aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang16/lib/CodeGen/CodeGenModule.cpp
diff options
context:
space:
mode:
authorthegeorg <thegeorg@yandex-team.com>2024-03-13 13:58:24 +0300
committerthegeorg <thegeorg@yandex-team.com>2024-03-13 14:11:53 +0300
commit11a895b7e15d1c5a1f52706396b82e3f9db953cb (patch)
treefabc6d883b0f946151f61ae7865cee9f529a1fdd /contrib/libs/clang16/lib/CodeGen/CodeGenModule.cpp
parent9685917341315774aad5733b1793b1e533a88bbb (diff)
downloadydb-11a895b7e15d1c5a1f52706396b82e3f9db953cb.tar.gz
Export clang-format16 via ydblib project
6e6be3a95868fde888d801b7590af4044049563f
Diffstat (limited to 'contrib/libs/clang16/lib/CodeGen/CodeGenModule.cpp')
-rw-r--r--contrib/libs/clang16/lib/CodeGen/CodeGenModule.cpp7216
1 files changed, 7216 insertions, 0 deletions
diff --git a/contrib/libs/clang16/lib/CodeGen/CodeGenModule.cpp b/contrib/libs/clang16/lib/CodeGen/CodeGenModule.cpp
new file mode 100644
index 0000000000..12d602fed6
--- /dev/null
+++ b/contrib/libs/clang16/lib/CodeGen/CodeGenModule.cpp
@@ -0,0 +1,7216 @@
+//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This coordinates the per-module state used while generating code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenModule.h"
+#include "ABIInfo.h"
+#include "CGBlocks.h"
+#include "CGCUDARuntime.h"
+#include "CGCXXABI.h"
+#include "CGCall.h"
+#include "CGDebugInfo.h"
+#include "CGHLSLRuntime.h"
+#include "CGObjCRuntime.h"
+#include "CGOpenCLRuntime.h"
+#include "CGOpenMPRuntime.h"
+#include "CGOpenMPRuntimeGPU.h"
+#include "CodeGenFunction.h"
+#include "CodeGenPGO.h"
+#include "ConstantEmitter.h"
+#include "CoverageMappingGen.h"
+#include "TargetInfo.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Mangle.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/Basic/CodeGenOptions.h"
+#include "clang/Basic/Diagnostic.h"
+#include "clang/Basic/FileManager.h"
+#include "clang/Basic/Module.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Basic/Version.h"
+#include "clang/CodeGen/BackendUtil.h"
+#include "clang/CodeGen/ConstantInitBuilder.h"
+#include "clang/Frontend/FrontendDiagnostic.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/ProfileSummary.h"
+#include "llvm/ProfileData/InstrProfReader.h"
+#include "llvm/ProfileData/SampleProf.h"
+#include "llvm/Support/CRC.h"
+#include "llvm/Support/CodeGen.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ConvertUTF.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/TimeProfiler.h"
+#include "llvm/Support/X86TargetParser.h"
+#include "llvm/Support/xxhash.h"
+#include <optional>
+
+using namespace clang;
+using namespace CodeGen;
+
+static llvm::cl::opt<bool> LimitedCoverage(
+ "limited-coverage-experimental", llvm::cl::Hidden,
+ llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
+
+static const char AnnotationSection[] = "llvm.metadata";
+
+static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
+ switch (CGM.getContext().getCXXABIKind()) {
+ case TargetCXXABI::AppleARM64:
+ case TargetCXXABI::Fuchsia:
+ case TargetCXXABI::GenericAArch64:
+ case TargetCXXABI::GenericARM:
+ case TargetCXXABI::iOS:
+ case TargetCXXABI::WatchOS:
+ case TargetCXXABI::GenericMIPS:
+ case TargetCXXABI::GenericItanium:
+ case TargetCXXABI::WebAssembly:
+ case TargetCXXABI::XL:
+ return CreateItaniumCXXABI(CGM);
+ case TargetCXXABI::Microsoft:
+ return CreateMicrosoftCXXABI(CGM);
+ }
+
+ llvm_unreachable("invalid C++ ABI kind");
+}
+
+CodeGenModule::CodeGenModule(ASTContext &C,
+ IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
+ const HeaderSearchOptions &HSO,
+ const PreprocessorOptions &PPO,
+ const CodeGenOptions &CGO, llvm::Module &M,
+ DiagnosticsEngine &diags,
+ CoverageSourceInfo *CoverageInfo)
+ : Context(C), LangOpts(C.getLangOpts()), FS(std::move(FS)),
+ HeaderSearchOpts(HSO), PreprocessorOpts(PPO), CodeGenOpts(CGO),
+ TheModule(M), Diags(diags), Target(C.getTargetInfo()),
+ ABI(createCXXABI(*this)), VMContext(M.getContext()), Types(*this),
+ VTables(*this), SanitizerMD(new SanitizerMetadata(*this)) {
+
+ // Initialize the type cache.
+ llvm::LLVMContext &LLVMContext = M.getContext();
+ VoidTy = llvm::Type::getVoidTy(LLVMContext);
+ Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
+ Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
+ Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
+ Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
+ HalfTy = llvm::Type::getHalfTy(LLVMContext);
+ BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
+ FloatTy = llvm::Type::getFloatTy(LLVMContext);
+ DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
+ PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
+ PointerAlignInBytes =
+ C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
+ .getQuantity();
+ SizeSizeInBytes =
+ C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
+ IntAlignInBytes =
+ C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
+ CharTy =
+ llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
+ IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
+ IntPtrTy = llvm::IntegerType::get(LLVMContext,
+ C.getTargetInfo().getMaxPointerWidth());
+ Int8PtrTy = Int8Ty->getPointerTo(0);
+ Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
+ const llvm::DataLayout &DL = M.getDataLayout();
+ AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
+ GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
+ ConstGlobalsPtrTy = Int8Ty->getPointerTo(
+ C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
+ ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
+
+ // Build C++20 Module initializers.
+ // TODO: Add Microsoft here once we know the mangling required for the
+ // initializers.
+ CXX20ModuleInits =
+ LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
+ ItaniumMangleContext::MK_Itanium;
+
+ RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
+
+ if (LangOpts.ObjC)
+ createObjCRuntime();
+ if (LangOpts.OpenCL)
+ createOpenCLRuntime();
+ if (LangOpts.OpenMP)
+ createOpenMPRuntime();
+ if (LangOpts.CUDA)
+ createCUDARuntime();
+ if (LangOpts.HLSL)
+ createHLSLRuntime();
+
+ // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
+ if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
+ (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
+ TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
+ getCXXABI().getMangleContext()));
+
+ // If debug info or coverage generation is enabled, create the CGDebugInfo
+ // object.
+ if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
+ CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
+ DebugInfo.reset(new CGDebugInfo(*this));
+
+ Block.GlobalUniqueCount = 0;
+
+ if (C.getLangOpts().ObjC)
+ ObjCData.reset(new ObjCEntrypoints());
+
+ if (CodeGenOpts.hasProfileClangUse()) {
+ auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
+ CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
+ // We're checking for profile read errors in CompilerInvocation, so if
+ // there was an error it should've already been caught. If it hasn't been
+ // somehow, trip an assertion.
+ assert(ReaderOrErr);
+ PGOReader = std::move(ReaderOrErr.get());
+ }
+
+ // If coverage mapping generation is enabled, create the
+ // CoverageMappingModuleGen object.
+ if (CodeGenOpts.CoverageMapping)
+ CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
+
+ // Generate the module name hash here if needed.
+ if (CodeGenOpts.UniqueInternalLinkageNames &&
+ !getModule().getSourceFileName().empty()) {
+ std::string Path = getModule().getSourceFileName();
+ // Check if a path substitution is needed from the MacroPrefixMap.
+ for (const auto &Entry : LangOpts.MacroPrefixMap)
+ if (Path.rfind(Entry.first, 0) != std::string::npos) {
+ Path = Entry.second + Path.substr(Entry.first.size());
+ break;
+ }
+ ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
+ }
+}
+
+CodeGenModule::~CodeGenModule() {}
+
+void CodeGenModule::createObjCRuntime() {
+ // This is just isGNUFamily(), but we want to force implementors of
+ // new ABIs to decide how best to do this.
+ switch (LangOpts.ObjCRuntime.getKind()) {
+ case ObjCRuntime::GNUstep:
+ case ObjCRuntime::GCC:
+ case ObjCRuntime::ObjFW:
+ ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
+ return;
+
+ case ObjCRuntime::FragileMacOSX:
+ case ObjCRuntime::MacOSX:
+ case ObjCRuntime::iOS:
+ case ObjCRuntime::WatchOS:
+ ObjCRuntime.reset(CreateMacObjCRuntime(*this));
+ return;
+ }
+ llvm_unreachable("bad runtime kind");
+}
+
+void CodeGenModule::createOpenCLRuntime() {
+ OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
+}
+
+void CodeGenModule::createOpenMPRuntime() {
+ // Select a specialized code generation class based on the target, if any.
+ // If it does not exist use the default implementation.
+ switch (getTriple().getArch()) {
+ case llvm::Triple::nvptx:
+ case llvm::Triple::nvptx64:
+ case llvm::Triple::amdgcn:
+ assert(getLangOpts().OpenMPIsDevice &&
+ "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
+ OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
+ break;
+ default:
+ if (LangOpts.OpenMPSimd)
+ OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
+ else
+ OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
+ break;
+ }
+}
+
+void CodeGenModule::createCUDARuntime() {
+ CUDARuntime.reset(CreateNVCUDARuntime(*this));
+}
+
+void CodeGenModule::createHLSLRuntime() {
+ HLSLRuntime.reset(new CGHLSLRuntime(*this));
+}
+
+void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
+ Replacements[Name] = C;
+}
+
+void CodeGenModule::applyReplacements() {
+ for (auto &I : Replacements) {
+ StringRef MangledName = I.first();
+ llvm::Constant *Replacement = I.second;
+ llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
+ if (!Entry)
+ continue;
+ auto *OldF = cast<llvm::Function>(Entry);
+ auto *NewF = dyn_cast<llvm::Function>(Replacement);
+ if (!NewF) {
+ if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
+ NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
+ } else {
+ auto *CE = cast<llvm::ConstantExpr>(Replacement);
+ assert(CE->getOpcode() == llvm::Instruction::BitCast ||
+ CE->getOpcode() == llvm::Instruction::GetElementPtr);
+ NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
+ }
+ }
+
+ // Replace old with new, but keep the old order.
+ OldF->replaceAllUsesWith(Replacement);
+ if (NewF) {
+ NewF->removeFromParent();
+ OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
+ NewF);
+ }
+ OldF->eraseFromParent();
+ }
+}
+
+void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
+ GlobalValReplacements.push_back(std::make_pair(GV, C));
+}
+
+void CodeGenModule::applyGlobalValReplacements() {
+ for (auto &I : GlobalValReplacements) {
+ llvm::GlobalValue *GV = I.first;
+ llvm::Constant *C = I.second;
+
+ GV->replaceAllUsesWith(C);
+ GV->eraseFromParent();
+ }
+}
+
+// This is only used in aliases that we created and we know they have a
+// linear structure.
+static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
+ const llvm::Constant *C;
+ if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
+ C = GA->getAliasee();
+ else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
+ C = GI->getResolver();
+ else
+ return GV;
+
+ const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
+ if (!AliaseeGV)
+ return nullptr;
+
+ const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
+ if (FinalGV == GV)
+ return nullptr;
+
+ return FinalGV;
+}
+
+static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
+ SourceLocation Location, bool IsIFunc,
+ const llvm::GlobalValue *Alias,
+ const llvm::GlobalValue *&GV) {
+ GV = getAliasedGlobal(Alias);
+ if (!GV) {
+ Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
+ return false;
+ }
+
+ if (GV->isDeclaration()) {
+ Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
+ return false;
+ }
+
+ if (IsIFunc) {
+ // Check resolver function type.
+ const auto *F = dyn_cast<llvm::Function>(GV);
+ if (!F) {
+ Diags.Report(Location, diag::err_alias_to_undefined)
+ << IsIFunc << IsIFunc;
+ return false;
+ }
+
+ llvm::FunctionType *FTy = F->getFunctionType();
+ if (!FTy->getReturnType()->isPointerTy()) {
+ Diags.Report(Location, diag::err_ifunc_resolver_return);
+ return false;
+ }
+ }
+
+ return true;
+}
+
+void CodeGenModule::checkAliases() {
+ // Check if the constructed aliases are well formed. It is really unfortunate
+ // that we have to do this in CodeGen, but we only construct mangled names
+ // and aliases during codegen.
+ bool Error = false;
+ DiagnosticsEngine &Diags = getDiags();
+ for (const GlobalDecl &GD : Aliases) {
+ const auto *D = cast<ValueDecl>(GD.getDecl());
+ SourceLocation Location;
+ bool IsIFunc = D->hasAttr<IFuncAttr>();
+ if (const Attr *A = D->getDefiningAttr())
+ Location = A->getLocation();
+ else
+ llvm_unreachable("Not an alias or ifunc?");
+
+ StringRef MangledName = getMangledName(GD);
+ llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
+ const llvm::GlobalValue *GV = nullptr;
+ if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
+ Error = true;
+ continue;
+ }
+
+ llvm::Constant *Aliasee =
+ IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
+ : cast<llvm::GlobalAlias>(Alias)->getAliasee();
+
+ llvm::GlobalValue *AliaseeGV;
+ if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
+ AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
+ else
+ AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
+
+ if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
+ StringRef AliasSection = SA->getName();
+ if (AliasSection != AliaseeGV->getSection())
+ Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
+ << AliasSection << IsIFunc << IsIFunc;
+ }
+
+ // We have to handle alias to weak aliases in here. LLVM itself disallows
+ // this since the object semantics would not match the IL one. For
+ // compatibility with gcc we implement it by just pointing the alias
+ // to its aliasee's aliasee. We also warn, since the user is probably
+ // expecting the link to be weak.
+ if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
+ if (GA->isInterposable()) {
+ Diags.Report(Location, diag::warn_alias_to_weak_alias)
+ << GV->getName() << GA->getName() << IsIFunc;
+ Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
+ GA->getAliasee(), Alias->getType());
+
+ if (IsIFunc)
+ cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
+ else
+ cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
+ }
+ }
+ }
+ if (!Error)
+ return;
+
+ for (const GlobalDecl &GD : Aliases) {
+ StringRef MangledName = getMangledName(GD);
+ llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
+ Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
+ Alias->eraseFromParent();
+ }
+}
+
+void CodeGenModule::clear() {
+ DeferredDeclsToEmit.clear();
+ EmittedDeferredDecls.clear();
+ if (OpenMPRuntime)
+ OpenMPRuntime->clear();
+}
+
+void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
+ StringRef MainFile) {
+ if (!hasDiagnostics())
+ return;
+ if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
+ if (MainFile.empty())
+ MainFile = "<stdin>";
+ Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
+ } else {
+ if (Mismatched > 0)
+ Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
+
+ if (Missing > 0)
+ Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
+ }
+}
+
+static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
+ llvm::Module &M) {
+ if (!LO.VisibilityFromDLLStorageClass)
+ return;
+
+ llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
+ CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
+ llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
+ CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
+ llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
+ CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
+ llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
+ CodeGenModule::GetLLVMVisibility(
+ LO.getExternDeclNoDLLStorageClassVisibility());
+
+ for (llvm::GlobalValue &GV : M.global_values()) {
+ if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
+ continue;
+
+ // Reset DSO locality before setting the visibility. This removes
+ // any effects that visibility options and annotations may have
+ // had on the DSO locality. Setting the visibility will implicitly set
+ // appropriate globals to DSO Local; however, this will be pessimistic
+ // w.r.t. to the normal compiler IRGen.
+ GV.setDSOLocal(false);
+
+ if (GV.isDeclarationForLinker()) {
+ GV.setVisibility(GV.getDLLStorageClass() ==
+ llvm::GlobalValue::DLLImportStorageClass
+ ? ExternDeclDLLImportVisibility
+ : ExternDeclNoDLLStorageClassVisibility);
+ } else {
+ GV.setVisibility(GV.getDLLStorageClass() ==
+ llvm::GlobalValue::DLLExportStorageClass
+ ? DLLExportVisibility
+ : NoDLLStorageClassVisibility);
+ }
+
+ GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
+ }
+}
+
+void CodeGenModule::Release() {
+ Module *Primary = getContext().getModuleForCodeGen();
+ if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
+ EmitModuleInitializers(Primary);
+ EmitDeferred();
+ DeferredDecls.insert(EmittedDeferredDecls.begin(),
+ EmittedDeferredDecls.end());
+ EmittedDeferredDecls.clear();
+ EmitVTablesOpportunistically();
+ applyGlobalValReplacements();
+ applyReplacements();
+ emitMultiVersionFunctions();
+
+ if (Context.getLangOpts().IncrementalExtensions &&
+ GlobalTopLevelStmtBlockInFlight.first) {
+ const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
+ GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
+ GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
+ }
+
+ if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
+ EmitCXXModuleInitFunc(Primary);
+ else
+ EmitCXXGlobalInitFunc();
+ EmitCXXGlobalCleanUpFunc();
+ registerGlobalDtorsWithAtExit();
+ EmitCXXThreadLocalInitFunc();
+ if (ObjCRuntime)
+ if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
+ AddGlobalCtor(ObjCInitFunction);
+ if (Context.getLangOpts().CUDA && CUDARuntime) {
+ if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
+ AddGlobalCtor(CudaCtorFunction);
+ }
+ if (OpenMPRuntime) {
+ if (llvm::Function *OpenMPRequiresDirectiveRegFun =
+ OpenMPRuntime->emitRequiresDirectiveRegFun()) {
+ AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
+ }
+ OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
+ OpenMPRuntime->clear();
+ }
+ if (PGOReader) {
+ getModule().setProfileSummary(
+ PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
+ llvm::ProfileSummary::PSK_Instr);
+ if (PGOStats.hasDiagnostics())
+ PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
+ }
+ llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
+ return L.LexOrder < R.LexOrder;
+ });
+ EmitCtorList(GlobalCtors, "llvm.global_ctors");
+ EmitCtorList(GlobalDtors, "llvm.global_dtors");
+ EmitGlobalAnnotations();
+ EmitStaticExternCAliases();
+ checkAliases();
+ EmitDeferredUnusedCoverageMappings();
+ CodeGenPGO(*this).setValueProfilingFlag(getModule());
+ if (CoverageMapping)
+ CoverageMapping->emit();
+ if (CodeGenOpts.SanitizeCfiCrossDso) {
+ CodeGenFunction(*this).EmitCfiCheckFail();
+ CodeGenFunction(*this).EmitCfiCheckStub();
+ }
+ if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
+ finalizeKCFITypes();
+ emitAtAvailableLinkGuard();
+ if (Context.getTargetInfo().getTriple().isWasm())
+ EmitMainVoidAlias();
+
+ if (getTriple().isAMDGPU()) {
+ // Emit reference of __amdgpu_device_library_preserve_asan_functions to
+ // preserve ASAN functions in bitcode libraries.
+ if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
+ auto *FT = llvm::FunctionType::get(VoidTy, {});
+ auto *F = llvm::Function::Create(
+ FT, llvm::GlobalValue::ExternalLinkage,
+ "__amdgpu_device_library_preserve_asan_functions", &getModule());
+ auto *Var = new llvm::GlobalVariable(
+ getModule(), FT->getPointerTo(),
+ /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
+ "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
+ llvm::GlobalVariable::NotThreadLocal);
+ addCompilerUsedGlobal(Var);
+ }
+ // Emit amdgpu_code_object_version module flag, which is code object version
+ // times 100.
+ if (getTarget().getTargetOpts().CodeObjectVersion !=
+ TargetOptions::COV_None) {
+ getModule().addModuleFlag(llvm::Module::Error,
+ "amdgpu_code_object_version",
+ getTarget().getTargetOpts().CodeObjectVersion);
+ }
+ }
+
+ // Emit a global array containing all external kernels or device variables
+ // used by host functions and mark it as used for CUDA/HIP. This is necessary
+ // to get kernels or device variables in archives linked in even if these
+ // kernels or device variables are only used in host functions.
+ if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
+ SmallVector<llvm::Constant *, 8> UsedArray;
+ for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
+ GlobalDecl GD;
+ if (auto *FD = dyn_cast<FunctionDecl>(D))
+ GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
+ else
+ GD = GlobalDecl(D);
+ UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
+ GetAddrOfGlobal(GD), Int8PtrTy));
+ }
+
+ llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
+
+ auto *GV = new llvm::GlobalVariable(
+ getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
+ llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
+ addCompilerUsedGlobal(GV);
+ }
+
+ emitLLVMUsed();
+ if (SanStats)
+ SanStats->finish();
+
+ if (CodeGenOpts.Autolink &&
+ (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
+ EmitModuleLinkOptions();
+ }
+
+ // On ELF we pass the dependent library specifiers directly to the linker
+ // without manipulating them. This is in contrast to other platforms where
+ // they are mapped to a specific linker option by the compiler. This
+ // difference is a result of the greater variety of ELF linkers and the fact
+ // that ELF linkers tend to handle libraries in a more complicated fashion
+ // than on other platforms. This forces us to defer handling the dependent
+ // libs to the linker.
+ //
+ // CUDA/HIP device and host libraries are different. Currently there is no
+ // way to differentiate dependent libraries for host or device. Existing
+ // usage of #pragma comment(lib, *) is intended for host libraries on
+ // Windows. Therefore emit llvm.dependent-libraries only for host.
+ if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
+ auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
+ for (auto *MD : ELFDependentLibraries)
+ NMD->addOperand(MD);
+ }
+
+ // Record mregparm value now so it is visible through rest of codegen.
+ if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
+ getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
+ CodeGenOpts.NumRegisterParameters);
+
+ if (CodeGenOpts.DwarfVersion) {
+ getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
+ CodeGenOpts.DwarfVersion);
+ }
+
+ if (CodeGenOpts.Dwarf64)
+ getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
+
+ if (Context.getLangOpts().SemanticInterposition)
+ // Require various optimization to respect semantic interposition.
+ getModule().setSemanticInterposition(true);
+
+ if (CodeGenOpts.EmitCodeView) {
+ // Indicate that we want CodeView in the metadata.
+ getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
+ }
+ if (CodeGenOpts.CodeViewGHash) {
+ getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
+ }
+ if (CodeGenOpts.ControlFlowGuard) {
+ // Function ID tables and checks for Control Flow Guard (cfguard=2).
+ getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
+ } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
+ // Function ID tables for Control Flow Guard (cfguard=1).
+ getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
+ }
+ if (CodeGenOpts.EHContGuard) {
+ // Function ID tables for EH Continuation Guard.
+ getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
+ }
+ if (Context.getLangOpts().Kernel) {
+ // Note if we are compiling with /kernel.
+ getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
+ }
+ if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
+ // We don't support LTO with 2 with different StrictVTablePointers
+ // FIXME: we could support it by stripping all the information introduced
+ // by StrictVTablePointers.
+
+ getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
+
+ llvm::Metadata *Ops[2] = {
+ llvm::MDString::get(VMContext, "StrictVTablePointers"),
+ llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
+ llvm::Type::getInt32Ty(VMContext), 1))};
+
+ getModule().addModuleFlag(llvm::Module::Require,
+ "StrictVTablePointersRequirement",
+ llvm::MDNode::get(VMContext, Ops));
+ }
+ if (getModuleDebugInfo())
+ // We support a single version in the linked module. The LLVM
+ // parser will drop debug info with a different version number
+ // (and warn about it, too).
+ getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
+ llvm::DEBUG_METADATA_VERSION);
+
+ // We need to record the widths of enums and wchar_t, so that we can generate
+ // the correct build attributes in the ARM backend. wchar_size is also used by
+ // TargetLibraryInfo.
+ uint64_t WCharWidth =
+ Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
+ getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
+
+ llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
+ if ( Arch == llvm::Triple::arm
+ || Arch == llvm::Triple::armeb
+ || Arch == llvm::Triple::thumb
+ || Arch == llvm::Triple::thumbeb) {
+ // The minimum width of an enum in bytes
+ uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
+ getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
+ }
+
+ if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
+ StringRef ABIStr = Target.getABI();
+ llvm::LLVMContext &Ctx = TheModule.getContext();
+ getModule().addModuleFlag(llvm::Module::Error, "target-abi",
+ llvm::MDString::get(Ctx, ABIStr));
+ }
+
+ if (CodeGenOpts.SanitizeCfiCrossDso) {
+ // Indicate that we want cross-DSO control flow integrity checks.
+ getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
+ }
+
+ if (CodeGenOpts.WholeProgramVTables) {
+ // Indicate whether VFE was enabled for this module, so that the
+ // vcall_visibility metadata added under whole program vtables is handled
+ // appropriately in the optimizer.
+ getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
+ CodeGenOpts.VirtualFunctionElimination);
+ }
+
+ if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
+ getModule().addModuleFlag(llvm::Module::Override,
+ "CFI Canonical Jump Tables",
+ CodeGenOpts.SanitizeCfiCanonicalJumpTables);
+ }
+
+ if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
+ getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
+ // KCFI assumes patchable-function-prefix is the same for all indirectly
+ // called functions. Store the expected offset for code generation.
+ if (CodeGenOpts.PatchableFunctionEntryOffset)
+ getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
+ CodeGenOpts.PatchableFunctionEntryOffset);
+ }
+
+ if (CodeGenOpts.CFProtectionReturn &&
+ Target.checkCFProtectionReturnSupported(getDiags())) {
+ // Indicate that we want to instrument return control flow protection.
+ getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
+ 1);
+ }
+
+ if (CodeGenOpts.CFProtectionBranch &&
+ Target.checkCFProtectionBranchSupported(getDiags())) {
+ // Indicate that we want to instrument branch control flow protection.
+ getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
+ 1);
+ }
+
+ if (CodeGenOpts.FunctionReturnThunks)
+ getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
+
+ if (CodeGenOpts.IndirectBranchCSPrefix)
+ getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
+
+ // Add module metadata for return address signing (ignoring
+ // non-leaf/all) and stack tagging. These are actually turned on by function
+ // attributes, but we use module metadata to emit build attributes. This is
+ // needed for LTO, where the function attributes are inside bitcode
+ // serialised into a global variable by the time build attributes are
+ // emitted, so we can't access them. LTO objects could be compiled with
+ // different flags therefore module flags are set to "Min" behavior to achieve
+ // the same end result of the normal build where e.g BTI is off if any object
+ // doesn't support it.
+ if (Context.getTargetInfo().hasFeature("ptrauth") &&
+ LangOpts.getSignReturnAddressScope() !=
+ LangOptions::SignReturnAddressScopeKind::None)
+ getModule().addModuleFlag(llvm::Module::Override,
+ "sign-return-address-buildattr", 1);
+ if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
+ getModule().addModuleFlag(llvm::Module::Override,
+ "tag-stack-memory-buildattr", 1);
+
+ if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
+ Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
+ Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
+ Arch == llvm::Triple::aarch64_be) {
+ if (LangOpts.BranchTargetEnforcement)
+ getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
+ 1);
+ if (LangOpts.hasSignReturnAddress())
+ getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
+ if (LangOpts.isSignReturnAddressScopeAll())
+ getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
+ 1);
+ if (!LangOpts.isSignReturnAddressWithAKey())
+ getModule().addModuleFlag(llvm::Module::Min,
+ "sign-return-address-with-bkey", 1);
+ }
+
+ if (!CodeGenOpts.MemoryProfileOutput.empty()) {
+ llvm::LLVMContext &Ctx = TheModule.getContext();
+ getModule().addModuleFlag(
+ llvm::Module::Error, "MemProfProfileFilename",
+ llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
+ }
+
+ if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
+ // Indicate whether __nvvm_reflect should be configured to flush denormal
+ // floating point values to 0. (This corresponds to its "__CUDA_FTZ"
+ // property.)
+ getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
+ CodeGenOpts.FP32DenormalMode.Output !=
+ llvm::DenormalMode::IEEE);
+ }
+
+ if (LangOpts.EHAsynch)
+ getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
+
+ // Indicate whether this Module was compiled with -fopenmp
+ if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
+ getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
+ if (getLangOpts().OpenMPIsDevice)
+ getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
+ LangOpts.OpenMP);
+
+ // Emit OpenCL specific module metadata: OpenCL/SPIR version.
+ if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
+ EmitOpenCLMetadata();
+ // Emit SPIR version.
+ if (getTriple().isSPIR()) {
+ // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
+ // opencl.spir.version named metadata.
+ // C++ for OpenCL has a distinct mapping for version compatibility with
+ // OpenCL.
+ auto Version = LangOpts.getOpenCLCompatibleVersion();
+ llvm::Metadata *SPIRVerElts[] = {
+ llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
+ Int32Ty, Version / 100)),
+ llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
+ Int32Ty, (Version / 100 > 1) ? 0 : 2))};
+ llvm::NamedMDNode *SPIRVerMD =
+ TheModule.getOrInsertNamedMetadata("opencl.spir.version");
+ llvm::LLVMContext &Ctx = TheModule.getContext();
+ SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
+ }
+ }
+
+ // HLSL related end of code gen work items.
+ if (LangOpts.HLSL)
+ getHLSLRuntime().finishCodeGen();
+
+ if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
+ assert(PLevel < 3 && "Invalid PIC Level");
+ getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
+ if (Context.getLangOpts().PIE)
+ getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
+ }
+
+ if (getCodeGenOpts().CodeModel.size() > 0) {
+ unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
+ .Case("tiny", llvm::CodeModel::Tiny)
+ .Case("small", llvm::CodeModel::Small)
+ .Case("kernel", llvm::CodeModel::Kernel)
+ .Case("medium", llvm::CodeModel::Medium)
+ .Case("large", llvm::CodeModel::Large)
+ .Default(~0u);
+ if (CM != ~0u) {
+ llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
+ getModule().setCodeModel(codeModel);
+ }
+ }
+
+ if (CodeGenOpts.NoPLT)
+ getModule().setRtLibUseGOT();
+ if (CodeGenOpts.UnwindTables)
+ getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
+
+ switch (CodeGenOpts.getFramePointer()) {
+ case CodeGenOptions::FramePointerKind::None:
+ // 0 ("none") is the default.
+ break;
+ case CodeGenOptions::FramePointerKind::NonLeaf:
+ getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
+ break;
+ case CodeGenOptions::FramePointerKind::All:
+ getModule().setFramePointer(llvm::FramePointerKind::All);
+ break;
+ }
+
+ SimplifyPersonality();
+
+ if (getCodeGenOpts().EmitDeclMetadata)
+ EmitDeclMetadata();
+
+ if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
+ EmitCoverageFile();
+
+ if (CGDebugInfo *DI = getModuleDebugInfo())
+ DI->finalize();
+
+ if (getCodeGenOpts().EmitVersionIdentMetadata)
+ EmitVersionIdentMetadata();
+
+ if (!getCodeGenOpts().RecordCommandLine.empty())
+ EmitCommandLineMetadata();
+
+ if (!getCodeGenOpts().StackProtectorGuard.empty())
+ getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
+ if (!getCodeGenOpts().StackProtectorGuardReg.empty())
+ getModule().setStackProtectorGuardReg(
+ getCodeGenOpts().StackProtectorGuardReg);
+ if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
+ getModule().setStackProtectorGuardSymbol(
+ getCodeGenOpts().StackProtectorGuardSymbol);
+ if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
+ getModule().setStackProtectorGuardOffset(
+ getCodeGenOpts().StackProtectorGuardOffset);
+ if (getCodeGenOpts().StackAlignment)
+ getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
+ if (getCodeGenOpts().SkipRaxSetup)
+ getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
+
+ getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
+
+ EmitBackendOptionsMetadata(getCodeGenOpts());
+
+ // If there is device offloading code embed it in the host now.
+ EmbedObject(&getModule(), CodeGenOpts, getDiags());
+
+ // Set visibility from DLL storage class
+ // We do this at the end of LLVM IR generation; after any operation
+ // that might affect the DLL storage class or the visibility, and
+ // before anything that might act on these.
+ setVisibilityFromDLLStorageClass(LangOpts, getModule());
+}
+
+void CodeGenModule::EmitOpenCLMetadata() {
+ // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
+ // opencl.ocl.version named metadata node.
+ // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
+ auto Version = LangOpts.getOpenCLCompatibleVersion();
+ llvm::Metadata *OCLVerElts[] = {
+ llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
+ Int32Ty, Version / 100)),
+ llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
+ Int32Ty, (Version % 100) / 10))};
+ llvm::NamedMDNode *OCLVerMD =
+ TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
+ llvm::LLVMContext &Ctx = TheModule.getContext();
+ OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
+}
+
+void CodeGenModule::EmitBackendOptionsMetadata(
+ const CodeGenOptions CodeGenOpts) {
+ if (getTriple().isRISCV()) {
+ getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
+ CodeGenOpts.SmallDataLimit);
+ }
+}
+
+void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
+ // Make sure that this type is translated.
+ Types.UpdateCompletedType(TD);
+}
+
+void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
+ // Make sure that this type is translated.
+ Types.RefreshTypeCacheForClass(RD);
+}
+
+llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
+ if (!TBAA)
+ return nullptr;
+ return TBAA->getTypeInfo(QTy);
+}
+
+TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
+ if (!TBAA)
+ return TBAAAccessInfo();
+ if (getLangOpts().CUDAIsDevice) {
+ // As CUDA builtin surface/texture types are replaced, skip generating TBAA
+ // access info.
+ if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
+ if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
+ nullptr)
+ return TBAAAccessInfo();
+ } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
+ if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
+ nullptr)
+ return TBAAAccessInfo();
+ }
+ }
+ return TBAA->getAccessInfo(AccessType);
+}
+
+TBAAAccessInfo
+CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
+ if (!TBAA)
+ return TBAAAccessInfo();
+ return TBAA->getVTablePtrAccessInfo(VTablePtrType);
+}
+
+llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
+ if (!TBAA)
+ return nullptr;
+ return TBAA->getTBAAStructInfo(QTy);
+}
+
+llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
+ if (!TBAA)
+ return nullptr;
+ return TBAA->getBaseTypeInfo(QTy);
+}
+
+llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
+ if (!TBAA)
+ return nullptr;
+ return TBAA->getAccessTagInfo(Info);
+}
+
+TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
+ TBAAAccessInfo TargetInfo) {
+ if (!TBAA)
+ return TBAAAccessInfo();
+ return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
+}
+
+TBAAAccessInfo
+CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
+ TBAAAccessInfo InfoB) {
+ if (!TBAA)
+ return TBAAAccessInfo();
+ return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
+}
+
+TBAAAccessInfo
+CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
+ TBAAAccessInfo SrcInfo) {
+ if (!TBAA)
+ return TBAAAccessInfo();
+ return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
+}
+
+void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
+ TBAAAccessInfo TBAAInfo) {
+ if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
+ Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
+}
+
+void CodeGenModule::DecorateInstructionWithInvariantGroup(
+ llvm::Instruction *I, const CXXRecordDecl *RD) {
+ I->setMetadata(llvm::LLVMContext::MD_invariant_group,
+ llvm::MDNode::get(getLLVMContext(), {}));
+}
+
+void CodeGenModule::Error(SourceLocation loc, StringRef message) {
+ unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
+ getDiags().Report(Context.getFullLoc(loc), diagID) << message;
+}
+
+/// ErrorUnsupported - Print out an error that codegen doesn't support the
+/// specified stmt yet.
+void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
+ unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot compile this %0 yet");
+ std::string Msg = Type;
+ getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
+ << Msg << S->getSourceRange();
+}
+
+/// ErrorUnsupported - Print out an error that codegen doesn't support the
+/// specified decl yet.
+void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
+ unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
+ "cannot compile this %0 yet");
+ std::string Msg = Type;
+ getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
+}
+
+llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
+ return llvm::ConstantInt::get(SizeTy, size.getQuantity());
+}
+
+void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
+ const NamedDecl *D) const {
+ // Internal definitions always have default visibility.
+ if (GV->hasLocalLinkage()) {
+ GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
+ return;
+ }
+ if (!D)
+ return;
+ // Set visibility for definitions, and for declarations if requested globally
+ // or set explicitly.
+ LinkageInfo LV = D->getLinkageAndVisibility();
+ if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
+ // Reject incompatible dlllstorage and visibility annotations.
+ if (!LV.isVisibilityExplicit())
+ return;
+ if (GV->hasDLLExportStorageClass()) {
+ if (LV.getVisibility() == HiddenVisibility)
+ getDiags().Report(D->getLocation(),
+ diag::err_hidden_visibility_dllexport);
+ } else if (LV.getVisibility() != DefaultVisibility) {
+ getDiags().Report(D->getLocation(),
+ diag::err_non_default_visibility_dllimport);
+ }
+ return;
+ }
+
+ if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
+ !GV->isDeclarationForLinker())
+ GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
+}
+
+static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
+ llvm::GlobalValue *GV) {
+ if (GV->hasLocalLinkage())
+ return true;
+
+ if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
+ return true;
+
+ // DLLImport explicitly marks the GV as external.
+ if (GV->hasDLLImportStorageClass())
+ return false;
+
+ const llvm::Triple &TT = CGM.getTriple();
+ if (TT.isWindowsGNUEnvironment()) {
+ // In MinGW, variables without DLLImport can still be automatically
+ // imported from a DLL by the linker; don't mark variables that
+ // potentially could come from another DLL as DSO local.
+
+ // With EmulatedTLS, TLS variables can be autoimported from other DLLs
+ // (and this actually happens in the public interface of libstdc++), so
+ // such variables can't be marked as DSO local. (Native TLS variables
+ // can't be dllimported at all, though.)
+ if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
+ (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
+ return false;
+ }
+
+ // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
+ // remain unresolved in the link, they can be resolved to zero, which is
+ // outside the current DSO.
+ if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
+ return false;
+
+ // Every other GV is local on COFF.
+ // Make an exception for windows OS in the triple: Some firmware builds use
+ // *-win32-macho triples. This (accidentally?) produced windows relocations
+ // without GOT tables in older clang versions; Keep this behaviour.
+ // FIXME: even thread local variables?
+ if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
+ return true;
+
+ // Only handle COFF and ELF for now.
+ if (!TT.isOSBinFormatELF())
+ return false;
+
+ // If this is not an executable, don't assume anything is local.
+ const auto &CGOpts = CGM.getCodeGenOpts();
+ llvm::Reloc::Model RM = CGOpts.RelocationModel;
+ const auto &LOpts = CGM.getLangOpts();
+ if (RM != llvm::Reloc::Static && !LOpts.PIE) {
+ // On ELF, if -fno-semantic-interposition is specified and the target
+ // supports local aliases, there will be neither CC1
+ // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
+ // dso_local on the function if using a local alias is preferable (can avoid
+ // PLT indirection).
+ if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
+ return false;
+ return !(CGM.getLangOpts().SemanticInterposition ||
+ CGM.getLangOpts().HalfNoSemanticInterposition);
+ }
+
+ // A definition cannot be preempted from an executable.
+ if (!GV->isDeclarationForLinker())
+ return true;
+
+ // Most PIC code sequences that assume that a symbol is local cannot produce a
+ // 0 if it turns out the symbol is undefined. While this is ABI and relocation
+ // depended, it seems worth it to handle it here.
+ if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
+ return false;
+
+ // PowerPC64 prefers TOC indirection to avoid copy relocations.
+ if (TT.isPPC64())
+ return false;
+
+ if (CGOpts.DirectAccessExternalData) {
+ // If -fdirect-access-external-data (default for -fno-pic), set dso_local
+ // for non-thread-local variables. If the symbol is not defined in the
+ // executable, a copy relocation will be needed at link time. dso_local is
+ // excluded for thread-local variables because they generally don't support
+ // copy relocations.
+ if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
+ if (!Var->isThreadLocal())
+ return true;
+
+ // -fno-pic sets dso_local on a function declaration to allow direct
+ // accesses when taking its address (similar to a data symbol). If the
+ // function is not defined in the executable, a canonical PLT entry will be
+ // needed at link time. -fno-direct-access-external-data can avoid the
+ // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
+ // it could just cause trouble without providing perceptible benefits.
+ if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
+ return true;
+ }
+
+ // If we can use copy relocations we can assume it is local.
+
+ // Otherwise don't assume it is local.
+ return false;
+}
+
+void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
+ GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
+}
+
+void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
+ GlobalDecl GD) const {
+ const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
+ // C++ destructors have a few C++ ABI specific special cases.
+ if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
+ getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
+ return;
+ }
+ setDLLImportDLLExport(GV, D);
+}
+
+void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
+ const NamedDecl *D) const {
+ if (D && D->isExternallyVisible()) {
+ if (D->hasAttr<DLLImportAttr>())
+ GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
+ else if ((D->hasAttr<DLLExportAttr>() ||
+ shouldMapVisibilityToDLLExport(D)) &&
+ !GV->isDeclarationForLinker())
+ GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
+ }
+}
+
+void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
+ GlobalDecl GD) const {
+ setDLLImportDLLExport(GV, GD);
+ setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
+}
+
+void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
+ const NamedDecl *D) const {
+ setDLLImportDLLExport(GV, D);
+ setGVPropertiesAux(GV, D);
+}
+
+void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
+ const NamedDecl *D) const {
+ setGlobalVisibility(GV, D);
+ setDSOLocal(GV);
+ GV->setPartition(CodeGenOpts.SymbolPartition);
+}
+
+static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
+ return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
+ .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
+ .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
+ .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
+ .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
+}
+
+llvm::GlobalVariable::ThreadLocalMode
+CodeGenModule::GetDefaultLLVMTLSModel() const {
+ switch (CodeGenOpts.getDefaultTLSModel()) {
+ case CodeGenOptions::GeneralDynamicTLSModel:
+ return llvm::GlobalVariable::GeneralDynamicTLSModel;
+ case CodeGenOptions::LocalDynamicTLSModel:
+ return llvm::GlobalVariable::LocalDynamicTLSModel;
+ case CodeGenOptions::InitialExecTLSModel:
+ return llvm::GlobalVariable::InitialExecTLSModel;
+ case CodeGenOptions::LocalExecTLSModel:
+ return llvm::GlobalVariable::LocalExecTLSModel;
+ }
+ llvm_unreachable("Invalid TLS model!");
+}
+
+void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
+ assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
+
+ llvm::GlobalValue::ThreadLocalMode TLM;
+ TLM = GetDefaultLLVMTLSModel();
+
+ // Override the TLS model if it is explicitly specified.
+ if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
+ TLM = GetLLVMTLSModel(Attr->getModel());
+ }
+
+ GV->setThreadLocalMode(TLM);
+}
+
+static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
+ StringRef Name) {
+ const TargetInfo &Target = CGM.getTarget();
+ return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
+}
+
+static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
+ const CPUSpecificAttr *Attr,
+ unsigned CPUIndex,
+ raw_ostream &Out) {
+ // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
+ // supported.
+ if (Attr)
+ Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
+ else if (CGM.getTarget().supportsIFunc())
+ Out << ".resolver";
+}
+
+static void AppendTargetVersionMangling(const CodeGenModule &CGM,
+ const TargetVersionAttr *Attr,
+ raw_ostream &Out) {
+ if (Attr->isDefaultVersion())
+ return;
+ Out << "._";
+ llvm::SmallVector<StringRef, 8> Feats;
+ Attr->getFeatures(Feats);
+ for (const auto &Feat : Feats) {
+ Out << 'M';
+ Out << Feat;
+ }
+}
+
+static void AppendTargetMangling(const CodeGenModule &CGM,
+ const TargetAttr *Attr, raw_ostream &Out) {
+ if (Attr->isDefaultVersion())
+ return;
+
+ Out << '.';
+ const TargetInfo &Target = CGM.getTarget();
+ ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr());
+ llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) {
+ // Multiversioning doesn't allow "no-${feature}", so we can
+ // only have "+" prefixes here.
+ assert(LHS.startswith("+") && RHS.startswith("+") &&
+ "Features should always have a prefix.");
+ return Target.multiVersionSortPriority(LHS.substr(1)) >
+ Target.multiVersionSortPriority(RHS.substr(1));
+ });
+
+ bool IsFirst = true;
+
+ if (!Info.CPU.empty()) {
+ IsFirst = false;
+ Out << "arch_" << Info.CPU;
+ }
+
+ for (StringRef Feat : Info.Features) {
+ if (!IsFirst)
+ Out << '_';
+ IsFirst = false;
+ Out << Feat.substr(1);
+ }
+}
+
+// Returns true if GD is a function decl with internal linkage and
+// needs a unique suffix after the mangled name.
+static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
+ CodeGenModule &CGM) {
+ const Decl *D = GD.getDecl();
+ return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
+ (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
+}
+
+static void AppendTargetClonesMangling(const CodeGenModule &CGM,
+ const TargetClonesAttr *Attr,
+ unsigned VersionIndex,
+ raw_ostream &Out) {
+ if (CGM.getTarget().getTriple().isAArch64()) {
+ StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
+ if (FeatureStr == "default")
+ return;
+ Out << "._";
+ SmallVector<StringRef, 8> Features;
+ FeatureStr.split(Features, "+");
+ for (auto &Feat : Features) {
+ Out << 'M';
+ Out << Feat;
+ }
+ } else {
+ Out << '.';
+ StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
+ if (FeatureStr.startswith("arch="))
+ Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
+ else
+ Out << FeatureStr;
+
+ Out << '.' << Attr->getMangledIndex(VersionIndex);
+ }
+}
+
+static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
+ const NamedDecl *ND,
+ bool OmitMultiVersionMangling = false) {
+ SmallString<256> Buffer;
+ llvm::raw_svector_ostream Out(Buffer);
+ MangleContext &MC = CGM.getCXXABI().getMangleContext();
+ if (!CGM.getModuleNameHash().empty())
+ MC.needsUniqueInternalLinkageNames();
+ bool ShouldMangle = MC.shouldMangleDeclName(ND);
+ if (ShouldMangle)
+ MC.mangleName(GD.getWithDecl(ND), Out);
+ else {
+ IdentifierInfo *II = ND->getIdentifier();
+ assert(II && "Attempt to mangle unnamed decl.");
+ const auto *FD = dyn_cast<FunctionDecl>(ND);
+
+ if (FD &&
+ FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
+ Out << "__regcall3__" << II->getName();
+ } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
+ GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
+ Out << "__device_stub__" << II->getName();
+ } else {
+ Out << II->getName();
+ }
+ }
+
+ // Check if the module name hash should be appended for internal linkage
+ // symbols. This should come before multi-version target suffixes are
+ // appended. This is to keep the name and module hash suffix of the
+ // internal linkage function together. The unique suffix should only be
+ // added when name mangling is done to make sure that the final name can
+ // be properly demangled. For example, for C functions without prototypes,
+ // name mangling is not done and the unique suffix should not be appeneded
+ // then.
+ if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
+ assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
+ "Hash computed when not explicitly requested");
+ Out << CGM.getModuleNameHash();
+ }
+
+ if (const auto *FD = dyn_cast<FunctionDecl>(ND))
+ if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
+ switch (FD->getMultiVersionKind()) {
+ case MultiVersionKind::CPUDispatch:
+ case MultiVersionKind::CPUSpecific:
+ AppendCPUSpecificCPUDispatchMangling(CGM,
+ FD->getAttr<CPUSpecificAttr>(),
+ GD.getMultiVersionIndex(), Out);
+ break;
+ case MultiVersionKind::Target:
+ AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
+ break;
+ case MultiVersionKind::TargetVersion:
+ AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out);
+ break;
+ case MultiVersionKind::TargetClones:
+ AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
+ GD.getMultiVersionIndex(), Out);
+ break;
+ case MultiVersionKind::None:
+ llvm_unreachable("None multiversion type isn't valid here");
+ }
+ }
+
+ // Make unique name for device side static file-scope variable for HIP.
+ if (CGM.getContext().shouldExternalize(ND) &&
+ CGM.getLangOpts().GPURelocatableDeviceCode &&
+ CGM.getLangOpts().CUDAIsDevice)
+ CGM.printPostfixForExternalizedDecl(Out, ND);
+
+ return std::string(Out.str());
+}
+
+void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
+ const FunctionDecl *FD,
+ StringRef &CurName) {
+ if (!FD->isMultiVersion())
+ return;
+
+ // Get the name of what this would be without the 'target' attribute. This
+ // allows us to lookup the version that was emitted when this wasn't a
+ // multiversion function.
