetadata() { + llvm::NamedMDNode *GlobalMetadata = nullptr; + + for (auto &I : MangledDeclNames) { + llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); + // Some mangled names don't necessarily have an associated GlobalValue + // in this module, e.g. if we mangled it for DebugInfo. + if (Addr) + EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); + } +} + +/// Emits metadata nodes for all the local variables in the current +/// function. +void CodeGenFunction::EmitDeclMetadata() { + if (LocalDeclMap.empty()) return; + + llvm::LLVMContext &Context = getLLVMContext(); + + // Find the unique metadata ID for this name. + unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); + + llvm::NamedMDNode *GlobalMetadata = nullptr; + + for (auto &I : LocalDeclMap) { + const Decl *D = I.first; + llvm::Value *Addr = I.second.getPointer(); + if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { + llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); + Alloca->setMetadata( + DeclPtrKind, llvm::MDNode::get( + Context, llvm::ValueAsMetadata::getConstant(DAddr))); + } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { + GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); + EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); + } + } +} + +void CodeGenModule::EmitVersionIdentMetadata() { + llvm::NamedMDNode *IdentMetadata = + TheModule.getOrInsertNamedMetadata("llvm.ident"); + std::string Version = getClangFullVersion(); + llvm::LLVMContext &Ctx = TheModule.getContext(); + + llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; + IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); +} + +void CodeGenModule::EmitCommandLineMetadata() { + llvm::NamedMDNode *CommandLineMetadata = + TheModule.getOrInsertNamedMetadata("llvm.commandline"); + std::string CommandLine = getCodeGenOpts().RecordCommandLine; + llvm::LLVMContext &Ctx = TheModule.getContext(); + + llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; + CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); +} + +void CodeGenModule::EmitCoverageFile() { + if (getCodeGenOpts().CoverageDataFile.empty() && + getCodeGenOpts().CoverageNotesFile.empty()) + return; + + llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); + if (!CUNode) + return; + + llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); + llvm::LLVMContext &Ctx = TheModule.getContext(); + auto *CoverageDataFile = + llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); + auto *CoverageNotesFile = + llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); + for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { + llvm::MDNode *CU = CUNode->getOperand(i); + llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; + GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); + } +} + +llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, + bool ForEH) { + // Return a bogus pointer if RTTI is disabled, unless it's for EH. + // FIXME: should we even be calling this method if RTTI is disabled + // and it's not for EH? + if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || + (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && + getTriple().isNVPTX())) + return llvm::Constant::getNullValue(Int8PtrTy); + + if (ForEH && Ty->isObjCObjectPointerType() && + LangOpts.ObjCRuntime.isGNUFamily()) + return ObjCRuntime->GetEHType(Ty); + + return getCXXABI().getAddrOfRTTIDescriptor(Ty); +} + +void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { + // Do not emit threadprivates in simd-only mode. + if (LangOpts.OpenMP && LangOpts.OpenMPSimd) + return; + for (auto RefExpr : D->varlists()) { + auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); + bool PerformInit = + VD->getAnyInitializer() && + !VD->getAnyInitializer()->isConstantInitializer(getContext(), + /*ForRef=*/false); + + Address Addr(GetAddrOfGlobalVar(VD), + getTypes().ConvertTypeForMem(VD->getType()), + getContext().getDeclAlign(VD)); + if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( + VD, Addr, RefExpr->getBeginLoc(), PerformInit)) + CXXGlobalInits.push_back(InitFunction); + } +} + +llvm::Metadata * +CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, + StringRef Suffix) { + if (auto *FnType = T->getAs<FunctionProtoType>()) + T = getContext().getFunctionType( + FnType->getReturnType(), FnType->getParamTypes(), + FnType->getExtProtoInfo().withExceptionSpec(EST_None)); + + llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; + if (InternalId) + return InternalId; + + if (isExternallyVisible(T->getLinkage())) { + std::string OutName; + llvm::raw_string_ostream Out(OutName); + getCXXABI().getMangleContext().mangleTypeName(T, Out); + Out << Suffix; + + InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); + } else { + InternalId = llvm::MDNode::getDistinct(getLLVMContext(), + llvm::ArrayRef<llvm::Metadata *>()); + } + + return InternalId; +} + +llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { + return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); +} + +llvm::Metadata * +CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { + return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); +} + +// Generalize pointer types to a void pointer with the qualifiers of the +// originally pointed-to type, e.g. 