+ std::string NonTargetName =
+ getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
+ GlobalDecl OtherGD;
+ if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
+ assert(OtherGD.getCanonicalDecl()
+ .getDecl()
+ ->getAsFunction()
+ ->isMultiVersion() &&
+ "Other GD should now be a multiversioned function");
+ // OtherFD is the version of this function that was mangled BEFORE
+ // becoming a MultiVersion function. It potentially needs to be updated.
+ const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
+ .getDecl()
+ ->getAsFunction()
+ ->getMostRecentDecl();
+ std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
+ // This is so that if the initial version was already the 'default'
+ // version, we don't try to update it.
+ if (OtherName != NonTargetName) {
+ // Remove instead of erase, since others may have stored the StringRef
+ // to this.
+ const auto ExistingRecord = Manglings.find(NonTargetName);
+ if (ExistingRecord != std::end(Manglings))
+ Manglings.remove(&(*ExistingRecord));
+ auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
+ StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
+ Result.first->first();
+ // If this is the current decl is being created, make sure we update the name.
+ if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
+ CurName = OtherNameRef;
+ if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
+ Entry->setName(OtherName);
+ }
+ }
+}
+
+StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
+ GlobalDecl CanonicalGD = GD.getCanonicalDecl();
+
+ // Some ABIs don't have constructor variants. Make sure that base and
+ // complete constructors get mangled the same.
+ if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
+ if (!getTarget().getCXXABI().hasConstructorVariants()) {
+ CXXCtorType OrigCtorType = GD.getCtorType();
+ assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
+ if (OrigCtorType == Ctor_Base)
+ CanonicalGD = GlobalDecl(CD, Ctor_Complete);
+ }
+ }
+
+ // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
+ // static device variable depends on whether the variable is referenced by
+ // a host or device host function. Therefore the mangled name cannot be
+ // cached.
+ if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
+ auto FoundName = MangledDeclNames.find(CanonicalGD);
+ if (FoundName != MangledDeclNames.end())
+ return FoundName->second;
+ }
+
+ // Keep the first result in the case of a mangling collision.
+ const auto *ND = cast<NamedDecl>(GD.getDecl());
+ std::string MangledName = getMangledNameImpl(*this, GD, ND);
+
+ // Ensure either we have different ABIs between host and device compilations,
+ // says host compilation following MSVC ABI but device compilation follows
+ // Itanium C++ ABI or, if they follow the same ABI, kernel names after
+ // mangling should be the same after name stubbing. The later checking is
+ // very important as the device kernel name being mangled in host-compilation
+ // is used to resolve the device binaries to be executed. Inconsistent naming
+ // result in undefined behavior. Even though we cannot check that naming
+ // directly between host- and device-compilations, the host- and
+ // device-mangling in host compilation could help catching certain ones.
+ assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
+ getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
+ (getContext().getAuxTargetInfo() &&
+ (getContext().getAuxTargetInfo()->getCXXABI() !=
+ getContext().getTargetInfo().getCXXABI())) ||
+ getCUDARuntime().getDeviceSideName(ND) ==
+ getMangledNameImpl(
+ *this,
+ GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
+ ND));
+
+ auto Result = Manglings.insert(std::make_pair(MangledName, GD));
+ return MangledDeclNames[CanonicalGD] = Result.first->first();
+}
+
+StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
+ const BlockDecl *BD) {
+ MangleContext &MangleCtx = getCXXABI().getMangleContext();
+ const Decl *D = GD.getDecl();
+
+ SmallString<256> Buffer;
+ llvm::raw_svector_ostream Out(Buffer);
+ if (!D)
+ MangleCtx.mangleGlobalBlock(BD,
+ dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
+ else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
+ MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
+ else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
+ MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
+ else
+ MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
+
+ auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
+ return Result.first->first();
+}
+
+const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
+ auto it = MangledDeclNames.begin();
+ while (it != MangledDeclNames.end()) {
+ if (it->second == Name)
+ return it->first;
+ it++;
+ }
+ return GlobalDecl();
+}
+
+llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
+ return getModule().getNamedValue(Name);
+}
+
+/// AddGlobalCtor - Add a function to the list that will be called before
+/// main() runs.
+void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
+ unsigned LexOrder,
+ llvm::Constant *AssociatedData) {
+ // FIXME: Type coercion of void()* types.
+ GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
+}
+
+/// AddGlobalDtor - Add a function to the list that will be called
+/// when the module is unloaded.
+void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
+ bool IsDtorAttrFunc) {
+ if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
+ (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
+ DtorsUsingAtExit[Priority].push_back(Dtor);
+ return;
+ }
+
+ // FIXME: Type coercion of void()* types.
+ GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
+}
+
+void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
+ if (Fns.empty()) return;
+
+ // Ctor function type is void()*.
+ llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
+ llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
+ TheModule.getDataLayout().getProgramAddressSpace());
+
+ // Get the type of a ctor entry, { i32, void ()*, i8* }.
+ llvm::StructType *CtorStructTy = llvm::StructType::get(
+ Int32Ty, CtorPFTy, VoidPtrTy);
+
+ // Construct the constructor and destructor arrays.
+ ConstantInitBuilder builder(*this);
+ auto ctors = builder.beginArray(CtorStructTy);
+ for (const auto &I : Fns) {
+ auto ctor = ctors.beginStruct(CtorStructTy);
+ ctor.addInt(Int32Ty, I.Priority);
+ ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
+ if (I.AssociatedData)
+ ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
+ else
+ ctor.addNullPointer(VoidPtrTy);
+ ctor.finishAndAddTo(ctors);
+ }
+
+ auto list =
+ ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
+ /*constant*/ false,
+ llvm::GlobalValue::AppendingLinkage);
+
+ // The LTO linker doesn't seem to like it when we set an alignment
+ // on appending variables. Take it off as a workaround.
+ list->setAlignment(std::nullopt);
+
+ Fns.clear();
+}
+
+llvm::GlobalValue::LinkageTypes
+CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
+ const auto *D = cast<FunctionDecl>(GD.getDecl());
+
+ GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
+
+ if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
+ return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
+
+ if (isa<CXXConstructorDecl>(D) &&
+ cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
+ Context.getTargetInfo().getCXXABI().isMicrosoft()) {
+ // Our approach to inheriting constructors is fundamentally different from
+ // that used by the MS ABI, so keep our inheriting constructor thunks
+ // internal rather than trying to pick an unambiguous mangling for them.
+ return llvm::GlobalValue::InternalLinkage;
+ }
+
+ return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
+}
+
+llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
+ llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
+ if (!MDS) return nullptr;
+
+ return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
+}
+
+llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
+ if (auto *FnType = T->getAs<FunctionProtoType>())
+ T = getContext().getFunctionType(
+ FnType->getReturnType(), FnType->getParamTypes(),
+ FnType->getExtProtoInfo().withExceptionSpec(EST_None));
+
+ std::string OutName;
+ llvm::raw_string_ostream Out(OutName);
+ getCXXABI().getMangleContext().mangleTypeName(T, Out);
+
+ return llvm::ConstantInt::get(Int32Ty,
+ static_cast<uint32_t>(llvm::xxHash64(OutName)));
+}
+
+void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
+ const CGFunctionInfo &Info,
+ llvm::Function *F, bool IsThunk) {
+ unsigned CallingConv;
+ llvm::AttributeList PAL;
+ ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
+ /*AttrOnCallSite=*/false, IsThunk);
+ F->setAttributes(PAL);
+ F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
+}
+
+static void removeImageAccessQualifier(std::string& TyName) {
+ std::string ReadOnlyQual("__read_only");
+ std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
+ if (ReadOnlyPos != std::string::npos)
+ // "+ 1" for the space after access qualifier.
+ TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
+ else {
+ std::string WriteOnlyQual("__write_only");
+ std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
+ if (WriteOnlyPos != std::string::npos)
+ TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
+ else {
+ std::string ReadWriteQual("__read_write");
+ std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
+ if (ReadWritePos != std::string::npos)
+ TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
+ }
+ }
+}
+
+// Returns the address space id that should be produced to the
+// kernel_arg_addr_space metadata. This is always fixed to the ids
+// as specified in the SPIR 2.0 specification in order to differentiate
+// for example in clGetKernelArgInfo() implementation between the address
+// spaces with targets without unique mapping to the OpenCL address spaces
+// (basically all single AS CPUs).
+static unsigned ArgInfoAddressSpace(LangAS AS) {
+ switch (AS) {
+ case LangAS::opencl_global:
+ return 1;
+ case LangAS::opencl_constant:
+ return 2;
+ case LangAS::opencl_local:
+ return 3;
+ case LangAS::opencl_generic:
+ return 4; // Not in SPIR 2.0 specs.
+ case LangAS::opencl_global_device:
+ return 5;
+ case LangAS::opencl_global_host:
+ return 6;
+ default:
+ return 0; // Assume private.
+ }
+}
+
+void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
+ const FunctionDecl *FD,
+ CodeGenFunction *CGF) {
+ assert(((FD && CGF) || (!FD && !CGF)) &&
+ "Incorrect use - FD and CGF should either be both null or not!");
+ // Create MDNodes that represent the kernel arg metadata.
+ // Each MDNode is a list in the form of "key", N number of values which is
+ // the same number of values as their are kernel arguments.
+
+ const PrintingPolicy &Policy = Context.getPrintingPolicy();
+
+ // MDNode for the kernel argument address space qualifiers.
+ SmallVector<llvm::Metadata *, 8> addressQuals;
+
+ // MDNode for the kernel argument access qualifiers (images only).
+ SmallVector<llvm::Metadata *, 8> accessQuals;
+
+ // MDNode for the kernel argument type names.
+ SmallVector<llvm::Metadata *, 8> argTypeNames;
+
+ // MDNode for the kernel argument base type names.
+ SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
+
+ // MDNode for the kernel argument type qualifiers.
+ SmallVector<llvm::Metadata *, 8> argTypeQuals;
+
+ // MDNode for the kernel argument names.
+ SmallVector<llvm::Metadata *, 8> argNames;
+
+ if (FD && CGF)
+ for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
+ const ParmVarDecl *parm = FD->getParamDecl(i);
+ // Get argument name.
+ argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
+
+ if (!getLangOpts().OpenCL)
+ continue;
+ QualType ty = parm->getType();
+ std::string typeQuals;
+
+ // Get image and pipe access qualifier:
+ if (ty->isImageType() || ty->isPipeType()) {
+ const Decl *PDecl = parm;
+ if (const auto *TD = ty->getAs<TypedefType>())
+ PDecl = TD->getDecl();
+ const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
+ if (A && A->isWriteOnly())
+ accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
+ else if (A && A->isReadWrite())
+ accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
+ else
+ accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
+ } else
+ accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
+
+ auto getTypeSpelling = [&](QualType Ty) {
+ auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
+
+ if (Ty.isCanonical()) {
+ StringRef typeNameRef = typeName;
+ // Turn "unsigned type" to "utype"
+ if (typeNameRef.consume_front("unsigned "))
+ return std::string("u") + typeNameRef.str();
+ if (typeNameRef.consume_front("signed "))
+ return typeNameRef.str();
+ }
+
+ return typeName;
+ };
+
+ if (ty->isPointerType()) {
+ QualType pointeeTy = ty->getPointeeType();
+
+ // Get address qualifier.
+ addressQuals.push_back(
+ llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
+ ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
+
+ // Get argument type name.
+ std::string typeName = getTypeSpelling(pointeeTy) + "*";
+ std::string baseTypeName =
+ getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
+ argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
+ argBaseTypeNames.push_back(
+ llvm::MDString::get(VMContext, baseTypeName));
+
+ // Get argument type qualifiers:
+ if (ty.isRestrictQualified())
+ typeQuals = "restrict";
+ if (pointeeTy.isConstQualified() ||
+ (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
+ typeQuals += typeQuals.empty() ? "const" : " const";
+ if (pointeeTy.isVolatileQualified())
+ typeQuals += typeQuals.empty() ? "volatile" : " volatile";
+ } else {
+ uint32_t AddrSpc = 0;
+ bool isPipe = ty->isPipeType();
+ if (ty->isImageType() || isPipe)
+ AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
+
+ addressQuals.push_back(
+ llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
+
+ // Get argument type name.
+ ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
+ std::string typeName = getTypeSpelling(ty);
+ std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
+
+ // Remove access qualifiers on images
+ // (as they are inseparable from type in clang implementation,
+ // but OpenCL spec provides a special query to get access qualifier
+ // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
+ if (ty->isImageType()) {
+ removeImageAccessQualifier(typeName);
+ removeImageAccessQualifier(baseTypeName);
+ }
+
+ argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
+ argBaseTypeNames.push_back(
+ llvm::MDString::get(VMContext, baseTypeName));
+
+ if (isPipe)
+ typeQuals = "pipe";
+ }
+ argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
+ }
+
+ if (getLangOpts().OpenCL) {
+ Fn->setMetadata("kernel_arg_addr_space",
+ llvm::MDNode::get(VMContext, addressQuals));
+ Fn->setMetadata("kernel_arg_access_qual",
+ llvm::MDNode::get(VMContext, accessQuals));
+ Fn->setMetadata("kernel_arg_type",
+ llvm::MDNode::get(VMContext, argTypeNames));
+ Fn->setMetadata("kernel_arg_base_type",
+ llvm::MDNode::get(VMContext, argBaseTypeNames));
+ Fn->setMetadata("kernel_arg_type_qual",
+ llvm::MDNode::get(VMContext, argTypeQuals));
+ }
+ if (getCodeGenOpts().EmitOpenCLArgMetadata ||
+ getCodeGenOpts().HIPSaveKernelArgName)
+ Fn->setMetadata("kernel_arg_name",
+ llvm::MDNode::get(VMContext, argNames));
+}
+
+/// Determines whether the language options require us to model
+/// unwind exceptions. We treat -fexceptions as mandating this
+/// except under the fragile ObjC ABI with only ObjC exceptions
+/// enabled. This means, for example, that C with -fexceptions
+/// enables this.
+static bool hasUnwindExceptions(const LangOptions &LangOpts) {
+ // If exceptions are completely disabled, obviously this is false.
+ if (!LangOpts.Exceptions) return false;
+
+ // If C++ exceptions are enabled, this is true.
+ if (LangOpts.CXXExceptions) return true;
+
+ // If ObjC exceptions are enabled, this depends on the ABI.
+ if (LangOpts.ObjCExceptions) {
+ return LangOpts.ObjCRuntime.hasUnwindExceptions();
+ }
+
+ return true;
+}
+
+static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
+ const CXXMethodDecl *MD) {
+ // Check that the type metadata can ever actually be used by a call.
+ if (!CGM.getCodeGenOpts().LTOUnit ||
+ !CGM.HasHiddenLTOVisibility(MD->getParent()))
+ return false;
+
+ // Only functions whose address can be taken with a member function pointer
+ // need this sort of type metadata.
+ return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
+ !isa<CXXDestructorDecl>(MD);
+}
+
+std::vector<const CXXRecordDecl *>
+CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
+ llvm::SetVector<const CXXRecordDecl *> MostBases;
+
+ std::function<void (const CXXRecordDecl *)> CollectMostBases;
+ CollectMostBases = [&](const CXXRecordDecl *RD) {
+ if (RD->getNumBases() == 0)
+ MostBases.insert(RD);
+ for (const CXXBaseSpecifier &B : RD->bases())
+ CollectMostBases(B.getType()->getAsCXXRecordDecl());
+ };
+ CollectMostBases(RD);
+ return MostBases.takeVector();
+}
+
+llvm::GlobalVariable *
+CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) {
+ auto It = RTTIProxyMap.find(Addr);
+ if (It != RTTIProxyMap.end())
+ return It->second;
+
+ auto *FTRTTIProxy = new llvm::GlobalVariable(
+ TheModule, Addr->getType(),
+ /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr,
+ "__llvm_rtti_proxy");
+ FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+
+ RTTIProxyMap[Addr] = FTRTTIProxy;
+ return FTRTTIProxy;
+}
+
+void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
+ llvm::Function *F) {
+ llvm::AttrBuilder B(F->getContext());
+
+ if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
+ B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
+
+ if (CodeGenOpts.StackClashProtector)
+ B.addAttribute("probe-stack", "inline-asm");
+
+ if (!hasUnwindExceptions(LangOpts))
+ B.addAttribute(llvm::Attribute::NoUnwind);
+
+ if (D && D->hasAttr<NoStackProtectorAttr>())
+ ; // Do nothing.
+ else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
+ LangOpts.getStackProtector() == LangOptions::SSPOn)
+ B.addAttribute(llvm::Attribute::StackProtectStrong);
+ else if (LangOpts.getStackProtector() == LangOptions::SSPOn)
+ B.addAttribute(llvm::Attribute::StackProtect);
+ else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
+ B.addAttribute(llvm::Attribute::StackProtectStrong);
+ else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
+ B.addAttribute(llvm::Attribute::StackProtectReq);
+
+ if (!D) {
+ // If we don't have a declaration to control inlining, the function isn't
+ // explicitly marked as alwaysinline for semantic reasons, and inlining is
+ // disabled, mark the function as noinline.
+ if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
+ CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
+ B.addAttribute(llvm::Attribute::NoInline);
+
+ F->addFnAttrs(B);
+ return;
+ }
+
+ // Track whether we need to add the optnone LLVM attribute,
+ // starting with the default for this optimization level.
+ bool ShouldAddOptNone =
+ !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
+ // We can't add optnone in the following cases, it won't pass the verifier.
+ ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
+ ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
+
+ // Add optnone, but do so only if the function isn't always_inline.
+ if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
+ !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
+ B.addAttribute(llvm::Attribute::OptimizeNone);
+
+ // OptimizeNone implies noinline; we should not be inlining such functions.
+ B.addAttribute(llvm::Attribute::NoInline);
+
+ // We still need to handle naked functions even though optnone subsumes
+ // much of their semantics.
+ if (D->hasAttr<NakedAttr>())
+ B.addAttribute(llvm::Attribute::Naked);
+
+ // OptimizeNone wins over OptimizeForSize and MinSize.
+ F->removeFnAttr(llvm::Attribute::OptimizeForSize);
+ F->removeFnAttr(llvm::Attribute::MinSize);
+ } else if (D->hasAttr<NakedAttr>()) {
+ // Naked implies noinline: we should not be inlining such functions.
+ B.addAttribute(llvm::Attribute::Naked);
+ B.addAttribute(llvm::Attribute::NoInline);
+ } else if (D->hasAttr<NoDuplicateAttr>()) {
+ B.addAttribute(llvm::Attribute::NoDuplicate);
+ } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
+ // Add noinline if the function isn't always_inline.
+ B.addAttribute(llvm::Attribute::NoInline);
+ } else if (D->hasAttr<AlwaysInlineAttr>() &&
+ !F->hasFnAttribute(llvm::Attribute::NoInline)) {
+ // (noinline wins over always_inline, and we can't specify both in IR)
+ B.addAttribute(llvm::Attribute::AlwaysInline);
+ } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
+ // If we're not inlining, then force everything that isn't always_inline to
+ // carry an explicit noinline attribute.
+ if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
+ B.addAttribute(llvm::Attribute::NoInline);
+ } else {
+ // Otherwise, propagate the inline hint attribute and potentially use its
+ // absence to mark things as noinline.
+ if (auto *FD = dyn_cast<FunctionDecl>(D)) {
+ // Search function and template pattern redeclarations for inline.
+ auto CheckForInline = [](const FunctionDecl *FD) {
+ auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
+ return Redecl->isInlineSpecified();
+ };
+ if (any_of(FD->redecls(), CheckRedeclForInline))
+ return true;
+ const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
+ if (!Pattern)
+ return false;
+ return any_of(Pattern->redecls(), CheckRedeclForInline);
+ };
+ if (CheckForInline(FD)) {
+ B.addAttribute(llvm::Attribute::InlineHint);
+ } else if (CodeGenOpts.getInlining() ==
+ CodeGenOptions::OnlyHintInlining &&
+ !FD->isInlined() &&
+ !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
+ B.addAttribute(llvm::Attribute::NoInline);
+ }
+ }
+ }
+
+ // Add other optimization related attributes if we are optimizing this
+ // function.
+ if (!D->hasAttr<OptimizeNoneAttr>()) {
+ if (D->hasAttr<ColdAttr>()) {
+ if (!ShouldAddOptNone)
+ B.addAttribute(llvm::Attribute::OptimizeForSize);
+ B.addAttribute(llvm::Attribute::Cold);
+ }
+ if (D->hasAttr<HotAttr>())
+ B.addAttribute(llvm::Attribute::Hot);
+ if (D->hasAttr<MinSizeAttr>())
+ B.addAttribute(llvm::Attribute::MinSize);
+ }
+
+ F->addFnAttrs(B);
+
+ unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
+ if (alignment)
+ F->setAlignment(llvm::Align(alignment));
+
+ if (!D->hasAttr<AlignedAttr>())
+ if (LangOpts.FunctionAlignment)
+ F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
+
+ // Some C++ ABIs require 2-byte alignment for member functions, in order to
+ // reserve a bit for differentiating between virtual and non-virtual member
+ // functions. If the current target's C++ ABI requires this and this is a
+ // member function, set its alignment accordingly.
+ if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
+ if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
+ F->setAlignment(llvm::Align(2));
+ }
+
+ // In the cross-dso CFI mode with canonical jump tables, we want !type
+ // attributes on definitions only.
+ if (CodeGenOpts.SanitizeCfiCrossDso &&
+ CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
+ if (auto *FD = dyn_cast<FunctionDecl>(D)) {
+ // Skip available_externally functions. They won't be codegen'ed in the
+ // current module anyway.
+ if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
+ CreateFunctionTypeMetadataForIcall(FD, F);
+ }
+ }
+
+ // Emit type metadata on member functions for member function pointer checks.
+ // These are only ever necessary on definitions; we're guaranteed that the
+ // definition will be present in the LTO unit as a result of LTO visibility.
+ auto *MD = dyn_cast<CXXMethodDecl>(D);
+ if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
+ for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
+ llvm::Metadata *Id =
+ CreateMetadataIdentifierForType(Context.getMemberPointerType(
+ MD->getType(), Context.getRecordType(Base).getTypePtr()));
+ F->addTypeMetadata(0, Id);
+ }
+ }
+}
+
+void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
+ llvm::Function *F) {
+ if (D->hasAttr<StrictFPAttr>()) {
+ llvm::AttrBuilder FuncAttrs(F->getContext());
+ FuncAttrs.addAttribute("strictfp");
+ F->addFnAttrs(FuncAttrs);
+ }
+}
+
+void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
+ const Decl *D = GD.getDecl();
+ if (isa_and_nonnull<NamedDecl>(D))
+ setGVProperties(GV, GD);
+ else
+ GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
+
+ if (D && D->hasAttr<UsedAttr>())
+ addUsedOrCompilerUsedGlobal(GV);
+
+ if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
+ const auto *VD = cast<VarDecl>(D);
+ if (VD->getType().isConstQualified() &&
+ VD->getStorageDuration() == SD_Static)
+ addUsedOrCompilerUsedGlobal(GV);
+ }
+}
+
+bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
+ llvm::AttrBuilder &Attrs) {
+ // Add target-cpu and target-features attributes to functions. If
+ // we have a decl for the function and it has a target attribute then
+ // parse that and add it to the feature set.
+ StringRef TargetCPU = getTarget().getTargetOpts().CPU;
+ StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
+ std::vector<std::string> Features;
+ const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
+ FD = FD ? FD->getMostRecentDecl() : FD;
+ const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
+ const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
+ assert((!TD || !TV) && "both target_version and target specified");
+ const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
+ const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
+ bool AddedAttr = false;
+ if (TD || TV || SD || TC) {
+ llvm::StringMap<bool> FeatureMap;
+ getContext().getFunctionFeatureMap(FeatureMap, GD);
+
+ // Produce the canonical string for this set of features.
+ for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
+ Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
+
+ // Now add the target-cpu and target-features to the function.
+ // While we populated the feature map above, we still need to
+ // get and parse the target attribute so we can get the cpu for
+ // the function.
+ if (TD) {
+ ParsedTargetAttr ParsedAttr =
+ Target.parseTargetAttr(TD->getFeaturesStr());
+ if (!ParsedAttr.CPU.empty() &&
+ getTarget().isValidCPUName(ParsedAttr.CPU)) {
+ TargetCPU = ParsedAttr.CPU;
+ TuneCPU = ""; // Clear the tune CPU.
+ }
+ if (!ParsedAttr.Tune.empty() &&
+ getTarget().isValidCPUName(ParsedAttr.Tune))
+ TuneCPU = ParsedAttr.Tune;
+ }
+
+ if (SD) {
+ // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
+ // favor this processor.
+ TuneCPU = getTarget().getCPUSpecificTuneName(
+ SD->getCPUName(GD.getMultiVersionIndex())->getName());
+ }
+ } else {
+ // Otherwise just add the existing target cpu and target features to the
+ // function.
+ Features = getTarget().getTargetOpts().Features;
+ }
+
+ if (!TargetCPU.empty()) {
+ Attrs.addAttribute("target-cpu", TargetCPU);
+ AddedAttr = true;
+ }
+ if (!TuneCPU.empty()) {
+ Attrs.addAttribute("tune-cpu", TuneCPU);
+ AddedAttr = true;
+ }
+ if (!Features.empty()) {
+ llvm::sort(Features);
+ Attrs.addAttribute("target-features", llvm::join(Features, ","));
+ AddedAttr = true;
+ }
+
+ return AddedAttr;
+}
+
+void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
+ llvm::GlobalObject *GO) {
+ const Decl *D = GD.getDecl();
+ SetCommonAttributes(GD, GO);
+
+ if (D) {
+ if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
+ if (D->hasAttr<RetainAttr>())
+ addUsedGlobal(GV);
+ if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
+ GV->addAttribute("bss-section", SA->getName());
+ if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
+ GV->addAttribute("data-section", SA->getName());
+ if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
+ GV->addAttribute("rodata-section", SA->getName());
+ if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
+ GV->addAttribute("relro-section", SA->getName());
+ }
+
+ if (auto *F = dyn_cast<llvm::Function>(GO)) {
+ if (D->hasAttr<RetainAttr>())
+ addUsedGlobal(F);
+ if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
+ if (!D->getAttr<SectionAttr>())
+ F->addFnAttr("implicit-section-name", SA->getName());
+
+ llvm::AttrBuilder Attrs(F->getContext());
+ if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
+ // We know that GetCPUAndFeaturesAttributes will always have the
+ // newest set, since it has the newest possible FunctionDecl, so the
+ // new ones should replace the old.
+ llvm::AttributeMask RemoveAttrs;
+ RemoveAttrs.addAttribute("target-cpu");
+ RemoveAttrs.addAttribute("target-features");
+ RemoveAttrs.addAttribute("tune-cpu");
+ F->removeFnAttrs(RemoveAttrs);
+ F->addFnAttrs(Attrs);
+ }
+ }
+
+ if (const auto *CSA = D->getAttr<CodeSegAttr>())
+ GO->setSection(CSA->getName());
+ else if (const auto *SA = D->getAttr<SectionAttr>())
+ GO->setSection(SA->getName());
+ }
+
+ getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
+}
+
+void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
+ llvm::Function *F,
+ const CGFunctionInfo &FI) {
+ const Decl *D = GD.getDecl();
+ SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
+ SetLLVMFunctionAttributesForDefinition(D, F);
+
+ F->setLinkage(llvm::Function::InternalLinkage);
+
+ setNonAliasAttributes(GD, F);
+}
+
+static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
+ // Set linkage and visibility in case we never see a definition.
+ LinkageInfo LV = ND->getLinkageAndVisibility();
+ // Don't set internal linkage on declarations.
+ // "extern_weak" is overloaded in LLVM; we probably should have
+ // separate linkage types for this.
+ if (isExternallyVisible(LV.getLinkage()) &&
+ (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
+ GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
+}
+
+void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
+ llvm::Function *F) {
+ // Only if we are checking indirect calls.
+ if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
+ return;
+
+ // Non-static class methods are handled via vtable or member function pointer
+ // checks elsewhere.
+ if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
+ return;
+
+ llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
+ F->addTypeMetadata(0, MD);
+ F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
+
+ // Emit a hash-based bit set entry for cross-DSO calls.
+ if (CodeGenOpts.SanitizeCfiCrossDso)
+ if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
+ F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
+}
+
+void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
+ if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
+ return;
+
+ llvm::LLVMContext &Ctx = F->getContext();
+ llvm::MDBuilder MDB(Ctx);
+ F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
+ llvm::MDNode::get(
+ Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
+}
+
+static bool allowKCFIIdentifier(StringRef Name) {
+ // KCFI type identifier constants are only necessary for external assembly
+ // functions, which means it's safe to skip unusual names. Subset of
+ // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
+ return llvm::all_of(Name, [](const char &C) {
+ return llvm::isAlnum(C) || C == '_' || C == '.';
+ });
+}
+
+void CodeGenModule::finalizeKCFITypes() {
+ llvm::Module &M = getModule();
+ for (auto &F : M.functions()) {
+ // Remove KCFI type metadata from non-address-taken local functions.
+ bool AddressTaken = F.hasAddressTaken();
+ if (!AddressTaken && F.hasLocalLinkage())
+ F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
+
+ // Generate a constant with the expected KCFI type identifier for all
+ // address-taken function declarations to support annotating indirectly
+ // called assembly functions.
+ if (!AddressTaken || !F.isDeclaration())
+ continue;
+
+ const llvm::ConstantInt *Type;
+ if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
+ Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
+ else
+ continue;
+
+ StringRef Name = F.getName();
+ if (!allowKCFIIdentifier(Name))
+ continue;
+
+ std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
+ Name + ", " + Twine(Type->getZExtValue()) + "\n")
+ .str();
+ M.appendModuleInlineAsm(Asm);
+ }
+}
+
+void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
+ bool IsIncompleteFunction,
+ bool IsThunk) {
+
+ if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
+ // If this is an intrinsic function, set the function's attributes
+ // to the intrinsic's attributes.
+ F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
+ return;
+ }
+
+ const auto *FD = cast<FunctionDecl>(GD.getDecl());
+
+ if (!IsIncompleteFunction)
+ SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
+ IsThunk);
+
+ // Add the Returned attribute for "this", except for iOS 5 and earlier
+ // where substantial code, including the libstdc++ dylib, was compiled with
+ // GCC and does not actually return "this".
+ if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
+ !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
+ assert(!F->arg_empty() &&
+ F->arg_begin()->getType()
+ ->canLosslesslyBitCastTo(F->getReturnType()) &&
+ "unexpected this return");
+ F->addParamAttr(0, llvm::Attribute::Returned);
+ }
+
+ // Only a few attributes are set on declarations; these may later be
+ // overridden by a definition.
+
+ setLinkageForGV(F, FD);
+ setGVProperties(F, FD);
+
+ // Setup target-specific attributes.
+ if (!IsIncompleteFunction && F->isDeclaration())
+ getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
+
+ if (const auto *CSA = FD->getAttr<CodeSegAttr>())
+ F->setSection(CSA->getName());
+ else if (const auto *SA = FD->getAttr<SectionAttr>())
+ F->setSection(SA->getName());
+
+ if (const auto *EA = FD->getAttr<ErrorAttr>()) {
+ if (EA->isError())
+ F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
+ else if (EA->isWarning())
+ F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
+ }
+
+ // If we plan on emitting this inline builtin, we can't treat it as a builtin.
+ if (FD->isInlineBuiltinDeclaration()) {
+ const FunctionDecl *FDBody;
+ bool HasBody = FD->hasBody(FDBody);
+ (void)HasBody;
+ assert(HasBody && "Inline builtin declarations should always have an "
+ "available body!");
+ if (shouldEmitFunction(FDBody))
+ F->addFnAttr(llvm::Attribute::NoBuiltin);
+ }
+
+ if (FD->isReplaceableGlobalAllocationFunction()) {
+ // A replaceable global allocation function does not act like a builtin by
+ // default, only if it is invoked by a new-expression or delete-expression.
+ F->addFnAttr(llvm::Attribute::NoBuiltin);
+ }
+
+ if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
+ F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+ else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
+ if (MD->isVirtual())
+ F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+
+ // Don't emit entries for function declarations in the cross-DSO mode. This
+ // is handled with better precision by the receiving DSO. But if jump tables
+ // are non-canonical then we need type metadata in order to produce the local
+ // jump table.
+ if (!CodeGenOpts.SanitizeCfiCrossDso ||
+ !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
+ CreateFunctionTypeMetadataForIcall(FD, F);
+
+ if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
+ setKCFIType(FD, F);
+
+ if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
+ getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
+
+ if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
+ F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
+
+ if (const auto *CB = FD->getAttr<CallbackAttr>()) {
+ // Annotate the callback behavior as metadata:
+ // - The callback callee (as argument number).
+ // - The callback payloads (as argument numbers).
+ llvm::LLVMContext &Ctx = F->getContext();
+ llvm::MDBuilder MDB(Ctx);
+
+ // The payload indices are all but the first one in the encoding. The first
+ // identifies the callback callee.
+ int CalleeIdx = *CB->encoding_begin();
+ ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
+ F->addMetadata(llvm::LLVMContext::MD_callback,
+ *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
+ CalleeIdx, PayloadIndices,
+ /* VarArgsArePassed */ false)}));
+ }
+}
+
+void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
+ assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
+ "Only globals with definition can force usage.");
+ LLVMUsed.emplace_back(GV);
+}
+
+void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
+ assert(!GV->isDeclaration() &&
+ "Only globals with definition can force usage.");
+ LLVMCompilerUsed.emplace_back(GV);
+}
+
+void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
+ assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
+ "Only globals with definition can force usage.");
+ if (getTriple().isOSBinFormatELF())
+ LLVMCompilerUsed.emplace_back(GV);
+ else
+ LLVMUsed.emplace_back(GV);
+}
+
+static void emitUsed(CodeGenModule &CGM, StringRef Name,
+ std::vector<llvm::WeakTrackingVH> &List) {
+ // Don't create llvm.used if there is no need.
+ if (List.empty())
+ return;
+
+ // Convert List to what ConstantArray needs.
+ SmallVector<llvm::Constant*, 8> UsedArray;
+ UsedArray.resize(List.size());
+ for (unsigned i = 0, e = List.size(); i != e; ++i) {
+ UsedArray[i] =
+ llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
+ cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
+ }
+
+ if (UsedArray.empty())
+ return;
+ llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
+
+ auto *GV = new llvm::GlobalVariable(
+ CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
+ llvm::ConstantArray::get(ATy, UsedArray), Name);
+
+ GV->setSection("llvm.metadata");
+}
+
+void CodeGenModule::emitLLVMUsed() {
+ emitUsed(*this, "llvm.used", LLVMUsed);
+ emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
+}
+
+void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
+ auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
+ LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
+}
+
+void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
+ llvm::SmallString<32> Opt;
+ getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
+ if (Opt.empty())
+ return;
+ auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
+ LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
+}
+
+void CodeGenModule::AddDependentLib(StringRef Lib) {
+ auto &C = getLLVMContext();
+ if (getTarget().getTriple().isOSBinFormatELF()) {
+ ELFDependentLibraries.push_back(
+ llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
+ return;
+ }
+
+ llvm::SmallString<24> Opt;
+ getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
+ auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
+ LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
+}
+
+/// Add link options implied by the given module, including modules
+/// it depends on, using a postorder walk.
+static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
+ SmallVectorImpl<llvm::MDNode *> &Metadata,
+ llvm::SmallPtrSet<Module *, 16> &Visited) {
+ // Import this module's parent.
+ if (Mod->Parent && Visited.insert(Mod->Parent).second) {
+ addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
+ }
+
+ // Import this module's dependencies.
+ for (Module *Import : llvm::reverse(Mod->Imports)) {
+ if (Visited.insert(Import).second)
+ addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
+ }
+
+ // Add linker options to link against the libraries/frameworks
+ // described by this module.
+ llvm::LLVMContext &Context = CGM.getLLVMContext();
+ bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
+
+ // For modules that use export_as for linking, use that module
+ // name instead.
+ if (Mod->UseExportAsModuleLinkName)
+ return;
+
+ for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
+ // Link against a framework. Frameworks are currently Darwin only, so we
+ // don't to ask TargetCodeGenInfo for the spelling of the linker option.
+ if (LL.IsFramework) {
+ llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
+ llvm::MDString::get(Context, LL.Library)};
+
+ Metadata.push_back(llvm::MDNode::get(Context, Args));
+ continue;
+ }
+
+ // Link against a library.
+ if (IsELF) {
+ llvm::Metadata *Args[2] = {
+ llvm::MDString::get(Context, "lib"),
+ llvm::MDString::get(Context, LL.Library),
+ };
+ Metadata.push_back(llvm::MDNode::get(Context, Args));
+ } else {
+ llvm::SmallString<24> Opt;
+ CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
+ auto *OptString = llvm::MDString::get(Context, Opt);
+ Metadata.push_back(llvm::MDNode::get(Context, OptString));
+ }
+ }
+}
+
+void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
+ // Emit the initializers in the order that sub-modules appear in the
+ // source, first Global Module Fragments, if present.
+ if (auto GMF = Primary->getGlobalModuleFragment()) {
+ for (Decl *D : getContext().getModuleInitializers(GMF)) {
+ if (isa<ImportDecl>(D))
+ continue;
+ assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
+ EmitTopLevelDecl(D);
+ }
+ }
+ // Second any associated with the module, itself.
+ for (Decl *D : getContext().getModuleInitializers(Primary)) {
+ // Skip import decls, the inits for those are called explicitly.
+ if (isa<ImportDecl>(D))
+ continue;
+ EmitTopLevelDecl(D);
+ }
+ // Third any associated with the Privat eMOdule Fragment, if present.
+ if (auto PMF = Primary->getPrivateModuleFragment()) {
+ for (Decl *D : getContext().getModuleInitializers(PMF)) {
+ assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
+ EmitTopLevelDecl(D);
+ }
+ }
+}
+
+void CodeGenModule::EmitModuleLinkOptions() {
+ // Collect the set of all of the modules we want to visit to emit link
+ // options, which is essentially the imported modules and all of their
+ // non-explicit child modules.
+ llvm::SetVector<clang::Module *> LinkModules;
+ llvm::SmallPtrSet<clang::Module *, 16> Visited;
+ SmallVector<clang::Module *, 16> Stack;
+
+ // Seed the stack with imported modules.
+ for (Module *M : ImportedModules) {
+ // Do not add any link flags when an implementation TU of a module imports
+ // a header of that same module.
+ if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
+ !getLangOpts().isCompilingModule())
+ continue;
+ if (Visited.insert(M).second)
+ Stack.push_back(M);
+ }
+
+ // Find all of the modules to import, making a little effort to prune
+ // non-leaf modules.
+ while (!Stack.empty()) {
+ clang::Module *Mod = Stack.pop_back_val();
+
+ bool AnyChildren = false;
+
+ // Visit the submodules of this module.
+ for (const auto &SM : Mod->submodules()) {
+ // Skip explicit children; they need to be explicitly imported to be
+ // linked against.
+ if (SM->IsExplicit)
+ continue;
+
+ if (Visited.insert(SM).second) {
+ Stack.push_back(SM);
+ AnyChildren = true;
+ }
+ }
+
+ // We didn't find any children, so add this module to the list of
+ // modules to link against.
+ if (!AnyChildren) {
+ LinkModules.insert(Mod);
+ }
+ }
+
+ // Add link options for all of the imported modules in reverse topological
+ // order. We don't do anything to try to order import link flags with respect
+ // to linker options inserted by things like #pragma comment().
+ SmallVector<llvm::MDNode *, 16> MetadataArgs;
+ Visited.clear();
+ for (Module *M : LinkModules)
+ if (Visited.insert(M).second)
+ addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
+ std::reverse(MetadataArgs.begin(), MetadataArgs.end());
+ LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
+
+ // Add the linker options metadata flag.
+ auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
+ for (auto *MD : LinkerOptionsMetadata)
+ NMD->addOperand(MD);
+}
+
+void CodeGenModule::EmitDeferred() {
+ // Emit deferred declare target declarations.
+ if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
+ getOpenMPRuntime().emitDeferredTargetDecls();
+
+ // Emit code for any potentially referenced deferred decls. Since a
+ // previously unused static decl may become used during the generation of code
+ // for a static function, iterate until no changes are made.
+
+ if (!DeferredVTables.empty()) {
+ EmitDeferredVTables();
+
+ // Emitting a vtable doesn't directly cause more vtables to
+ // become deferred, although it can cause functions to be
+ // emitted that then need those vtables.
+ assert(DeferredVTables.empty());
+ }
+
+ // Emit CUDA/HIP static device variables referenced by host code only.
+ // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
+ // needed for further handling.
+ if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
+ llvm::append_range(DeferredDeclsToEmit,
+ getContext().CUDADeviceVarODRUsedByHost);
+
+ // Stop if we're out of both deferred vtables and deferred declarations.
+ if (DeferredDeclsToEmit.empty())
+ return;
+
+ // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
+ // work, it will not interfere with this.
+ std::vector<GlobalDecl> CurDeclsToEmit;
+ CurDeclsToEmit.swap(DeferredDeclsToEmit);
+
+ for (GlobalDecl &D : CurDeclsToEmit) {
+ // We should call GetAddrOfGlobal with IsForDefinition set to true in order
+ // to get GlobalValue with exactly the type we need, not something that
+ // might had been created for another decl with the same mangled name but
+ // different type.
+ llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
+ GetAddrOfGlobal(D, ForDefinition));
+
+ // In case of different address spaces, we may still get a cast, even with
+ // IsForDefinition equal to true. Query mangled names table to get
+ // GlobalValue.
+ if (!GV)
+ GV = GetGlobalValue(getMangledName(D));
+
+ // Make sure GetGlobalValue returned non-null.
+ assert(GV);
+
+ // Check to see if we've already emitted this. This is necessary
+ // for a couple of reasons: first, decls can end up in the
+ // deferred-decls queue multiple times, and second, decls can end
+ // up with definitions in unusual ways (e.g. by an extern inline
+ // function acquiring a strong function redefinition). Just
+ // ignore these cases.
+ if (!GV->isDeclaration())
+ continue;
+
+ // If this is OpenMP, check if it is legal to emit this global normally.
+ if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
+ continue;
+
+ // Otherwise, emit the definition and move on to the next one.
+ EmitGlobalDefinition(D, GV);
+
+ // If we found out that we need to emit more decls, do that recursively.
+ // This has the advantage that the decls are emitted in a DFS and related
+ // ones are close together, which is convenient for testing.
+ if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
+ EmitDeferred();
+ assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
+ }
+ }
+}
+
+void CodeGenModule::EmitVTablesOpportunistically() {
+ // Try to emit external vtables as available_externally if they have emitted
+ // all inlined virtual functions. It runs after EmitDeferred() and therefore
+ // is not allowed to create new references to things that need to be emitted
+ // lazily. Note that it also uses fact that we eagerly emitting RTTI.
+
+ assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
+ && "Only emit opportunistic vtables with optimizations");
+
+ for (const CXXRecordDecl *RD : OpportunisticVTables) {
+ assert(getVTables().isVTableExternal(RD) &&
+ "This queue should only contain external vtables");
+ if (getCXXABI().canSpeculativelyEmitVTable(RD))
+ VTables.GenerateClassData(RD);
+ }
+ OpportunisticVTables.clear();
+}
+
+void CodeGenModule::EmitGlobalAnnotations() {
+ if (Annotations.empty())
+ return;
+
+ // Create a new global variable for the ConstantStruct in the Module.
+ llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
+ Annotations[0]->getType(), Annotations.size()), Annotations);
+ auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
+ llvm::GlobalValue::AppendingLinkage,
+ Array, "llvm.global.annotations");
+ gv->setSection(AnnotationSection);
+}
+
+llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
+ llvm::Constant *&AStr = AnnotationStrings[Str];
+ if (AStr)
+ return AStr;
+
+ // Not found yet, create a new global.
+ llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
+ auto *gv = new llvm::GlobalVariable(
+ getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
+ ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
+ ConstGlobalsPtrTy->getAddressSpace());
+ gv->setSection(AnnotationSection);
+ gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+ AStr = gv;
+ return gv;
+}
+
+llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
+ SourceManager &SM = getContext().getSourceManager();
+ PresumedLoc PLoc = SM.getPresumedLoc(Loc);
+ if (PLoc.isValid())
+ return EmitAnnotationString(PLoc.getFilename());
+ return EmitAnnotationString(SM.getBufferName(Loc));
+}
+
+llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
+ SourceManager &SM = getContext().getSourceManager();
+ PresumedLoc PLoc = SM.getPresumedLoc(L);
+ unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
+ SM.getExpansionLineNumber(L);
+ return llvm::ConstantInt::get(Int32Ty, LineNo);
+}
+
+llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
+ ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
+ if (Exprs.empty())
+ return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
+
+ llvm::FoldingSetNodeID ID;
+ for (Expr *E : Exprs) {
+ ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
+ }
+ llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
+ if (Lookup)
+ return Lookup;
+
+ llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
+ LLVMArgs.reserve(Exprs.size());
+ ConstantEmitter ConstEmiter(*this);
+ llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
+ const auto *CE = cast<clang::ConstantExpr>(E);
+ return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
+ CE->getType());
+ });
+ auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
+ auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
+ llvm::GlobalValue::PrivateLinkage, Struct,
+ ".args");
+ GV->setSection(AnnotationSection);
+ GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+ auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
+
+ Lookup = Bitcasted;
+ return Bitcasted;
+}
+
+llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
+ const AnnotateAttr *AA,
+ SourceLocation L) {
+ // Get the globals for file name, annotation, and the line number.
+ llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
+ *UnitGV = EmitAnnotationUnit(L),
+ *LineNoCst = EmitAnnotationLineNo(L),
+ *Args = EmitAnnotationArgs(AA);
+
+ llvm::Constant *GVInGlobalsAS = GV;
+ if (GV->getAddressSpace() !=
+ getDataLayout().getDefaultGlobalsAddressSpace()) {
+ GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
+ GV, GV->getValueType()->getPointerTo(
+ getDataLayout().getDefaultGlobalsAddressSpace()));
+ }
+
+ // Create the ConstantStruct for the global annotation.
+ llvm::Constant *Fields[] = {
+ llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
+ llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy),
+ llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy),
+ LineNoCst,
+ Args,
+ };
+ return llvm::ConstantStruct::getAnon(Fields);
+}
+
+void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
+ llvm::GlobalValue *GV) {
+ assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
+ // Get the struct elements for these annotations.
+ for (const auto *I : D->specific_attrs<AnnotateAttr>())
+ Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
+}
+
+bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
+ SourceLocation Loc) const {
+ const auto &NoSanitizeL = getContext().getNoSanitizeList();
+ // NoSanitize by function name.
+ if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
+ return true;
+ // NoSanitize by location. Check "mainfile" prefix.
+ auto &SM = Context.getSourceManager();
+ const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID());
+ if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
+ return true;
+
+ // Check "src" prefix.
+ if (Loc.isValid())
+ return NoSanitizeL.containsLocation(Kind, Loc);
+ // If location is unknown, this may be a compiler-generated function. Assume
+ // it's located in the main file.
+ return NoSanitizeL.containsFile(Kind, MainFile.getName());
+}
+
+bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
+ llvm::GlobalVariable *GV,
+ SourceLocation Loc, QualType Ty,
+ StringRef Category) const {
+ const auto &NoSanitizeL = getContext().getNoSanitizeList();
+ if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
+ return true;
+ auto &SM = Context.getSourceManager();
+ if (NoSanitizeL.containsMainFile(
+ Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category))
+ return true;
+ if (NoSanitizeL.containsLocation(Kind, Loc, Category))
+ return true;
+
+ // Check global type.
+ if (!Ty.isNull()) {
+ // Drill down the array types: if global variable of a fixed type is
+ // not sanitized, we also don't instrument arrays of them.
+ while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
+ Ty = AT->getElementType();
+ Ty = Ty.getCanonicalType().getUnqualifiedType();
+ // Only record types (classes, structs etc.) are ignored.