'const char *' and 'char * const *' +// generalize to 'const void *' while 'char *' and 'const char **' generalize to +// 'void *'. +static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { + if (!Ty->isPointerType()) + return Ty; + + return Ctx.getPointerType( + QualType(Ctx.VoidTy).withCVRQualifiers( + Ty->getPointeeType().getCVRQualifiers())); +} + +// Apply type generalization to a FunctionType's return and argument types +static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { + if (auto *FnType = Ty->getAs<FunctionProtoType>()) { + SmallVector<QualType, 8> GeneralizedParams; + for (auto &Param : FnType->param_types()) + GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); + + return Ctx.getFunctionType( + GeneralizeType(Ctx, FnType->getReturnType()), + GeneralizedParams, FnType->getExtProtoInfo()); + } + + if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) + return Ctx.getFunctionNoProtoType( + GeneralizeType(Ctx, FnType->getReturnType())); + + llvm_unreachable("Encountered unknown FunctionType"); +} + +llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { + return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), + GeneralizedMetadataIdMap, ".generalized"); +} + +/// Returns whether this module needs the "all-vtables" type identifier. +bool CodeGenModule::NeedAllVtablesTypeId() const { + // Returns true if at least one of vtable-based CFI checkers is enabled and + // is not in the trapping mode. + return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && + !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || + (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && + !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || + (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && + !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || + (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && + !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); +} + +void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, + CharUnits Offset, + const CXXRecordDecl *RD) { + llvm::Metadata *MD = + CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); + VTable->addTypeMetadata(Offset.getQuantity(), MD); + + if (CodeGenOpts.SanitizeCfiCrossDso) + if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) + VTable->addTypeMetadata(Offset.getQuantity(), + llvm::ConstantAsMetadata::get(CrossDsoTypeId)); + + if (NeedAllVtablesTypeId()) { + llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); + VTable->addTypeMetadata(Offset.getQuantity(), MD); + } +} + +llvm::SanitizerStatReport &CodeGenModule::getSanStats() { + if (!SanStats) + SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); + + return *SanStats; +} + +llvm::Value * +CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, + CodeGenFunction &CGF) { + llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); + auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); + auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); + auto *Call = CGF.EmitRuntimeCall( + CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); + return Call; +} + +CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( + QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { + return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, + /* forPointeeType= */ true); +} + +CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, + LValueBaseInfo *BaseInfo, + TBAAAccessInfo *TBAAInfo, + bool forPointeeType) { + if (TBAAInfo) + *TBAAInfo = getTBAAAccessInfo(T); + + // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But + // that doesn't return the information we need to compute BaseInfo. + + // Honor alignment typedef attributes even on incomplete types. + // We also honor them straight for C++ class types, even as pointees; + // there's an expressivity gap here. + if (auto TT = T->getAs<TypedefType>()) { + if (auto Align = TT->getDecl()->getMaxAlignment()) { + if (BaseInfo) + *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); + return getContext().toCharUnitsFromBits(Align); + } + } + + bool AlignForArray = T->isArrayType(); + + // Analyze the base element type, so we don't get confused by incomplete + // array types. + T = getContext().getBaseElementType(T); + + if (T->isIncompleteType()) { + // We could try to replicate the logic from + // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the + // type is incomplete, so it's impossible to test. We could try to reuse + // getTypeAlignIfKnown, but that doesn't return the information we need + // to set BaseInfo. So just ignore the possibility that the alignment is + // greater than one. + if (BaseInfo) + *BaseInfo = LValueBaseInfo(AlignmentSource::Type); + return CharUnits::One(); + } + + if (BaseInfo) + *BaseInfo = LValueBaseInfo(AlignmentSource::Type); + + CharUnits Alignment; + const CXXRecordDecl *RD; + if (T.getQualifiers().hasUnaligned()) { + Alignment = CharUnits::One(); + } else if (forPointeeType && !AlignForArray && + (RD = T->getAsCXXRecordDecl())) { + // For C++ class pointees, we don't know whether we're pointing at a + // base or a complete object, so we generally need to use the + // non-virtual alignment. + Alignment = getClassPointerAlignment(RD); + } else { + Alignment = getContext().getTypeAlignInChars(T); + } + + // Cap to the global maximum type alignment unless the alignment + // was somehow explicit on the type. + if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { + if (Alignment.getQuantity() > MaxAlign && + !getContext().isAlignmentRequired(T)) + Alignment = CharUnits::fromQuantity(MaxAlign); + } + return Alignment; +} + +bool CodeGenModule::stopAutoInit() { + unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; + if (StopAfter) { + // This number is positive only when -ftrivial-auto-var-init-stop-after=* is + // used + if (NumAutoVarInit >= StopAfter) { + return true; + } + if (!NumAutoVarInit) { + unsigned DiagID = getDiags().getCustomDiagID( + DiagnosticsEngine::Warning, + "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " + "number of times ftrivial-auto-var-init=%1 gets applied."); + getDiags().Report(DiagID) + << StopAfter + << (getContext().getLangOpts().getTrivialAutoVarInit() == + LangOptions::TrivialAutoVarInitKind::Zero + ? "zero" + : "pattern"); + } + ++NumAutoVarInit; + } + return false; +} + +void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, + const Decl *D) const { + // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers + // postfix beginning with '.' since the symbol name can be demangled. + if (LangOpts.HIP) + OS << (isa<VarDecl>(D) ? ".static." : ".intern."); + else + OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); + + // If the CUID is not specified we try to generate a unique postfix. + if (getLangOpts().CUID.empty()) { + SourceManager &SM = getContext().getSourceManager(); + PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); + assert(PLoc.isValid() && "Source location is expected to be valid."); + + // Get the hash of the user defined macros. + llvm::MD5 Hash; + llvm::MD5::MD5Result Result; + for (const auto &Arg : PreprocessorOpts.Macros) + Hash.update(Arg.first); + Hash.final(Result); + + // Get the UniqueID for the file containing the decl. + llvm::sys::fs::UniqueID ID; + if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { + PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); + assert(PLoc.isValid() && "Source location is expected to be valid."); + if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) + SM.getDiagnostics().Report(diag::err_cannot_open_file) + << PLoc.getFilename() << EC.message(); + } + OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) + << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); + } else { + OS << getContext().getCUIDHash(); + } +} + +void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { + assert(DeferredDeclsToEmit.empty() && + "Should have emitted all decls deferred to emit."); + assert(NewBuilder->DeferredDecls.empty() && + "Newly created module should not have deferred decls"); + NewBuilder->DeferredDecls = std::move(DeferredDecls); + + assert(NewBuilder->DeferredVTables.empty() && + "Newly created module should not have deferred vtables"); + NewBuilder->DeferredVTables = std::move(DeferredVTables); + + assert(NewBuilder->MangledDeclNames.empty() && + "Newly created module should not have mangled decl names"); + assert(NewBuilder->Manglings.empty() && + "Newly created module should not have manglings"); + NewBuilder->Manglings = std::move(Manglings); + + assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied"); + NewBuilder->WeakRefReferences = std::move(WeakRefReferences); + + NewBuilder->TBAA = std::move(TBAA); + + assert(NewBuilder->EmittedDeferredDecls.empty() && + "Still have (unmerged) EmittedDeferredDecls deferred decls"); + + NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls); + + NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); +} |