+ if (Ty->isRecordType()) {
+ std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
+ if (NoSanitizeL.containsType(Kind, TypeStr, Category))
+ return true;
+ }
+ }
+ return false;
+}
+
+bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
+ StringRef Category) const {
+ const auto &XRayFilter = getContext().getXRayFilter();
+ using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
+ auto Attr = ImbueAttr::NONE;
+ if (Loc.isValid())
+ Attr = XRayFilter.shouldImbueLocation(Loc, Category);
+ if (Attr == ImbueAttr::NONE)
+ Attr = XRayFilter.shouldImbueFunction(Fn->getName());
+ switch (Attr) {
+ case ImbueAttr::NONE:
+ return false;
+ case ImbueAttr::ALWAYS:
+ Fn->addFnAttr("function-instrument", "xray-always");
+ break;
+ case ImbueAttr::ALWAYS_ARG1:
+ Fn->addFnAttr("function-instrument", "xray-always");
+ Fn->addFnAttr("xray-log-args", "1");
+ break;
+ case ImbueAttr::NEVER:
+ Fn->addFnAttr("function-instrument", "xray-never");
+ break;
+ }
+ return true;
+}
+
+ProfileList::ExclusionType
+CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
+ SourceLocation Loc) const {
+ const auto &ProfileList = getContext().getProfileList();
+ // If the profile list is empty, then instrument everything.
+ if (ProfileList.isEmpty())
+ return ProfileList::Allow;
+ CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
+ // First, check the function name.
+ if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
+ return *V;
+ // Next, check the source location.
+ if (Loc.isValid())
+ if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
+ return *V;
+ // If location is unknown, this may be a compiler-generated function. Assume
+ // it's located in the main file.
+ auto &SM = Context.getSourceManager();
+ if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID()))
+ if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
+ return *V;
+ return ProfileList.getDefault(Kind);
+}
+
+ProfileList::ExclusionType
+CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
+ SourceLocation Loc) const {
+ auto V = isFunctionBlockedByProfileList(Fn, Loc);
+ if (V != ProfileList::Allow)
+ return V;
+
+ auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
+ if (NumGroups > 1) {
+ auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
+ if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
+ return ProfileList::Skip;
+ }
+ return ProfileList::Allow;
+}
+
+bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
+ // Never defer when EmitAllDecls is specified.
+ if (LangOpts.EmitAllDecls)
+ return true;
+
+ if (CodeGenOpts.KeepStaticConsts) {
+ const auto *VD = dyn_cast<VarDecl>(Global);
+ if (VD && VD->getType().isConstQualified() &&
+ VD->getStorageDuration() == SD_Static)
+ return true;
+ }
+
+ return getContext().DeclMustBeEmitted(Global);
+}
+
+bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
+ // In OpenMP 5.0 variables and function may be marked as
+ // device_type(host/nohost) and we should not emit them eagerly unless we sure
+ // that they must be emitted on the host/device. To be sure we need to have
+ // seen a declare target with an explicit mentioning of the function, we know
+ // we have if the level of the declare target attribute is -1. Note that we
+ // check somewhere else if we should emit this at all.
+ if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
+ std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
+ OMPDeclareTargetDeclAttr::getActiveAttr(Global);
+ if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
+ return false;
+ }
+
+ if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
+ if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
+ // Implicit template instantiations may change linkage if they are later
+ // explicitly instantiated, so they should not be emitted eagerly.
+ return false;
+ }
+ if (const auto *VD = dyn_cast<VarDecl>(Global)) {
+ if (Context.getInlineVariableDefinitionKind(VD) ==
+ ASTContext::InlineVariableDefinitionKind::WeakUnknown)
+ // A definition of an inline constexpr static data member may change
+ // linkage later if it's redeclared outside the class.
+ return false;
+ if (CXX20ModuleInits && VD->getOwningModule() &&
+ !VD->getOwningModule()->isModuleMapModule()) {
+ // For CXX20, module-owned initializers need to be deferred, since it is
+ // not known at this point if they will be run for the current module or
+ // as part of the initializer for an imported one.
+ return false;
+ }
+ }
+ // If OpenMP is enabled and threadprivates must be generated like TLS, delay
+ // codegen for global variables, because they may be marked as threadprivate.
+ if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
+ getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
+ !isTypeConstant(Global->getType(), false) &&
+ !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
+ return false;
+
+ return true;
+}
+
+ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
+ StringRef Name = getMangledName(GD);
+
+ // The UUID descriptor should be pointer aligned.
+ CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
+
+ // Look for an existing global.
+ if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
+ return ConstantAddress(GV, GV->getValueType(), Alignment);
+
+ ConstantEmitter Emitter(*this);
+ llvm::Constant *Init;
+
+ APValue &V = GD->getAsAPValue();
+ if (!V.isAbsent()) {
+ // If possible, emit the APValue version of the initializer. In particular,
+ // this gets the type of the constant right.
+ Init = Emitter.emitForInitializer(
+ GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
+ } else {
+ // As a fallback, directly construct the constant.
+ // FIXME: This may get padding wrong under esoteric struct layout rules.
+ // MSVC appears to create a complete type 'struct __s_GUID' that it
+ // presumably uses to represent these constants.
+ MSGuidDecl::Parts Parts = GD->getParts();
+ llvm::Constant *Fields[4] = {
+ llvm::ConstantInt::get(Int32Ty, Parts.Part1),
+ llvm::ConstantInt::get(Int16Ty, Parts.Part2),
+ llvm::ConstantInt::get(Int16Ty, Parts.Part3),
+ llvm::ConstantDataArray::getRaw(
+ StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
+ Int8Ty)};
+ Init = llvm::ConstantStruct::getAnon(Fields);
+ }
+
+ auto *GV = new llvm::GlobalVariable(
+ getModule(), Init->getType(),
+ /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
+ if (supportsCOMDAT())
+ GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
+ setDSOLocal(GV);
+
+ if (!V.isAbsent()) {
+ Emitter.finalize(GV);
+ return ConstantAddress(GV, GV->getValueType(), Alignment);
+ }
+
+ llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
+ llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
+ GV, Ty->getPointerTo(GV->getAddressSpace()));
+ return ConstantAddress(Addr, Ty, Alignment);
+}
+
+ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
+ const UnnamedGlobalConstantDecl *GCD) {
+ CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
+
+ llvm::GlobalVariable **Entry = nullptr;
+ Entry = &UnnamedGlobalConstantDeclMap[GCD];
+ if (*Entry)
+ return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
+
+ ConstantEmitter Emitter(*this);
+ llvm::Constant *Init;
+
+ const APValue &V = GCD->getValue();
+
+ assert(!V.isAbsent());
+ Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
+ GCD->getType());
+
+ auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
+ /*isConstant=*/true,
+ llvm::GlobalValue::PrivateLinkage, Init,
+ ".constant");
+ GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+ GV->setAlignment(Alignment.getAsAlign());
+
+ Emitter.finalize(GV);
+
+ *Entry = GV;
+ return ConstantAddress(GV, GV->getValueType(), Alignment);
+}
+
+ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
+ const TemplateParamObjectDecl *TPO) {
+ StringRef Name = getMangledName(TPO);
+ CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
+
+ if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
+ return ConstantAddress(GV, GV->getValueType(), Alignment);
+
+ ConstantEmitter Emitter(*this);
+ llvm::Constant *Init = Emitter.emitForInitializer(
+ TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
+
+ if (!Init) {
+ ErrorUnsupported(TPO, "template parameter object");
+ return ConstantAddress::invalid();
+ }
+
+ auto *GV = new llvm::GlobalVariable(
+ getModule(), Init->getType(),
+ /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
+ if (supportsCOMDAT())
+ GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
+ Emitter.finalize(GV);
+
+ return ConstantAddress(GV, GV->getValueType(), Alignment);
+}
+
+ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
+ const AliasAttr *AA = VD->getAttr<AliasAttr>();
+ assert(AA && "No alias?");
+
+ CharUnits Alignment = getContext().getDeclAlign(VD);
+ llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
+
+ // See if there is already something with the target's name in the module.
+ llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
+ if (Entry) {
+ unsigned AS = getTypes().getTargetAddressSpace(VD->getType());
+ auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
+ return ConstantAddress(Ptr, DeclTy, Alignment);
+ }
+
+ llvm::Constant *Aliasee;
+ if (isa<llvm::FunctionType>(DeclTy))
+ Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
+ GlobalDecl(cast<FunctionDecl>(VD)),
+ /*ForVTable=*/false);
+ else
+ Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
+ nullptr);
+
+ auto *F = cast<llvm::GlobalValue>(Aliasee);
+ F->setLinkage(llvm::Function::ExternalWeakLinkage);
+ WeakRefReferences.insert(F);
+
+ return ConstantAddress(Aliasee, DeclTy, Alignment);
+}
+
+void CodeGenModule::EmitGlobal(GlobalDecl GD) {
+ const auto *Global = cast<ValueDecl>(GD.getDecl());
+
+ // Weak references don't produce any output by themselves.
+ if (Global->hasAttr<WeakRefAttr>())
+ return;
+
+ // If this is an alias definition (which otherwise looks like a declaration)
+ // emit it now.
+ if (Global->hasAttr<AliasAttr>())
+ return EmitAliasDefinition(GD);
+
+ // IFunc like an alias whose value is resolved at runtime by calling resolver.
+ if (Global->hasAttr<IFuncAttr>())
+ return emitIFuncDefinition(GD);
+
+ // If this is a cpu_dispatch multiversion function, emit the resolver.
+ if (Global->hasAttr<CPUDispatchAttr>())
+ return emitCPUDispatchDefinition(GD);
+
+ // If this is CUDA, be selective about which declarations we emit.
+ if (LangOpts.CUDA) {
+ if (LangOpts.CUDAIsDevice) {
+ if (!Global->hasAttr<CUDADeviceAttr>() &&
+ !Global->hasAttr<CUDAGlobalAttr>() &&
+ !Global->hasAttr<CUDAConstantAttr>() &&
+ !Global->hasAttr<CUDASharedAttr>() &&
+ !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
+ !Global->getType()->isCUDADeviceBuiltinTextureType())
+ return;
+ } else {
+ // We need to emit host-side 'shadows' for all global
+ // device-side variables because the CUDA runtime needs their
+ // size and host-side address in order to provide access to
+ // their device-side incarnations.
+
+ // So device-only functions are the only things we skip.
+ if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
+ Global->hasAttr<CUDADeviceAttr>())
+ return;
+
+ assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
+ "Expected Variable or Function");
+ }
+ }
+
+ if (LangOpts.OpenMP) {
+ // If this is OpenMP, check if it is legal to emit this global normally.
+ if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
+ return;
+ if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
+ if (MustBeEmitted(Global))
+ EmitOMPDeclareReduction(DRD);
+ return;
+ } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
+ if (MustBeEmitted(Global))
+ EmitOMPDeclareMapper(DMD);
+ return;
+ }
+ }
+
+ // Ignore declarations, they will be emitted on their first use.
+ if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
+ // Forward declarations are emitted lazily on first use.
+ if (!FD->doesThisDeclarationHaveABody()) {
+ if (!FD->doesDeclarationForceExternallyVisibleDefinition())
+ return;
+
+ StringRef MangledName = getMangledName(GD);
+
+ // Compute the function info and LLVM type.
+ const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
+ llvm::Type *Ty = getTypes().GetFunctionType(FI);
+
+ GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
+ /*DontDefer=*/false);
+ return;
+ }
+ } else {
+ const auto *VD = cast<VarDecl>(Global);
+ assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
+ if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
+ !Context.isMSStaticDataMemberInlineDefinition(VD)) {
+ if (LangOpts.OpenMP) {
+ // Emit declaration of the must-be-emitted declare target variable.
+ if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
+ OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
+ bool UnifiedMemoryEnabled =
+ getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
+ if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
+ *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
+ !UnifiedMemoryEnabled) {
+ (void)GetAddrOfGlobalVar(VD);
+ } else {
+ assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
+ ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
+ *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
+ UnifiedMemoryEnabled)) &&
+ "Link clause or to clause with unified memory expected.");
+ (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
+ }
+
+ return;
+ }
+ }
+ // If this declaration may have caused an inline variable definition to
+ // change linkage, make sure that it's emitted.
+ if (Context.getInlineVariableDefinitionKind(VD) ==
+ ASTContext::InlineVariableDefinitionKind::Strong)
+ GetAddrOfGlobalVar(VD);
+ return;
+ }
+ }
+
+ // Defer code generation to first use when possible, e.g. if this is an inline
+ // function. If the global must always be emitted, do it eagerly if possible
+ // to benefit from cache locality.
+ if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
+ // Emit the definition if it can't be deferred.
+ EmitGlobalDefinition(GD);
+ return;
+ }
+
+ // If we're deferring emission of a C++ variable with an
+ // initializer, remember the order in which it appeared in the file.
+ if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
+ cast<VarDecl>(Global)->hasInit()) {
+ DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
+ CXXGlobalInits.push_back(nullptr);
+ }
+
+ StringRef MangledName = getMangledName(GD);
+ if (GetGlobalValue(MangledName) != nullptr) {
+ // The value has already been used and should therefore be emitted.
+ addDeferredDeclToEmit(GD);
+ } else if (MustBeEmitted(Global)) {
+ // The value must be emitted, but cannot be emitted eagerly.
+ assert(!MayBeEmittedEagerly(Global));
+ addDeferredDeclToEmit(GD);
+ EmittedDeferredDecls[MangledName] = GD;
+ } else {
+ // Otherwise, remember that we saw a deferred decl with this name. The
+ // first use of the mangled name will cause it to move into
+ // DeferredDeclsToEmit.
+ DeferredDecls[MangledName] = GD;
+ }
+}
+
+// Check if T is a class type with a destructor that's not dllimport.
+static bool HasNonDllImportDtor(QualType T) {
+ if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
+ if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
+ if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
+ return true;
+
+ return false;
+}
+
+namespace {
+ struct FunctionIsDirectlyRecursive
+ : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
+ const StringRef Name;
+ const Builtin::Context &BI;
+ FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
+ : Name(N), BI(C) {}
+
+ bool VisitCallExpr(const CallExpr *E) {
+ const FunctionDecl *FD = E->getDirectCallee();
+ if (!FD)
+ return false;
+ AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
+ if (Attr && Name == Attr->getLabel())
+ return true;
+ unsigned BuiltinID = FD->getBuiltinID();
+ if (!BuiltinID || !BI.isLibFunction(BuiltinID))
+ return false;
+ StringRef BuiltinName = BI.getName(BuiltinID);
+ if (BuiltinName.startswith("__builtin_") &&
+ Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
+ return true;
+ }
+ return false;
+ }
+
+ bool VisitStmt(const Stmt *S) {
+ for (const Stmt *Child : S->children())
+ if (Child && this->Visit(Child))
+ return true;
+ return false;
+ }
+ };
+
+ // Make sure we're not referencing non-imported vars or functions.
+ struct DLLImportFunctionVisitor
+ : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
+ bool SafeToInline = true;
+
+ bool shouldVisitImplicitCode() const { return true; }
+
+ bool VisitVarDecl(VarDecl *VD) {
+ if (VD->getTLSKind()) {
+ // A thread-local variable cannot be imported.
+ SafeToInline = false;
+ return SafeToInline;
+ }
+
+ // A variable definition might imply a destructor call.
+ if (VD->isThisDeclarationADefinition())
+ SafeToInline = !HasNonDllImportDtor(VD->getType());
+
+ return SafeToInline;
+ }
+
+ bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
+ if (const auto *D = E->getTemporary()->getDestructor())
+ SafeToInline = D->hasAttr<DLLImportAttr>();
+ return SafeToInline;
+ }
+
+ bool VisitDeclRefExpr(DeclRefExpr *E) {
+ ValueDecl *VD = E->getDecl();
+ if (isa<FunctionDecl>(VD))
+ SafeToInline = VD->hasAttr<DLLImportAttr>();
+ else if (VarDecl *V = dyn_cast<VarDecl>(VD))
+ SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
+ return SafeToInline;
+ }
+
+ bool VisitCXXConstructExpr(CXXConstructExpr *E) {
+ SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
+ return SafeToInline;
+ }
+
+ bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
+ CXXMethodDecl *M = E->getMethodDecl();
+ if (!M) {
+ // Call through a pointer to member function. This is safe to inline.
+ SafeToInline = true;
+ } else {
+ SafeToInline = M->hasAttr<DLLImportAttr>();
+ }
+ return SafeToInline;
+ }
+
+ bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
+ SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
+ return SafeToInline;
+ }
+
+ bool VisitCXXNewExpr(CXXNewExpr *E) {
+ SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
+ return SafeToInline;
+ }
+ };
+}
+
+// isTriviallyRecursive - Check if this function calls another
+// decl that, because of the asm attribute or the other decl being a builtin,
+// ends up pointing to itself.
+bool
+CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
+ StringRef Name;
+ if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
+ // asm labels are a special kind of mangling we have to support.
+ AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
+ if (!Attr)
+ return false;
+ Name = Attr->getLabel();
+ } else {
+ Name = FD->getName();
+ }
+
+ FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
+ const Stmt *Body = FD->getBody();
+ return Body ? Walker.Visit(Body) : false;
+}
+
+bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
+ if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
+ return true;
+ const auto *F = cast<FunctionDecl>(GD.getDecl());
+ if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
+ return false;
+
+ if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
+ // Check whether it would be safe to inline this dllimport function.
+ DLLImportFunctionVisitor Visitor;
+ Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
+ if (!Visitor.SafeToInline)
+ return false;
+
+ if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
+ // Implicit destructor invocations aren't captured in the AST, so the
+ // check above can't see them. Check for them manually here.
+ for (const Decl *Member : Dtor->getParent()->decls())
+ if (isa<FieldDecl>(Member))
+ if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
+ return false;
+ for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
+ if (HasNonDllImportDtor(B.getType()))
+ return false;
+ }
+ }
+
+ // Inline builtins declaration must be emitted. They often are fortified
+ // functions.
+ if (F->isInlineBuiltinDeclaration())
+ return true;
+
+ // PR9614. Avoid cases where the source code is lying to us. An available
+ // externally function should have an equivalent function somewhere else,
+ // but a function that calls itself through asm label/`__builtin_` trickery is
+ // clearly not equivalent to the real implementation.
+ // This happens in glibc's btowc and in some configure checks.
+ return !isTriviallyRecursive(F);
+}
+
+bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
+ return CodeGenOpts.OptimizationLevel > 0;
+}
+
+void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
+ llvm::GlobalValue *GV) {
+ const auto *FD = cast<FunctionDecl>(GD.getDecl());
+
+ if (FD->isCPUSpecificMultiVersion()) {
+ auto *Spec = FD->getAttr<CPUSpecificAttr>();
+ for (unsigned I = 0; I < Spec->cpus_size(); ++I)
+ EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
+ } else if (FD->isTargetClonesMultiVersion()) {
+ auto *Clone = FD->getAttr<TargetClonesAttr>();
+ for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
+ if (Clone->isFirstOfVersion(I))
+ EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
+ // Ensure that the resolver function is also emitted.
+ GetOrCreateMultiVersionResolver(GD);
+ } else
+ EmitGlobalFunctionDefinition(GD, GV);
+}
+
+void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
+ const auto *D = cast<ValueDecl>(GD.getDecl());
+
+ PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
+ Context.getSourceManager(),
+ "Generating code for declaration");
+
+ if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
+ // At -O0, don't generate IR for functions with available_externally
+ // linkage.
+ if (!shouldEmitFunction(GD))
+ return;
+
+ llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
+ std::string Name;
+ llvm::raw_string_ostream OS(Name);
+ FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
+ /*Qualified=*/true);
+ return Name;
+ });
+
+ if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
+ // Make sure to emit the definition(s) before we emit the thunks.
+ // This is necessary for the generation of certain thunks.
+ if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
+ ABI->emitCXXStructor(GD);
+ else if (FD->isMultiVersion())
+ EmitMultiVersionFunctionDefinition(GD, GV);
+ else
+ EmitGlobalFunctionDefinition(GD, GV);
+
+ if (Method->isVirtual())
+ getVTables().EmitThunks(GD);
+
+ return;
+ }
+
+ if (FD->isMultiVersion())
+ return EmitMultiVersionFunctionDefinition(GD, GV);
+ return EmitGlobalFunctionDefinition(GD, GV);
+ }
+
+ if (const auto *VD = dyn_cast<VarDecl>(D))
+ return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
+
+ llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
+}
+
+static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
+ llvm::Function *NewFn);
+
+static unsigned
+TargetMVPriority(const TargetInfo &TI,
+ const CodeGenFunction::MultiVersionResolverOption &RO) {
+ unsigned Priority = 0;
+ unsigned NumFeatures = 0;
+ for (StringRef Feat : RO.Conditions.Features) {
+ Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
+ NumFeatures++;
+ }
+
+ if (!RO.Conditions.Architecture.empty())
+ Priority = std::max(
+ Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
+
+ Priority += TI.multiVersionFeatureCost() * NumFeatures;
+
+ return Priority;
+}
+
+// Multiversion functions should be at most 'WeakODRLinkage' so that a different
+// TU can forward declare the function without causing problems. Particularly
+// in the cases of CPUDispatch, this causes issues. This also makes sure we
+// work with internal linkage functions, so that the same function name can be
+// used with internal linkage in multiple TUs.
+llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
+ GlobalDecl GD) {
+ const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
+ if (FD->getFormalLinkage() == InternalLinkage)
+ return llvm::GlobalValue::InternalLinkage;
+ return llvm::GlobalValue::WeakODRLinkage;
+}
+
+void CodeGenModule::emitMultiVersionFunctions() {
+ std::vector<GlobalDecl> MVFuncsToEmit;
+ MultiVersionFuncs.swap(MVFuncsToEmit);
+ for (GlobalDecl GD : MVFuncsToEmit) {
+ const auto *FD = cast<FunctionDecl>(GD.getDecl());
+ assert(FD && "Expected a FunctionDecl");
+
+ SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
+ if (FD->isTargetMultiVersion()) {
+ getContext().forEachMultiversionedFunctionVersion(
+ FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
+ GlobalDecl CurGD{
+ (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
+ StringRef MangledName = getMangledName(CurGD);
+ llvm::Constant *Func = GetGlobalValue(MangledName);
+ if (!Func) {
+ if (CurFD->isDefined()) {
+ EmitGlobalFunctionDefinition(CurGD, nullptr);
+ Func = GetGlobalValue(MangledName);
+ } else {
+ const CGFunctionInfo &FI =
+ getTypes().arrangeGlobalDeclaration(GD);
+ llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
+ Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
+ /*DontDefer=*/false, ForDefinition);
+ }
+ assert(Func && "This should have just been created");
+ }
+ if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) {
+ const auto *TA = CurFD->getAttr<TargetAttr>();
+ llvm::SmallVector<StringRef, 8> Feats;
+ TA->getAddedFeatures(Feats);
+ Options.emplace_back(cast<llvm::Function>(Func),
+ TA->getArchitecture(), Feats);
+ } else {
+ const auto *TVA = CurFD->getAttr<TargetVersionAttr>();
+ llvm::SmallVector<StringRef, 8> Feats;
+ TVA->getFeatures(Feats);
+ Options.emplace_back(cast<llvm::Function>(Func),
+ /*Architecture*/ "", Feats);
+ }
+ });
+ } else if (FD->isTargetClonesMultiVersion()) {
+ const auto *TC = FD->getAttr<TargetClonesAttr>();
+ for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
+ ++VersionIndex) {
+ if (!TC->isFirstOfVersion(VersionIndex))
+ continue;
+ GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
+ VersionIndex};
+ StringRef Version = TC->getFeatureStr(VersionIndex);
+ StringRef MangledName = getMangledName(CurGD);
+ llvm::Constant *Func = GetGlobalValue(MangledName);
+ if (!Func) {
+ if (FD->isDefined()) {
+ EmitGlobalFunctionDefinition(CurGD, nullptr);
+ Func = GetGlobalValue(MangledName);
+ } else {
+ const CGFunctionInfo &FI =
+ getTypes().arrangeGlobalDeclaration(CurGD);
+ llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
+ Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
+ /*DontDefer=*/false, ForDefinition);
+ }
+ assert(Func && "This should have just been created");
+ }
+
+ StringRef Architecture;
+ llvm::SmallVector<StringRef, 1> Feature;
+
+ if (getTarget().getTriple().isAArch64()) {
+ if (Version != "default") {
+ llvm::SmallVector<StringRef, 8> VerFeats;
+ Version.split(VerFeats, "+");
+ for (auto &CurFeat : VerFeats)
+ Feature.push_back(CurFeat.trim());
+ }
+ } else {
+ if (Version.startswith("arch="))
+ Architecture = Version.drop_front(sizeof("arch=") - 1);
+ else if (Version != "default")
+ Feature.push_back(Version);
+ }
+
+ Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
+ }
+ } else {
+ assert(0 && "Expected a target or target_clones multiversion function");
+ continue;
+ }
+
+ llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
+ if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
+ ResolverConstant = IFunc->getResolver();
+ llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
+
+ ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
+
+ if (supportsCOMDAT())
+ ResolverFunc->setComdat(
+ getModule().getOrInsertComdat(ResolverFunc->getName()));
+
+ const TargetInfo &TI = getTarget();
+ llvm::stable_sort(
+ Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
+ const CodeGenFunction::MultiVersionResolverOption &RHS) {
+ return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
+ });
+ CodeGenFunction CGF(*this);
+ CGF.EmitMultiVersionResolver(ResolverFunc, Options);
+ }
+
+ // Ensure that any additions to the deferred decls list caused by emitting a
+ // variant are emitted. This can happen when the variant itself is inline and
+ // calls a function without linkage.
+ if (!MVFuncsToEmit.empty())
+ EmitDeferred();
+
+ // Ensure that any additions to the multiversion funcs list from either the
+ // deferred decls or the multiversion functions themselves are emitted.
+ if (!MultiVersionFuncs.empty())
+ emitMultiVersionFunctions();
+}
+
+void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
+ const auto *FD = cast<FunctionDecl>(GD.getDecl());
+ assert(FD && "Not a FunctionDecl?");
+ assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
+ const auto *DD = FD->getAttr<CPUDispatchAttr>();
+ assert(DD && "Not a cpu_dispatch Function?");
+
+ const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
+ llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
+
+ StringRef ResolverName = getMangledName(GD);
+ UpdateMultiVersionNames(GD, FD, ResolverName);
+
+ llvm::Type *ResolverType;
+ GlobalDecl ResolverGD;
+ if (getTarget().supportsIFunc()) {
+ ResolverType = llvm::FunctionType::get(
+ llvm::PointerType::get(DeclTy,
+ getTypes().getTargetAddressSpace(FD->getType())),
+ false);
+ }
+ else {
+ ResolverType = DeclTy;
+ ResolverGD = GD;
+ }
+
+ auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
+ ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
+ ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
+ if (supportsCOMDAT())
+ ResolverFunc->setComdat(
+ getModule().getOrInsertComdat(ResolverFunc->getName()));
+
+ SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
+ const TargetInfo &Target = getTarget();
+ unsigned Index = 0;
+ for (const IdentifierInfo *II : DD->cpus()) {
+ // Get the name of the target function so we can look it up/create it.
+ std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
+ getCPUSpecificMangling(*this, II->getName());
+
+ llvm::Constant *Func = GetGlobalValue(MangledName);
+
+ if (!Func) {
+ GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
+ if (ExistingDecl.getDecl() &&
+ ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
+ EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
+ Func = GetGlobalValue(MangledName);
+ } else {
+ if (!ExistingDecl.getDecl())
+ ExistingDecl = GD.getWithMultiVersionIndex(Index);
+
+ Func = GetOrCreateLLVMFunction(
+ MangledName, DeclTy, ExistingDecl,
+ /*ForVTable=*/false, /*DontDefer=*/true,
+ /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
+ }
+ }
+
+ llvm::SmallVector<StringRef, 32> Features;
+ Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
+ llvm::transform(Features, Features.begin(),
+ [](StringRef Str) { return Str.substr(1); });
+ llvm::erase_if(Features, [&Target](StringRef Feat) {
+ return !Target.validateCpuSupports(Feat);
+ });
+ Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
+ ++Index;
+ }
+
+ llvm::stable_sort(
+ Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
+ const CodeGenFunction::MultiVersionResolverOption &RHS) {
+ return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
+ llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
+ });
+
+ // If the list contains multiple 'default' versions, such as when it contains
+ // 'pentium' and 'generic', don't emit the call to the generic one (since we
+ // always run on at least a 'pentium'). We do this by deleting the 'least
+ // advanced' (read, lowest mangling letter).
+ while (Options.size() > 1 &&
+ llvm::X86::getCpuSupportsMask(
+ (Options.end() - 2)->Conditions.Features) == 0) {
+ StringRef LHSName = (Options.end() - 2)->Function->getName();
+ StringRef RHSName = (Options.end() - 1)->Function->getName();
+ if (LHSName.compare(RHSName) < 0)
+ Options.erase(Options.end() - 2);
+ else
+ Options.erase(Options.end() - 1);
+ }
+
+ CodeGenFunction CGF(*this);
+ CGF.EmitMultiVersionResolver(ResolverFunc, Options);
+
+ if (getTarget().supportsIFunc()) {
+ llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
+ auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
+
+ // Fix up function declarations that were created for cpu_specific before
+ // cpu_dispatch was known
+ if (!isa<llvm::GlobalIFunc>(IFunc)) {
+ assert(cast<llvm::Function>(IFunc)->isDeclaration());
+ auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
+ &getModule());
+ GI->takeName(IFunc);
+ IFunc->replaceAllUsesWith(GI);
+ IFunc->eraseFromParent();
+ IFunc = GI;
+ }
+
+ std::string AliasName = getMangledNameImpl(
+ *this, GD, FD, /*OmitMultiVersionMangling=*/true);
+ llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
+ if (!AliasFunc) {
+ auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
+ &getModule());
+ SetCommonAttributes(GD, GA);
+ }
+ }
+}
+
+/// If a dispatcher for the specified mangled name is not in the module, create
+/// and return an llvm Function with the specified type.
+llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
+ const auto *FD = cast<FunctionDecl>(GD.getDecl());
+ assert(FD && "Not a FunctionDecl?");
+
+ std::string MangledName =
+ getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
+
+ // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
+ // a separate resolver).
+ std::string ResolverName = MangledName;
+ if (getTarget().supportsIFunc())
+ ResolverName += ".ifunc";
+ else if (FD->isTargetMultiVersion())
+ ResolverName += ".resolver";
+
+ // If the resolver has already been created, just return it.
+ if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
+ return ResolverGV;
+
+ const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
+ llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
+
+ // The resolver needs to be created. For target and target_clones, defer
+ // creation until the end of the TU.
+ if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
+ MultiVersionFuncs.push_back(GD);
+
+ // For cpu_specific, don't create an ifunc yet because we don't know if the
+ // cpu_dispatch will be emitted in this translation unit.
+ if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
+ llvm::Type *ResolverType = llvm::FunctionType::get(
+ llvm::PointerType::get(DeclTy,
+ getTypes().getTargetAddressSpace(FD->getType())),
+ false);
+ llvm::Constant *Resolver = GetOrCreateLLVMFunction(
+ MangledName + ".resolver", ResolverType, GlobalDecl{},
+ /*ForVTable=*/false);
+ llvm::GlobalIFunc *GIF =
+ llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
+ "", Resolver, &getModule());
+ GIF->setName(ResolverName);
+ SetCommonAttributes(FD, GIF);
+
+ return GIF;
+ }
+
+ llvm::Constant *Resolver = GetOrCreateLLVMFunction(
+ ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
+ assert(isa<llvm::GlobalValue>(Resolver) &&
+ "Resolver should be created for the first time");
+ SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
+ return Resolver;
+}
+
+/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
+/// module, create and return an llvm Function with the specified type. If there
+/// is something in the module with the specified name, return it potentially
+/// bitcasted to the right type.
+///
+/// If D is non-null, it specifies a decl that correspond to this. This is used
+/// to set the attributes on the function when it is first created.
+llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
+ StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
+ bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
+ ForDefinition_t IsForDefinition) {
+ const Decl *D = GD.getDecl();
+
+ // Any attempts to use a MultiVersion function should result in retrieving
+ // the iFunc instead. Name Mangling will handle the rest of the changes.
+ if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
+ // For the device mark the function as one that should be emitted.
+ if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
+ !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
+ !DontDefer && !IsForDefinition) {
+ if (const FunctionDecl *FDDef = FD->getDefinition()) {
+ GlobalDecl GDDef;
+ if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
+ GDDef = GlobalDecl(CD, GD.getCtorType());
+ else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
+ GDDef = GlobalDecl(DD, GD.getDtorType());
+ else
+ GDDef = GlobalDecl(FDDef);
+ EmitGlobal(GDDef);
+ }
+ }
+
+ if (FD->isMultiVersion()) {
+ UpdateMultiVersionNames(GD, FD, MangledName);
+ if (!IsForDefinition)
+ return GetOrCreateMultiVersionResolver(GD);
+ }
+ }
+
+ // Lookup the entry, lazily creating it if necessary.
+ llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
+ if (Entry) {
+ if (WeakRefReferences.erase(Entry)) {
+ const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
+ if (FD && !FD->hasAttr<WeakAttr>())
+ Entry->setLinkage(llvm::Function::ExternalLinkage);
+ }
+
+ // Handle dropped DLL attributes.
+ if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
+ !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
+ Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
+ setDSOLocal(Entry);
+ }
+
+ // If there are two attempts to define the same mangled name, issue an
+ // error.
+ if (IsForDefinition && !Entry->isDeclaration()) {
+ GlobalDecl OtherGD;
+ // Check that GD is not yet in DiagnosedConflictingDefinitions is required
+ // to make sure that we issue an error only once.
+ if (lookupRepresentativeDecl(MangledName, OtherGD) &&
+ (GD.getCanonicalDecl().getDecl() !=
+ OtherGD.getCanonicalDecl().getDecl()) &&
+ DiagnosedConflictingDefinitions.insert(GD).second) {
+ getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
+ << MangledName;
+ getDiags().Report(OtherGD.getDecl()->getLocation(),
+ diag::note_previous_definition);
+ }
+ }
+
+ if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
+ (Entry->getValueType() == Ty)) {
+ return Entry;
+ }
+
+ // Make sure the result is of the correct type.
+ // (If function is requested for a definition, we always need to create a new
+ // function, not just return a bitcast.)
+ if (!IsForDefinition)
+ return llvm::ConstantExpr::getBitCast(
+ Entry, Ty->getPointerTo(Entry->getAddressSpace()));
+ }
+
+ // This function doesn't have a complete type (for example, the return
+ // type is an incomplete struct). Use a fake type instead, and make
+ // sure not to try to set attributes.
+ bool IsIncompleteFunction = false;
+
+ llvm::FunctionType *FTy;
+ if (isa<llvm::FunctionType>(Ty)) {
+ FTy = cast<llvm::FunctionType>(Ty);
+ } else {
+ FTy = llvm::FunctionType::get(VoidTy, false);
+ IsIncompleteFunction = true;
+ }
+
+ llvm::Function *F =
+ llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
+ Entry ? StringRef() : MangledName, &getModule());
+
+ // If we already created a function with the same mangled name (but different
+ // type) before, take its name and add it to the list of functions to be
+ // replaced with F at the end of CodeGen.
+ //
+ // This happens if there is a prototype for a function (e.g. "int f()") and
+ // then a definition of a different type (e.g. "int f(int x)").
+ if (Entry) {
+ F->takeName(Entry);
+
+ // This might be an implementation of a function without a prototype, in
+ // which case, try to do special replacement of calls which match the new
+ // prototype. The really key thing here is that we also potentially drop
+ // arguments from the call site so as to make a direct call, which makes the
+ // inliner happier and suppresses a number of optimizer warnings (!) about
+ // dropping arguments.
+ if (!Entry->use_empty()) {
+ ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
+ Entry->removeDeadConstantUsers();
+ }
+
+ llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
+ F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace()));
+ addGlobalValReplacement(Entry, BC);
+ }
+
+ assert(F->getName() == MangledName && "name was uniqued!");
+ if (D)
+ SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
+ if (ExtraAttrs.hasFnAttrs()) {
+ llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
+ F->addFnAttrs(B);
+ }
+
+ if (!DontDefer) {
+ // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
+ // each other bottoming out with the base dtor. Therefore we emit non-base
+ // dtors on usage, even if there is no dtor definition in the TU.
+ if (isa_and_nonnull<CXXDestructorDecl>(D) &&
+ getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
+ GD.getDtorType()))
+ addDeferredDeclToEmit(GD);
+
+ // This is the first use or definition of a mangled name. If there is a
+ // deferred decl with this name, remember that we need to emit it at the end
+ // of the file.
+ auto DDI = DeferredDecls.find(MangledName);
+ if (DDI != DeferredDecls.end()) {
+ // Move the potentially referenced deferred decl to the
+ // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
+ // don't need it anymore).
+ addDeferredDeclToEmit(DDI->second);
+ EmittedDeferredDecls[DDI->first] = DDI->second;
+ DeferredDecls.erase(DDI);
+
+ // Otherwise, there are cases we have to worry about where we're
+ // using a declaration for which we must emit a definition but where
+ // we might not find a top-level definition:
+ // - member functions defined inline in their classes
+ // - friend functions defined inline in some class
+ // - special member functions with implicit definitions
+ // If we ever change our AST traversal to walk into class methods,
+ // this will be unnecessary.
+ //
+ // We also don't emit a definition for a function if it's going to be an
+ // entry in a vtable, unless it's already marked as used.
+ } else if (getLangOpts().CPlusPlus && D) {
+ // Look for a declaration that's lexically in a record.
+ for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
+ FD = FD->getPreviousDecl()) {
+ if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
+ if (FD->doesThisDeclarationHaveABody()) {
+ addDeferredDeclToEmit(GD.getWithDecl(FD));
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ // Make sure the result is of the requested type.
+ if (!IsIncompleteFunction) {
+ assert(F->getFunctionType() == Ty);
+ return F;
+ }
+
+ return llvm::ConstantExpr::getBitCast(F,
+ Ty->getPointerTo(F->getAddressSpace()));
+}
+
+/// GetAddrOfFunction - Return the address of the given function. If Ty is
+/// non-null, then this function will use the specified type if it has to
+/// create it (this occurs when we see a definition of the function).
+llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
+ llvm::Type *Ty,
+ bool ForVTable,
+ bool DontDefer,
+ ForDefinition_t IsForDefinition) {
+ assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
+ "consteval function should never be emitted");
+ // If there was no specific requested type, just convert it now.
+ if (!Ty) {
+ const auto *FD = cast<FunctionDecl>(GD.getDecl());
+ Ty = getTypes().ConvertType(FD->getType());
+ }
+
+ // Devirtualized destructor calls may come through here instead of via
+ // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
+ // of the complete destructor when necessary.
+ if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
+ if (getTarget().getCXXABI().isMicrosoft() &&
+ GD.getDtorType() == Dtor_Complete &&
+ DD->getParent()->getNumVBases() == 0)
+ GD = GlobalDecl(DD, Dtor_Base);
+ }
+
+ StringRef MangledName = getMangledName(GD);
+ auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
+ /*IsThunk=*/false, llvm::AttributeList(),
+ IsForDefinition);
+ // Returns kernel handle for HIP kernel stub function.
+ if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
+ cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
+ auto *Handle = getCUDARuntime().getKernelHandle(
+ cast<llvm::Function>(F->stripPointerCasts()), GD);
+ if (IsForDefinition)
+ return F;
+ return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
+ }
+ return F;
+}
+
+llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
+ llvm::GlobalValue *F =
+ cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
+
+ return llvm::ConstantExpr::getBitCast(
+ llvm::NoCFIValue::get(F),
+ llvm::Type::getInt8PtrTy(VMContext, F->getAddressSpace()));
+}
+
+static const FunctionDecl *
+GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
+ TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
+ DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
+
+ IdentifierInfo &CII = C.Idents.get(Name);
+ for (const auto *Result : DC->lookup(&CII))
+ if (const auto *FD = dyn_cast<FunctionDecl>(Result))
+ return FD;
+
+ if (!C.getLangOpts().CPlusPlus)
+ return nullptr;
+
+ // Demangle the premangled name from getTerminateFn()
+ IdentifierInfo &CXXII =
+ (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
+ ? C.Idents.get("terminate")
+ : C.Idents.get(Name);
+
+ for (const auto &N : {"__cxxabiv1", "std"}) {
+ IdentifierInfo &NS = C.Idents.get(N);
+ for (const auto *Result : DC->lookup(&NS)) {
+ const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
+ if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
+ for (const auto *Result : LSD->lookup(&NS))
+ if ((ND = dyn_cast<NamespaceDecl>(Result)))
+ break;
+
+ if (ND)
+ for (const auto *Result : ND->lookup(&CXXII))
+ if (const auto *FD = dyn_cast<FunctionDecl>(Result))
+ return FD;
+ }
+ }
+
+ return nullptr;
+}
+
+/// CreateRuntimeFunction - Create a new runtime function with the specified
+/// type and name.
+llvm::FunctionCallee
+CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
+ llvm::AttributeList ExtraAttrs, bool Local,
+ bool AssumeConvergent) {
+ if (AssumeConvergent) {
+ ExtraAttrs =
+ ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
+ }
+
+ llvm::Constant *C =
+ GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
+ /*DontDefer=*/false, /*IsThunk=*/false,
+ ExtraAttrs);
+
+ if (auto *F = dyn_cast<llvm::Function>(C)) {
+ if (F->empty()) {
+ F->setCallingConv(getRuntimeCC());
+
+ // In Windows Itanium environments, try to mark runtime functions
+ // dllimport. For Mingw and MSVC, don't. We don't really know if the user
+ // will link their standard library statically or dynamically. Marking
+ // functions imported when they are not imported can cause linker errors
+ // and warnings.
+ if (!Local && getTriple().isWindowsItaniumEnvironment() &&
+ !getCodeGenOpts().LTOVisibilityPublicStd) {
+ const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
+ if (!FD || FD->hasAttr<DLLImportAttr>()) {
+ F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
+ F->setLinkage(llvm::GlobalValue::ExternalLinkage);
+ }
+ }
+ setDSOLocal(F);
+ }
+ }
+
+ return {FTy, C};
+}
+
+/// isTypeConstant - Determine whether an object of this type can be emitted
+/// as a constant.
+///
+/// If ExcludeCtor is true, the duration when the object's constructor runs
+/// will not be considered. The caller will need to verify that the object is
+/// not written to during its construction.
+bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
+ if (!Ty.isConstant(Context) && !Ty->isReferenceType())
+ return false;
+
+ if (Context.getLangOpts().CPlusPlus) {
+ if (const CXXRecordDecl *Record
+ = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
+ return ExcludeCtor && !Record->hasMutableFields() &&
+ Record->hasTrivialDestructor();
+ }
+
+ return true;
+}
+
+/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
+/// create and return an llvm GlobalVariable with the specified type and address
+/// space. If there is something in the module with the specified name, return
+/// it potentially bitcasted to the right type.
+///
+/// If D is non-null, it specifies a decl that correspond to this. This is used
+/// to set the attributes on the global when it is first created.
+///
+/// If IsForDefinition is true, it is guaranteed that an actual global with
+/// type Ty will be returned, not conversion of a variable with the same
+/// mangled name but some other type.
+llvm::Constant *
+CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
+ LangAS AddrSpace, const VarDecl *D,
+ ForDefinition_t IsForDefinition) {
+ // Lookup the entry, lazily creating it if necessary.
+ llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
+ unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
+ if (Entry) {
+ if (WeakRefReferences.erase(Entry)) {
+ if (D && !D->hasAttr<WeakAttr>())
+ Entry->setLinkage(llvm::Function::ExternalLinkage);
+ }
+
+ // Handle dropped DLL attributes.
+ if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
+ !shouldMapVisibilityToDLLExport(D))
+ Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
+
+ if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
+ getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
+
+ if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
+ return Entry;
+
+ // If there are two attempts to define the same mangled name, issue an
+ // error.
+ if (IsForDefinition && !Entry->isDeclaration()) {
+ GlobalDecl OtherGD;
+ const VarDecl *OtherD;
+
+ // Check that D is not yet in DiagnosedConflictingDefinitions is required
+ // to make sure that we issue an error only once.
+ if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
+ (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
+ (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
+ OtherD->hasInit() &&
+ DiagnosedConflictingDefinitions.insert(D).second) {
+ getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
+ << MangledName;
+ getDiags().Report(OtherGD.getDecl()->getLocation(),
+ diag::note_previous_definition);
+ }
+ }
+
+ // Make sure the result is of the correct type.
+ if (Entry->getType()->getAddressSpace() != TargetAS) {
+ return llvm::ConstantExpr::getAddrSpaceCast(Entry,
+ Ty->getPointerTo(TargetAS));
+ }
+
+ // (If global is requested for a definition, we always need to create a new
+ // global, not just return a bitcast.)
+ if (!IsForDefinition)
+ return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
+ }
+
+ auto DAddrSpace = GetGlobalVarAddressSpace(D);
+
+ auto *GV = new llvm::GlobalVariable(
+ getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
+ MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
+ getContext().getTargetAddressSpace(DAddrSpace));
+
+ // If we already created a global with the same mangled name (but different
+ // type) before, take its name and remove it from its parent.
+ if (Entry) {
+ GV->takeName(Entry);
+
+ if (!Entry->use_empty()) {
+ llvm::Constant *NewPtrForOldDecl =
+ llvm::ConstantExpr::getBitCast(GV, Entry->getType());
+ Entry->replaceAllUsesWith(NewPtrForOldDecl);
+ }
+
+ Entry->eraseFromParent();
+ }
+
+ // This is the first use or definition of a mangled name. If there is a
+ // deferred decl with this name, remember that we need to emit it at the end
+ // of the file.
+ auto DDI = DeferredDecls.find(MangledName);
+ if (DDI != DeferredDecls.end()) {
+ // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
+ // list, and remove it from DeferredDecls (since we don't need it anymore).
+ addDeferredDeclToEmit(DDI->second);
+ EmittedDeferredDecls[DDI->first] = DDI->second;
+ DeferredDecls.erase(DDI);
+ }
+
+ // Handle things which are present even on external declarations.
+ if (D) {
+ if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
+ getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
+
+ // FIXME: This code is overly simple and should be merged with other global
+ // handling.
+ GV->setConstant(isTypeConstant(D->getType(), false));
+
+ GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
+
+ setLinkageForGV(GV, D);
+
+ if (D->getTLSKind()) {
+ if (D->getTLSKind() == VarDecl::TLS_Dynamic)
+ CXXThreadLocals.push_back(D);
+ setTLSMode(GV, *D);
+ }
+
+ setGVProperties(GV, D);
+
+ // If required by the ABI, treat declarations of static data members with
+ // inline initializers as definitions.
+ if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
+ EmitGlobalVarDefinition(D);
+ }
+
+ // Emit section information for extern variables.
+ if (D->hasExternalStorage()) {
+ if (const SectionAttr *SA = D->getAttr<SectionAttr>())
+ GV->setSection(SA->getName());
+ }
+
+ // Handle XCore specific ABI requirements.
+ if (getTriple().getArch() == llvm::Triple::xcore &&
+ D->getLanguageLinkage() == CLanguageLinkage &&
+ D->getType().isConstant(Context) &&
+ isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
+ GV->setSection(".cp.rodata");
+
+ // Check if we a have a const declaration with an initializer, we may be
+ // able to emit it as available_externally to expose it's value to the
+ // optimizer.
+ if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
+ D->getType().isConstQualified() && !GV->hasInitializer() &&
+ !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
+ const auto *Record =
+ Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
+ bool HasMutableFields = Record && Record->hasMutableFields();
+ if (!HasMutableFields) {
+ const VarDecl *InitDecl;
+ const Expr *InitExpr = D->getAnyInitializer(InitDecl);
+ if (InitExpr) {
+ ConstantEmitter emitter(*this);
+ llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
+ if (Init) {
+ auto *InitType = Init->getType();
+ if (GV->getValueType() != InitType) {
+ // The type of the initializer does not match the definition.
+ // This happens when an initializer has a different type from
+ // the type of the global (because of padding at the end of a
+ // structure for instance).
+ GV->setName(StringRef());
+ // Make a new global with the correct type, this is now guaranteed
+ // to work.
+ auto *NewGV = cast<llvm::GlobalVariable>(
+ GetAddrOfGlobalVar(D, InitType, IsForDefinition)
+ ->stripPointerCasts());
+
+ // Erase the old global, since it is no longer used.
+ GV->eraseFromParent();
+ GV = NewGV;
+ } else {
+ GV->setInitializer(Init);
+ GV->setConstant(true);
+ GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
+ }
+ emitter.finalize(GV);
+ }
+ }
+ }
+ }
+ }
+
+ if (GV->isDeclaration()) {
+ getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
+ // External HIP managed variables needed to be recorded for transformation
+ // in both device and host compilations.
+ if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
+ D->hasExternalStorage())
+ getCUDARuntime().handleVarRegistration(D, *GV);
+ }
+
+ if (D)
+ SanitizerMD->reportGlobal(GV, *D);
+
+ LangAS ExpectedAS =
+ D ? D->getType().getAddressSpace()
+ : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
+ assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
+ if (DAddrSpace != ExpectedAS) {
+ return getTargetCodeGenInfo().performAddrSpaceCast(
+ *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
+ }
+
+ return GV;
+}
+
+llvm::Constant *
+CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
+ const Decl *D = GD.getDecl();
+
+ if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
+ return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
+ /*DontDefer=*/false, IsForDefinition);
+
+ if (isa<CXXMethodDecl>(D)) {
+ auto FInfo =
+ &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
+ auto Ty = getTypes().GetFunctionType(*FInfo);
+ return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
+ IsForDefinition);
+ }
+
+ if (isa<FunctionDecl>(D)) {
+ const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
+ llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
+ return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
+ IsForDefinition);
+ }
+
+ return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
+}
+
+llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
+ StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
+ llvm::Align Alignment) {
+ llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
+ llvm::GlobalVariable *OldGV = nullptr;
+
+ if (GV) {
+ // Check if the variable has the right type.
+ if (GV->getValueType() == Ty)
+ return GV;
+
+ // Because C++ name mangling, the only way we can end up with an already
+ // existing global with the same name is if it has been declared extern "C".
+ assert(GV->isDeclaration() && "Declaration has wrong type!");
+ OldGV = GV;
+ }
+
+ // Create a new variable.
+ GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
+ Linkage, nullptr, Name);
+
+ if (OldGV) {
+ // Replace occurrences of the old variable if needed.
+ GV->takeName(OldGV);
+
+ if (!OldGV->use_empty()) {
+ llvm::Constant *NewPtrForOldDecl =
+ llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
+ OldGV->replaceAllUsesWith(NewPtrForOldDecl);
+ }
+
+ OldGV->eraseFromParent();
+ }
+
+ if (supportsCOMDAT() && GV->isWeakForLinker() &&
+ !GV->hasAvailableExternallyLinkage())
+ GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
+
+ GV->setAlignment(Alignment);
+
+ return GV;
+}
+
+/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
+/// given global variable. If Ty is non-null and if the global doesn't exist,
+/// then it will be created with the specified type instead of whatever the
+/// normal requested type would be. If IsForDefinition is true, it is guaranteed
+/// that an actual global with type Ty will be returned, not conversion of a
+/// variable with the same mangled name but some other type.
+llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
+ llvm::Type *Ty,
+ ForDefinition_t IsForDefinition) {
+ assert(D->hasGlobalStorage() && "Not a global variable");
+ QualType ASTTy = D->getType();
+ if (!Ty)
+ Ty = getTypes().ConvertTypeForMem(ASTTy);
+
+ StringRef MangledName = getMangledName(D);
+ return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
+ IsForDefinition);
+}
+
+/// CreateRuntimeVariable - Create a new runtime global variable with the
+/// specified type and name.
+llvm::Constant *
+CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
+ StringRef Name) {
+ LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
+ : LangAS::Default;
+ auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
+ setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
+ return Ret;
+}
+
+void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
+ assert(!D->getInit() && "Cannot emit definite definitions here!");
+
+ StringRef MangledName = getMangledName(D);
+ llvm::GlobalValue *GV = GetGlobalValue(MangledName);
+
+ // We already have a definition, not declaration, with the same mangled name.
+ // Emitting of declaration is not required (and actually overwrites emitted
+ // definition).
+ if (GV && !GV->isDeclaration())
+ return;
+
+ // If we have not seen a reference to this variable yet, place it into the
+ // deferred declarations table to be emitted if needed later.
+ if (!MustBeEmitted(D) && !GV) {
+ DeferredDecls[MangledName] = D;
+ return;
+ }
+
+ // The tentative definition is the only definition.
+ EmitGlobalVarDefinition(D);
+}
+
+void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
+ EmitExternalVarDeclaration(D);
+}
+
+CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
+ return Context.toCharUnitsFromBits(
+ getDataLayout().getTypeStoreSizeInBits(Ty));
+}
+
+LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
+ if (LangOpts.OpenCL) {
+ LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
+ assert(AS == LangAS::opencl_global ||
+ AS == LangAS::opencl_global_device ||
+ AS == LangAS::opencl_global_host ||
+ AS == LangAS::opencl_constant ||
+ AS == LangAS::opencl_local ||
+ AS >= LangAS::FirstTargetAddressSpace);
+ return AS;
+ }
+
+ if (LangOpts.SYCLIsDevice &&
+ (!D || D->getType().getAddressSpace() == LangAS::Default))
+ return LangAS::sycl_global;
+
+ if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
+ if (D && D->hasAttr<CUDAConstantAttr>())
+ return LangAS::cuda_constant;
+ else if (D && D->hasAttr<CUDASharedAttr>())
+ return LangAS::cuda_shared;
+ else if (D && D->hasAttr<CUDADeviceAttr>())
+ return LangAS::cuda_device;
+ else if (D && D->getType().isConstQualified())
+ return LangAS::cuda_constant;
+ else
+ return LangAS::cuda_device;
+ }
+
+ if (LangOpts.OpenMP) {
+ LangAS AS;
+ if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
+ return AS;
+ }
+ return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
+}
+
+LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
+ // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
+ if (LangOpts.OpenCL)
+ return LangAS::opencl_constant;
+ if (LangOpts.SYCLIsDevice)
+ return LangAS::sycl_global;
+ if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
+ // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
+ // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
+ // with OpVariable instructions with Generic storage class which is not
+ // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
+ // UniformConstant storage class is not viable as pointers to it may not be
+ // casted to Generic pointers which are used to model HIP's "flat" pointers.
+ return LangAS::cuda_device;
+ if (auto AS = getTarget().getConstantAddressSpace())
+ return *AS;
+ return LangAS::Default;
+}
+
+// In address space agnostic languages, string literals are in default address
+// space in AST. However, certain targets (e.g. amdgcn) request them to be
+// emitted in constant address space in LLVM IR. To be consistent with other
+// parts of AST, string literal global variables in constant address space
+// need to be casted to default address space before being put into address
+// map and referenced by other part of CodeGen.
+// In OpenCL, string literals are in constant address space in AST, therefore
+// they should not be casted to default address space.
+static llvm::Constant *
+castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
+ llvm::GlobalVariable *GV) {
+ llvm::Constant *Cast = GV;
+ if (!CGM.getLangOpts().OpenCL) {
+ auto AS = CGM.GetGlobalConstantAddressSpace();
+ if (AS != LangAS::Default)
+ Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
+ CGM, GV, AS, LangAS::Default,
+ GV->getValueType()->getPointerTo(
+ CGM.getContext().getTargetAddressSpace(LangAS::Default)));
+ }
+ return Cast;
+}
+
+template<typename SomeDecl>
+void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
+ llvm::GlobalValue *GV) {
+ if (!getLangOpts().CPlusPlus)
+ return;
+
+ // Must have 'used' attribute, or else inline assembly can't rely on
+ // the name existing.
+ if (!D->template hasAttr<UsedAttr>())
+ return;
+
+ // Must have internal linkage and an ordinary name.
+ if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
+ return;
+
+ // Must be in an extern "C" context. Entities declared directly within
+ // a record are not extern "C" even if the record is in such a context.
+ const SomeDecl *First = D->getFirstDecl();
+ if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
+ return;
+
+ // OK, this is an internal linkage entity inside an extern "C" linkage
+ // specification. Make a note of that so we can give it the "expected"
+ // mangled name if nothing else is using that name.
+ std::pair<StaticExternCMap::iterator, bool> R =
+ StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
+
+ // If we have multiple internal linkage entities with the same name
+ // in extern "C" regions, none of them gets that name.
+ if (!R.second)
+ R.first->second = nullptr;
+}
+
+static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
+ if (!CGM.supportsCOMDAT())
+ return false;
+
+ if (D.hasAttr<SelectAnyAttr>())
+ return true;
+
+ GVALinkage Linkage;
+ if (auto *VD = dyn_cast<VarDecl>(&D))
+ Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
+ else
+ Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
+
+ switch (Linkage) {
+ case GVA_Internal:
+ case GVA_AvailableExternally:
+ case GVA_StrongExternal:
+ return false;
+ case GVA_DiscardableODR:
+ case GVA_StrongODR:
+ return true;
+ }
+ llvm_unreachable("No such linkage");
+}
+
+void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
+ llvm::GlobalObject &GO) {
+ if (!shouldBeInCOMDAT(*this, D))
+ return;
+ GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
+}
+
+/// Pass IsTentative as true if you want to create a tentative definition.
+void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
+ bool IsTentative) {
+ // OpenCL global variables of sampler type are translated to function calls,
+ // therefore no need to be translated.
+ QualType ASTTy = D->getType();
+ if (getLangOpts().OpenCL && ASTTy->isSamplerT())
+ return;
+
+ // If this is OpenMP device, check if it is legal to emit this global
+ // normally.
+ if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
+ OpenMPRuntime->emitTargetGlobalVariable(D))
+ return;
+
+ llvm::TrackingVH<llvm::Constant> Init;
+ bool NeedsGlobalCtor = false;
+ // Whether the definition of the variable is available externally.
+ // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
+ // since this is the job for its original source.
+ bool IsDefinitionAvailableExternally =
+ getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
+ bool NeedsGlobalDtor =
+ !IsDefinitionAvailableExternally &&
+ D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
+
+ const VarDecl *InitDecl;
+ const Expr *InitExpr = D->getAnyInitializer(InitDecl);
+
+ std::optional<ConstantEmitter> emitter;
+
+ // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
+ // as part of their declaration." Sema has already checked for
+ // error cases, so we just need to set Init to UndefValue.
+ bool IsCUDASharedVar =
+ getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
+ // Shadows of initialized device-side global variables are also left
+ // undefined.
+ // Managed Variables should be initialized on both host side and device side.
+ bool IsCUDAShadowVar =
+ !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
+ (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
+ D->hasAttr<CUDASharedAttr>());
+ bool IsCUDADeviceShadowVar =
+ getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
+ (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
+ D->getType()->isCUDADeviceBuiltinTextureType());
+ if (getLangOpts().CUDA &&
+ (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
+ Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
+ else if (D->hasAttr<LoaderUninitializedAttr>())
+ Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
+ else if (!InitExpr) {
+ // This is a tentative definition; tentative definitions are
+ // implicitly initialized with { 0 }.
+ //
+ // Note that tentative definitions are only emitted at the end of
+ // a translation unit, so they should never have incomplete
+ // type. In addition, EmitTentativeDefinition makes sure that we
+ // never attempt to emit a tentative definition if a real one
+ // exists. A use may still exists, however, so we still may need
+ // to do a RAUW.
+ assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
+ Init = EmitNullConstant(D->getType());
+ } else {
+ initializedGlobalDecl = GlobalDecl(D);
+ emitter.emplace(*this);
+ llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
+ if (!Initializer) {
+ QualType T = InitExpr->getType();
+ if (D->getType()->isReferenceType())
+ T = D->getType();
+
+ if (getLangOpts().CPlusPlus) {
+ if (InitDecl->hasFlexibleArrayInit(getContext()))
+ ErrorUnsupported(D, "flexible array initializer");
+ Init = EmitNullConstant(T);
+
+ if (!IsDefinitionAvailableExternally)
+ NeedsGlobalCtor = true;
+ } else {
+ ErrorUnsupported(D, "static initializer");
+ Init = llvm::UndefValue::get(getTypes().ConvertType(T));
+ }
+ } else {
+ Init = Initializer;
+ // We don't need an initializer, so remove the entry for the delayed
+ // initializer position (just in case this entry was delayed) if we
+ // also don't need to register a destructor.
+ if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
+ DelayedCXXInitPosition.erase(D);
+
+#ifndef NDEBUG
+ CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
+ InitDecl->getFlexibleArrayInitChars(getContext());
+ CharUnits CstSize = CharUnits::fromQuantity(
+ getDataLayout().getTypeAllocSize(Init->getType()));
+ assert(VarSize == CstSize && "Emitted constant has unexpected size");
+#endif
+ }
+ }
+
+ llvm::Type* InitType = Init->getType();
+ llvm::Constant *Entry =
+ GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
+
+ // Strip off pointer casts if we got them.
+ Entry = Entry->stripPointerCasts();
+
+ // Entry is now either a Function or GlobalVariable.
+ auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
+
+ // We have a definition after a declaration with the wrong type.
+ // We must make a new GlobalVariable* and update everything that used OldGV
+ // (a declaration or tentative definition) with the new GlobalVariable*
+ // (which will be a definition).
+ //
+ // This happens if there is a prototype for a global (e.g.
+ // "extern int x[];") and then a definition of a different type (e.g.
+ // "int x[10];"). This also happens when an initializer has a different type
+ // from the type of the global (this happens with unions).
+ if (!GV || GV->getValueType() != InitType ||
+ GV->getType()->getAddressSpace() !=
+ getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
+
+ // Move the old entry aside so that we'll create a new one.
+ Entry->setName(StringRef());
+
+ // Make a new global with the correct type, this is now guaranteed to work.
+ GV = cast<llvm::GlobalVariable>(
+ GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
+ ->stripPointerCasts());
+
+ // Replace all uses of the old global with the new global
+ llvm::Constant *NewPtrForOldDecl =
+ llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
+ Entry->getType());
+ Entry->replaceAllUsesWith(NewPtrForOldDecl);
+
+ // Erase the old global, since it is no longer used.
+ cast<llvm::GlobalValue>(Entry)->eraseFromParent();
+ }
+
+ MaybeHandleStaticInExternC(D, GV);
+
+ if (D->hasAttr<AnnotateAttr>())
+ AddGlobalAnnotations(D, GV);
+
+ // Set the llvm linkage type as appropriate.
+ llvm::GlobalValue::LinkageTypes Linkage =
+ getLLVMLinkageVarDefinition(D, GV->isConstant());
+
+ // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
+ // the device. [...]"
+ // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
+ // __device__, declares a variable that: [...]
+ // Is accessible from all the threads within the grid and from the host
+ // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
+ // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
+ if (GV && LangOpts.CUDA) {
+ if (LangOpts.CUDAIsDevice) {
+ if (Linkage != llvm::GlobalValue::InternalLinkage &&
+ (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
+ D->getType()->isCUDADeviceBuiltinSurfaceType() ||
+ D->getType()->isCUDADeviceBuiltinTextureType()))
+ GV->setExternallyInitialized(true);
+ } else {
+ getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
+ }
+ getCUDARuntime().handleVarRegistration(D, *GV);
+ }
+
+ GV->setInitializer(Init);
+ if (emitter)
+ emitter->finalize(GV);
+
+ // If it is safe to mark the global 'constant', do so now.
+ GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
+ isTypeConstant(D->getType(), true));
+
+ // If it is in a read-only section, mark it 'constant'.
+ if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
+ const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
+ if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
+ GV->setConstant(true);
+ }
+
+ CharUnits AlignVal = getContext().getDeclAlign(D);
+ // Check for alignment specifed in an 'omp allocate' directive.
+ if (std::optional<CharUnits> AlignValFromAllocate =
+ getOMPAllocateAlignment(D))
+ AlignVal = *AlignValFromAllocate;
+ GV->setAlignment(AlignVal.getAsAlign());
+
+ // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
+ // function is only defined alongside the variable, not also alongside
+ // callers. Normally, all accesses to a thread_local go through the
+ // thread-wrapper in order to ensure initialization has occurred, underlying
+ // variable will never be used other than the thread-wrapper, so it can be
+ // converted to internal linkage.
+ //
+ // However, if the variable has the 'constinit' attribute, it _can_ be
+ // referenced directly, without calling the thread-wrapper, so the linkage
+ // must not be changed.
+ //
+ // Additionally, if the variable isn't plain external linkage, e.g. if it's
+ // weak or linkonce, the de-duplication semantics are important to preserve,
+ // so we don't change the linkage.
+ if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
+ Linkage == llvm::GlobalValue::ExternalLinkage &&
+ Context.getTargetInfo().getTriple().isOSDarwin() &&
+ !D->hasAttr<ConstInitAttr>())
+ Linkage = llvm::GlobalValue::InternalLinkage;
+
+ GV->setLinkage(Linkage);
+ if (D->hasAttr<DLLImportAttr>())
+ GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
+ else if (D->hasAttr<DLLExportAttr>())
+ GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
+ else
+ GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
+
+ if (Linkage == llvm::GlobalVariable::CommonLinkage) {
+ // common vars aren't constant even if declared const.
+ GV->setConstant(false);
+ // Tentative definition of global variables may be initialized with
+ // non-zero null pointers. In this case they should have weak linkage
+ // since common linkage must have zero initializer and must not have
+ // explicit section therefore cannot have non-zero initial value.
+ if (!GV->getInitializer()->isNullValue())
+ GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
+ }
+
+ setNonAliasAttributes(D, GV);
+
+ if (D->getTLSKind() && !GV->isThreadLocal()) {
+ if (D->getTLSKind() == VarDecl::TLS_Dynamic)
+ CXXThreadLocals.push_back(D);
+ setTLSMode(GV, *D);
+ }
+
+ maybeSetTrivialComdat(*D, *GV);
+
+ // Emit the initializer function if necessary.
+ if (NeedsGlobalCtor || NeedsGlobalDtor)
+ EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
+
+ SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
+
+ // Emit global variable debug information.
+ if (CGDebugInfo *DI = getModuleDebugInfo())
+ if (getCodeGenOpts().hasReducedDebugInfo())
+ DI->EmitGlobalVariable(GV, D);
+}
+
+void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
+ if (CGDebugInfo *DI = getModuleDebugInfo())
+ if (getCodeGenOpts().hasReducedDebugInfo()) {
+ QualType ASTTy = D->getType();
+ llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
+ llvm::Constant *GV =
+ GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
+ DI->EmitExternalVariable(
+ cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
+ }
+}
+
+static bool isVarDeclStrongDefinition(const ASTContext &Context,
+ CodeGenModule &CGM, const VarDecl *D,
+ bool NoCommon) {
+ // Don't give variables common linkage if -fno-common was specified unless it
+ // was overridden by a NoCommon attribute.
+ if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
+ return true;
+
+ // C11 6.9.2/2:
+ // A declaration of an identifier for an object that has file scope without
+ // an initializer, and without a storage-class specifier or with the
+ // storage-class specifier static, constitutes a tentative definition.
+ if (D->getInit() || D->hasExternalStorage())
+ return true;
+
+ // A variable cannot be both common and exist in a section.
+ if (D->hasAttr<SectionAttr>())
+ return true;
+
+ // A variable cannot be both common and exist in a section.
+ // We don't try to determine which is the right section in the front-end.
+ // If no specialized section name is applicable, it will resort to default.
+ if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
+ D->hasAttr<PragmaClangDataSectionAttr>() ||
+ D->hasAttr<PragmaClangRelroSectionAttr>() ||
+ D->hasAttr<PragmaClangRodataSectionAttr>())
+ return true;
+
+ // Thread local vars aren't considered common linkage.
+ if (D->getTLSKind())
+ return true;
+
+ // Tentative definitions marked with WeakImportAttr are true definitions.
+ if (D->hasAttr<WeakImportAttr>())
+ return true;
+
+ // A variable cannot be both common and exist in a comdat.
+ if (shouldBeInCOMDAT(CGM, *D))
+ return true;
+
+ // Declarations with a required alignment do not have common linkage in MSVC
+ // mode.
+ if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
+ if (D->hasAttr<AlignedAttr>())
+ return true;
+ QualType VarType = D->getType();
+ if (Context.isAlignmentRequired(VarType))
+ return true;
+
+ if (const auto *RT = VarType->getAs<RecordType>()) {
+ const RecordDecl *RD = RT->getDecl();
+ for (const FieldDecl *FD : RD->fields()) {
+ if (FD->isBitField())
+ continue;
+ if (FD->hasAttr<AlignedAttr>())
+ return true;
+ if (Context.isAlignmentRequired(FD->getType()))
+ return true;
+ }
+ }
+ }
+
+ // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
+ // common symbols, so symbols with greater alignment requirements cannot be
+ // common.
+ // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
+ // alignments for common symbols via the aligncomm directive, so this
+ // restriction only applies to MSVC environments.
+ if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
+ Context.getTypeAlignIfKnown(D->getType()) >
+ Context.toBits(CharUnits::fromQuantity(32)))
+ return true;
+
+ return false;
+}
+
+llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
+ const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
+ if (Linkage == GVA_Internal)
+ return llvm::Function::InternalLinkage;
+
+ if (D->hasAttr<WeakAttr>())
+ return llvm::GlobalVariable::WeakAnyLinkage;
+
+ if (const auto *FD = D->getAsFunction())
+ if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
+ return llvm::GlobalVariable::LinkOnceAnyLinkage;
+
+ // We are guaranteed to have a strong definition somewhere else,
+ // so we can use available_externally linkage.
+ if (Linkage == GVA_AvailableExternally)
+ return llvm::GlobalValue::AvailableExternallyLinkage;
+
+ // Note that Apple's kernel linker doesn't support symbol
+ // coalescing, so we need to avoid linkonce and weak linkages there.
+ // Normally, this means we just map to internal, but for explicit
+ // instantiations we'll map to external.
+
+ // In C++, the compiler has to emit a definition in every translation unit
+ // that references the function. We should use linkonce_odr because
+ // a) if all references in this translation unit are optimized away, we
+ // don't need to codegen it. b) if the function persists, it needs to be
+ // merged with other definitions. c) C++ has the ODR, so we know the
+ // definition is dependable.
+ if (Linkage == GVA_DiscardableODR)
+ return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
+ : llvm::Function::InternalLinkage;
+
+ // An explicit instantiation of a template has weak linkage, since
+ // explicit instantiations can occur in multiple translation units
+ // and must all be equivalent. However, we are not allowed to
+ // throw away these explicit instantiations.
+ //
+ // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
+ // so say that CUDA templates are either external (for kernels) or internal.
+ // This lets llvm perform aggressive inter-procedural optimizations. For
+ // -fgpu-rdc case, device function calls across multiple TU's are allowed,
+ // therefore we need to follow the normal linkage paradigm.
+ if (Linkage == GVA_StrongODR) {
+ if (getLangOpts().AppleKext)
+ return llvm::Function::ExternalLinkage;
+ if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
+ !getLangOpts().GPURelocatableDeviceCode)
+ return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
+ : llvm::Function::InternalLinkage;
+ return llvm::Function::WeakODRLinkage;
+ }
+
+ // C++ doesn't have tentative definitions and thus cannot have common
+ // linkage.
+ if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
+ !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
+ CodeGenOpts.NoCommon))
+ return llvm::GlobalVariable::CommonLinkage;
+
+ // selectany symbols are externally visible, so use weak instead of
+ // linkonce. MSVC optimizes away references to const selectany globals, so
+ // all definitions should be the same and ODR linkage should be used.
+ // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
+ if (D->hasAttr<SelectAnyAttr>())
+ return llvm::GlobalVariable::WeakODRLinkage;
+
+ // Otherwise, we have strong external linkage.
+ assert(Linkage == GVA_StrongExternal);
+ return llvm::GlobalVariable::ExternalLinkage;
+}
+
+llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
+ const VarDecl *VD, bool IsConstant) {
+ GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
+ return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
+}
+
+/// Replace the uses of a function that was declared with a non-proto type.
+/// We want to silently drop extra arguments from call sites
+static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
+ llvm::Function *newFn) {
+ // Fast path.
+ if (old->use_empty()) return;
+
+ llvm::Type *newRetTy = newFn->getReturnType();
+ SmallVector<llvm::Value*, 4> newArgs;
+
+ for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
+ ui != ue; ) {
+ llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
+ llvm::User *user = use->getUser();
+
+ // Recognize and replace uses of bitcasts. Most calls to
+ // unprototyped functions will use bitcasts.
+ if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
+ if (bitcast->getOpcode() == llvm::Instruction::BitCast)
+ replaceUsesOfNonProtoConstant(bitcast, newFn);
+ continue;
+ }
+
+ // Recognize calls to the function.
+ llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
+ if (!callSite) continue;
+ if (!callSite->isCallee(&*use))
+ continue;
+
+ // If the return types don't match exactly, then we can't
+ // transform this call unless it's dead.
+ if (callSite->getType() != newRetTy && !callSite->use_empty())
+ continue;
+
+ // Get the call site's attribute list.
+ SmallVector<llvm::AttributeSet, 8> newArgAttrs;
+ llvm::AttributeList oldAttrs = callSite->getAttributes();
+
+ // If the function was passed too few arguments, don't transform.
+ unsigned newNumArgs = newFn->arg_size();
+ if (callSite->arg_size() < newNumArgs)
+ continue;
+
+ // If extra arguments were passed, we silently drop them.
+ // If any of the types mismatch, we don't transform.
+ unsigned argNo = 0;
+ bool dontTransform = false;
+ for (llvm::Argument &A : newFn->args()) {
+ if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
+ dontTransform = true;
+ break;
+ }
+
+ // Add any parameter attributes.
+ newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
+ argNo++;
+ }
+ if (dontTransform)
+ continue;
+
+ // Okay, we can transform this. Create the new call instruction and copy
+ // over the required information.
+ newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
+
+ // Copy over any operand bundles.
+ SmallVector<llvm::OperandBundleDef, 1> newBundles;
+ callSite->getOperandBundlesAsDefs(newBundles);
+
+ llvm::CallBase *newCall;
+ if (isa<llvm::CallInst>(callSite)) {
+ newCall =
+ llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
+ } else {
+ auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
+ newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
+ oldInvoke->getUnwindDest(), newArgs,
+ newBundles, "", callSite);
+ }
+ newArgs.clear(); // for the next iteration
+
+ if (!newCall->getType()->isVoidTy())
+ newCall->takeName(callSite);
+ newCall->setAttributes(
+ llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
+ oldAttrs.getRetAttrs(), newArgAttrs));
+ newCall->setCallingConv(callSite->getCallingConv());
+
+ // Finally, remove the old call, replacing any uses with the new one.
+ if (!callSite->use_empty())
+ callSite->replaceAllUsesWith(newCall);
+
+ // Copy debug location attached to CI.
+ if (callSite->getDebugLoc())
+ newCall->setDebugLoc(callSite->getDebugLoc());
+
+ callSite->eraseFromParent();
+ }
+}
+
+/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
+/// implement a function with no prototype, e.g. "int foo() {}". If there are
+/// existing call uses of the old function in the module, this adjusts them to
+/// call the new function directly.
+///
+/// This is not just a cleanup: the always_inline pass requires direct calls to
+/// functions to be able to inline them. If there is a bitcast in the way, it
+/// won't inline them. Instcombine normally deletes these calls, but it isn't
+/// run at -O0.
+static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
+ llvm::Function *NewFn) {
+ // If we're redefining a global as a function, don't transform it.
+ if (!isa<llvm::Function>(Old)) return;
+
+ replaceUsesOfNonProtoConstant(Old, NewFn);
+}
+
+void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
+ auto DK = VD->isThisDeclarationADefinition();
+ if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
+ return;
+
+ TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
+ // If we have a definition, this might be a deferred decl. If the
+ // instantiation is explicit, make sure we emit it at the end.
+ if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
+ GetAddrOfGlobalVar(VD);
+
+ EmitTopLevelDecl(VD);
+}
+
+void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
+ llvm::GlobalValue *GV) {
+ const auto *D = cast<FunctionDecl>(GD.getDecl());
+
+ // Compute the function info and LLVM type.
+ const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
+ llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
+
+ // Get or create the prototype for the function.
+ if (!GV || (GV->getValueType() != Ty))
+ GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
+ /*DontDefer=*/true,
+ ForDefinition));
+
+ // Already emitted.
+ if (!GV->isDeclaration())
+ return;
+
+ // We need to set linkage and visibility on the function before
+ // generating code for it because various parts of IR generation
+ // want to propagate this information down (e.g. to local static
+ // declarations).
+ auto *Fn = cast<llvm::Function>(GV);
+ setFunctionLinkage(GD, Fn);
+
+ // FIXME: this is redundant with part of setFunctionDefinitionAttributes
+ setGVProperties(Fn, GD);
+
+ MaybeHandleStaticInExternC(D, Fn);
+
+ maybeSetTrivialComdat(*D, *Fn);
+
+ // Set CodeGen attributes that represent floating point environment.
+ setLLVMFunctionFEnvAttributes(D, Fn);
+
+ CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
+
+ setNonAliasAttributes(GD, Fn);
+ SetLLVMFunctionAttributesForDefinition(D, Fn);
+
+ if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
+ AddGlobalCtor(Fn, CA->getPriority());
+ if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
+ AddGlobalDtor(Fn, DA->getPriority(), true);
+ if (D->hasAttr<AnnotateAttr>())
+ AddGlobalAnnotations(D, Fn);
+}
+
+void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
+ const auto *D = cast<ValueDecl>(GD.getDecl());
+ const AliasAttr *AA = D->getAttr<AliasAttr>();
+ assert(AA && "Not an alias?");
+
+ StringRef MangledName = getMangledName(GD);
+
+ if (AA->getAliasee() == MangledName) {
+ Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
+ return;
+ }
+
+ // If there is a definition in the module, then it wins over the alias.
+ // This is dubious, but allow it to be safe. Just ignore the alias.
+ llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
+ if (Entry && !Entry->isDeclaration())
+ return;
+
+ Aliases.push_back(GD);
+
+ llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
+
+ // Create a reference to the named value. This ensures that it is emitted
+ // if a deferred decl.
+ llvm::Constant *Aliasee;
+ llvm::GlobalValue::LinkageTypes LT;
+ if (isa<llvm::FunctionType>(DeclTy)) {
+ Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
+ /*ForVTable=*/false);
+ LT = getFunctionLinkage(GD);
+ } else {
+ Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
+ /*D=*/nullptr);
+ if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
+ LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
+ else
+ LT = getFunctionLinkage(GD);
+ }
+
+ // Create the new alias itself, but don't set a name yet.
+ unsigned AS = Aliasee->getType()->getPointerAddressSpace();
+ auto *GA =
+ llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
+
+ if (Entry) {
+ if (GA->getAliasee() == Entry) {
+ Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
+ return;
+ }
+
+ assert(Entry->isDeclaration());
+
+ // If there is a declaration in the module, then we had an extern followed
+ // by the alias, as in:
+ // extern int test6();
+ // ...
+ // int test6() __attribute__((alias("test7")));
+ //
+ // Remove it and replace uses of it with the alias.
+ GA->takeName(Entry);
+
+ Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
+ Entry->getType()));
+ Entry->eraseFromParent();
+ } else {
+ GA->setName(MangledName);
+ }
+
+ // Set attributes which are particular to an alias; this is a
+ // specialization of the attributes which may be set on a global
+ // variable/function.
+ if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
+ D->isWeakImported()) {
+ GA->setLinkage(llvm::Function::WeakAnyLinkage);
+ }
+
+ if (const auto *VD = dyn_cast<VarDecl>(D))
+ if (VD->getTLSKind())
+ setTLSMode(GA, *VD);
+
+ SetCommonAttributes(GD, GA);
+
+ // Emit global alias debug information.
+ if (isa<VarDecl>(D))
+ if (CGDebugInfo *DI = getModuleDebugInfo())
+ DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
+}
+
+void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
+ const auto *D = cast<ValueDecl>(GD.getDecl());
+ const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
+ assert(IFA && "Not an ifunc?");
+
+ StringRef MangledName = getMangledName(GD);
+
+ if (IFA->getResolver() == MangledName) {
+ Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
+ return;
+ }
+
+ // Report an error if some definition overrides ifunc.
+ llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
+ if (Entry && !Entry->isDeclaration()) {
+ GlobalDecl OtherGD;
+ if (lookupRepresentativeDecl(MangledName, OtherGD) &&
+ DiagnosedConflictingDefinitions.insert(GD).second) {
+ Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
+ << MangledName;
+ Diags.Report(OtherGD.getDecl()->getLocation(),
+ diag::note_previous_definition);
+ }
+ return;
+ }
+
+ Aliases.push_back(GD);
+
+ llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
+ llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
+ llvm::Constant *Resolver =
+ GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
+ /*ForVTable=*/false);
+ llvm::GlobalIFunc *GIF =
+ llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
+ "", Resolver, &getModule());
+ if (Entry) {
+ if (GIF->getResolver() == Entry) {
+ Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
+ return;
+ }
+ assert(Entry->isDeclaration());
+
+ // If there is a declaration in the module, then we had an extern followed
+ // by the ifunc, as in:
+ // extern int test();
+ // ...
+ // int test() __attribute__((ifunc("resolver")));
+ //
+ // Remove it and replace uses of it with the ifunc.
+ GIF->takeName(Entry);
+
+ Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
+ Entry->getType()));
+ Entry->eraseFromParent();
+ } else
+ GIF->setName(MangledName);
+
+ SetCommonAttributes(GD, GIF);
+}
+
+llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
+ ArrayRef<llvm::Type*> Tys) {
+ return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
+ Tys);
+}
+
+static llvm::StringMapEntry<llvm::GlobalVariable *> &
+GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
+ const StringLiteral *Literal, bool TargetIsLSB,
+ bool &IsUTF16, unsigned &StringLength) {
+ StringRef String = Literal->getString();
+ unsigned NumBytes = String.size();
+
+ // Check for simple case.
+ if (!Literal->containsNonAsciiOrNull()) {
+ StringLength = NumBytes;
+ return *Map.insert(std::make_pair(String, nullptr)).first;
+ }
+
+ // Otherwise, convert the UTF8 literals into a string of shorts.
+ IsUTF16 = true;
+
+ SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
+ const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
+ llvm::UTF16 *ToPtr = &ToBuf[0];
+
+ (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
+ ToPtr + NumBytes, llvm::strictConversion);
+
+ // ConvertUTF8toUTF16 returns the length in ToPtr.
+ StringLength = ToPtr - &ToBuf[0];
+
+ // Add an explicit null.
+ *ToPtr = 0;
+ return *Map.insert(std::make_pair(
+ StringRef(reinterpret_cast<const char *>(ToBuf.data()),
+ (StringLength + 1) * 2),
+ nullptr)).first;
+}
+
+ConstantAddress
+CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
+ unsigned StringLength = 0;
+ bool isUTF16 = false;
+ llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
+ GetConstantCFStringEntry(CFConstantStringMap, Literal,
+ getDataLayout().isLittleEndian(), isUTF16,
+ StringLength);
+
+ if (auto *C = Entry.second)
+ return ConstantAddress(
+ C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
+
+ llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
+ llvm::Constant *Zeros[] = { Zero, Zero };
+
+ const ASTContext &Context = getContext();
+ const llvm::Triple &Triple = getTriple();
+
+ const auto CFRuntime = getLangOpts().CFRuntime;
+ const bool IsSwiftABI =
+ static_cast<unsigned>(CFRuntime) >=
+ static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
+ const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
+
+ // If we don't already have it, get __CFConstantStringClassReference.
+ if (!CFConstantStringClassRef) {
+ const char *CFConstantStringClassName = "__CFConstantStringClassReference";
+ llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
+ Ty = llvm::ArrayType::get(Ty, 0);
+
+ switch (CFRuntime) {
+ default: break;
+ case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
+ case LangOptions::CoreFoundationABI::Swift5_0:
+ CFConstantStringClassName =
+ Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
+ : "$s10Foundation19_NSCFConstantStringCN";
+ Ty = IntPtrTy;
+ break;
+ case LangOptions::CoreFoundationABI::Swift4_2:
+ CFConstantStringClassName =
+ Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
+ : "$S10Foundation19_NSCFConstantStringCN";
+ Ty = IntPtrTy;
+ break;
+ case LangOptions::CoreFoundationABI::Swift4_1:
+ CFConstantStringClassName =
+ Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
+ : "__T010Foundation19_NSCFConstantStringCN";
+ Ty = IntPtrTy;
+ break;
+ }
+
+ llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
+
+ if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
+ llvm::GlobalValue *GV = nullptr;
+
+ if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
+ IdentifierInfo &II = Context.Idents.get(GV->getName());
+ TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
+ DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
+
+ const VarDecl *VD = nullptr;
+ for (const auto *Result : DC->lookup(&II))
+ if ((VD = dyn_cast<VarDecl>(Result)))
+ break;
+
+ if (Triple.isOSBinFormatELF()) {
+ if (!VD)
+ GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
+ } else {
+ GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
+ if (!VD || !VD->hasAttr<DLLExportAttr>())
+ GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
+ else
+ GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
+ }
+
+ setDSOLocal(GV);
+ }
+ }
+
+ // Decay array -> ptr
+ CFConstantStringClassRef =
+ IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
+ : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
+ }
+
+ QualType CFTy = Context.getCFConstantStringType();
+
+ auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
+
+ ConstantInitBuilder Builder(*this);
+ auto Fields = Builder.beginStruct(STy);
+
+ // Class pointer.
+ Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
+
+ // Flags.
+ if (IsSwiftABI) {
+ Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
+ Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
+ } else {
+ Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
+ }
+
+ // String pointer.
+ llvm::Constant *C = nullptr;
+ if (isUTF16) {
+ auto Arr = llvm::ArrayRef(
+ reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
+ Entry.first().size() / 2);
+ C = llvm::ConstantDataArray::get(VMContext, Arr);
+ } else {
+ C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
+ }
+
+ // Note: -fwritable-strings doesn't make the backing store strings of
+ // CFStrings writable. (See <rdar://problem/10657500>)
+ auto *GV =
+ new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
+ llvm::GlobalValue::PrivateLinkage, C, ".str");
+ GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+ // Don't enforce the target's minimum global alignment, since the only use
+ // of the string is via this class initializer.
+ CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
+ : Context.getTypeAlignInChars(Context.CharTy);
+ GV->setAlignment(Align.getAsAlign());
+
+ // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
+ // Without it LLVM can merge the string with a non unnamed_addr one during
+ // LTO. Doing that changes the section it ends in, which surprises ld64.
+ if (Triple.isOSBinFormatMachO())
+ GV->setSection(isUTF16 ? "__TEXT,__ustring"
+ : "__TEXT,__cstring,cstring_literals");
+ // Make sure the literal ends up in .rodata to allow for safe ICF and for
+ // the static linker to adjust permissions to read-only later on.
+ else if (Triple.isOSBinFormatELF())
+ GV->setSection(".rodata");
+
+ // String.
+ llvm::Constant *Str =
+ llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
+
+ if (isUTF16)
+ // Cast the UTF16 string to the correct type.
+ Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
+ Fields.add(Str);
+
+ // String length.
+ llvm::IntegerType *LengthTy =
+ llvm::IntegerType::get(getModule().getContext(),
+ Context.getTargetInfo().getLongWidth());
+ if (IsSwiftABI) {
+ if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
+ CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
+ LengthTy = Int32Ty;
+ else
+ LengthTy = IntPtrTy;
+ }
+ Fields.addInt(LengthTy, StringLength);
+
+ // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
+ // properly aligned on 32-bit platforms.
+ CharUnits Alignment =
+ IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
+
+ // The struct.
+ GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
+ /*isConstant=*/false,
+ llvm::GlobalVariable::PrivateLinkage);
+ GV->addAttribute("objc_arc_inert");
+ switch (Triple.getObjectFormat()) {
+ case llvm::Triple::UnknownObjectFormat:
+ llvm_unreachable("unknown file format");
+ case llvm::Triple::DXContainer:
+ case llvm::Triple::GOFF:
+ case llvm::Triple::SPIRV:
+ case llvm::Triple::XCOFF:
+ llvm_unreachable("unimplemented");
+ case llvm::Triple::COFF:
+ case llvm::Triple::ELF:
+ case llvm::Triple::Wasm:
+ GV->setSection("cfstring");
+ break;
+ case llvm::Triple::MachO:
+ GV->setSection("__DATA,__cfstring");
+ break;
+ }
+ Entry.second = GV;
+
+ return ConstantAddress(GV, GV->getValueType(), Alignment);
+}
+
+bool CodeGenModule::getExpressionLocationsEnabled() const {
+ return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
+}
+
+QualType CodeGenModule::getObjCFastEnumerationStateType() {
+ if (ObjCFastEnumerationStateType.isNull()) {
+ RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
+ D->startDefinition();
+
+ QualType FieldTypes[] = {
+ Context.UnsignedLongTy,
+ Context.getPointerType(Context.getObjCIdType()),
+ Context.getPointerType(Context.UnsignedLongTy),
+ Context.getConstantArrayType(Context.UnsignedLongTy,
+ llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
+ };
+
+ for (size_t i = 0; i < 4; ++i) {
+ FieldDecl *Field = FieldDecl::Create(Context,
+ D,
+ SourceLocation(),
+ SourceLocation(), nullptr,
+ FieldTypes[i], /*TInfo=*/nullptr,
+ /*BitWidth=*/nullptr,
+ /*Mutable=*/false,
+ ICIS_NoInit);
+ Field->setAccess(AS_public);
+ D->addDecl(Field);
+ }
+
+ D->completeDefinition();
+ ObjCFastEnumerationStateType = Context.getTagDeclType(D);
+ }
+
+ return ObjCFastEnumerationStateType;
+}
+
+llvm::Constant *
+CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
+ assert(!E->getType()->isPointerType() && "Strings are always arrays");
+
+ // Don't emit it as the address of the string, emit the string data itself
+ // as an inline array.
+ if (E->getCharByteWidth() == 1) {
+ SmallString<64> Str(E->getString());
+
+ // Resize the string to the right size, which is indicated by its type.
+ const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
+ Str.resize(CAT->getSize().getZExtValue());
+ return llvm::ConstantDataArray::getString(VMContext, Str, false);
+ }
+
+ auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
+ llvm::Type *ElemTy = AType->getElementType();
+ unsigned NumElements = AType->getNumElements();
+
+ // Wide strings have either 2-byte or 4-byte elements.
+ if (ElemTy->getPrimitiveSizeInBits() == 16) {
+ SmallVector<uint16_t, 32> Elements;
+ Elements.reserve(NumElements);
+
+ for(unsigned i = 0, e = E->getLength(); i != e; ++i)
+ Elements.push_back(E->getCodeUnit(i));
+ Elements.resize(NumElements);
+ return llvm::ConstantDataArray::get(VMContext, Elements);
+ }
+
+ assert(ElemTy->getPrimitiveSizeInBits() == 32);
+ SmallVector<uint32_t, 32> Elements;
+ Elements.reserve(NumElements);
+
+ for(unsigned i = 0, e = E->getLength(); i != e; ++i)
+ Elements.push_back(E->getCodeUnit(i));
+ Elements.resize(NumElements);
+ return llvm::ConstantDataArray::get(VMContext, Elements);
+}
+
+static llvm::GlobalVariable *
+GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
+ CodeGenModule &CGM, StringRef GlobalName,
+ CharUnits Alignment) {
+ unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
+ CGM.GetGlobalConstantAddressSpace());
+
+ llvm::Module &M = CGM.getModule();
+ // Create a global variable for this string
+ auto *GV = new llvm::GlobalVariable(
+ M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
+ nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
+ GV->setAlignment(Alignment.getAsAlign());
+ GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+ if (GV->isWeakForLinker()) {
+ assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
+ GV->setComdat(M.getOrInsertComdat(GV->getName()));
+ }
+ CGM.setDSOLocal(GV);
+
+ return GV;
+}
+
+/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
+/// constant array for the given string literal.
+ConstantAddress
+CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
+ StringRef Name) {
+ CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
+
+ llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
+ llvm::GlobalVariable **Entry = nullptr;
+ if (!LangOpts.WritableStrings) {
+ Entry = &ConstantStringMap[C];
+ if (auto GV = *Entry) {
+ if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
+ GV->setAlignment(Alignment.getAsAlign());
+ return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
+ GV->getValueType(), Alignment);
+ }
+ }
+
+ SmallString<256> MangledNameBuffer;
+ StringRef GlobalVariableName;
+ llvm::GlobalValue::LinkageTypes LT;
+
+ // Mangle the string literal if that's how the ABI merges duplicate strings.
+ // Don't do it if they are writable, since we don't want writes in one TU to
+ // affect strings in another.
+ if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
+ !LangOpts.WritableStrings) {
+ llvm::raw_svector_ostream Out(MangledNameBuffer);
+ getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
+ LT = llvm::GlobalValue::LinkOnceODRLinkage;
+ GlobalVariableName = MangledNameBuffer;
+ } else {
+ LT = llvm::GlobalValue::PrivateLinkage;
+ GlobalVariableName = Name;
+ }
+
+ auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
+
+ CGDebugInfo *DI = getModuleDebugInfo();
+ if (DI && getCodeGenOpts().hasReducedDebugInfo())
+ DI->AddStringLiteralDebugInfo(GV, S);
+
+ if (Entry)
+ *Entry = GV;
+
+ SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
+
+ return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
+ GV->getValueType(), Alignment);
+}
+
+/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
+/// array for the given ObjCEncodeExpr node.
+ConstantAddress
+CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
+ std::string Str;
+ getContext().getObjCEncodingForType(E->getEncodedType(), Str);
+
+ return GetAddrOfConstantCString(Str);
+}
+
+/// GetAddrOfConstantCString - Returns a pointer to a character array containing
+/// the literal and a terminating '\0' character.
+/// The result has pointer to array type.
+ConstantAddress CodeGenModule::GetAddrOfConstantCString(
+ const std::string &Str, const char *GlobalName) {
+ StringRef StrWithNull(Str.c_str(), Str.size() + 1);
+ CharUnits Alignment =
+ getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
+
+ llvm::Constant *C =
+ llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
+
+ // Don't share any string literals if strings aren't constant.
+ llvm::GlobalVariable **Entry = nullptr;
+ if (!LangOpts.WritableStrings) {
+ Entry = &ConstantStringMap[C];
+ if (auto GV = *Entry) {
+ if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
+ GV->setAlignment(Alignment.getAsAlign());
+ return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
+ GV->getValueType(), Alignment);
+ }
+ }
+
+ // Get the default prefix if a name wasn't specified.
+ if (!GlobalName)
+ GlobalName = ".str";
+ // Create a global variable for this.
+ auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
+ GlobalName, Alignment);
+ if (Entry)
+ *Entry = GV;
+
+ return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
+ GV->getValueType(), Alignment);
+}
+
+ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
+ const MaterializeTemporaryExpr *E, const Expr *Init) {
+ assert((E->getStorageDuration() == SD_Static ||
+ E->getStorageDuration() == SD_Thread) && "not a global temporary");
+ const auto *VD = cast<VarDecl>(E->getExtendingDecl());
+
+ // If we're not materializing a subobject of the temporary, keep the
+ // cv-qualifiers from the type of the MaterializeTemporaryExpr.
+ QualType MaterializedType = Init->getType();
+ if (Init == E->getSubExpr())
+ MaterializedType = E->getType();
+
+ CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
+
+ auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
+ if (!InsertResult.second) {
+ // We've seen this before: either we already created it or we're in the
+ // process of doing so.
+ if (!InsertResult.first->second) {
+ // We recursively re-entered this function, probably during emission of
+ // the initializer. Create a placeholder. We'll clean this up in the
+ // outer call, at the end of this function.
+ llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
+ InsertResult.first->second = new llvm::GlobalVariable(
+ getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
+ nullptr);
+ }
+ return ConstantAddress(InsertResult.first->second,
+ llvm::cast<llvm::GlobalVariable>(
+ InsertResult.first->second->stripPointerCasts())
+ ->getValueType(),
+ Align);
+ }
+
+ // FIXME: If an externally-visible declaration extends multiple temporaries,
+ // we need to give each temporary the same name in every translation unit (and
+ // we also need to make the temporaries externally-visible).
+ SmallString<256> Name;
+ llvm::raw_svector_ostream Out(Name);
+ getCXXABI().getMangleContext().mangleReferenceTemporary(
+ VD, E->getManglingNumber(), Out);
+
+ APValue *Value = nullptr;
+ if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
+ // If the initializer of the extending declaration is a constant
+ // initializer, we should have a cached constant initializer for this
+ // temporary. Note that this might have a different value from the value
+ // computed by evaluating the initializer if the surrounding constant
+ // expression modifies the temporary.
+ Value = E->getOrCreateValue(false);
+ }
+
+ // Try evaluating it now, it might have a constant initializer.
+ Expr::EvalResult EvalResult;
+ if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
+ !EvalResult.hasSideEffects())
+ Value = &EvalResult.Val;
+
+ LangAS AddrSpace =
+ VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
+
+ std::optional<ConstantEmitter> emitter;
+ llvm::Constant *InitialValue = nullptr;
+ bool Constant = false;
+ llvm::Type *Type;
+ if (Value) {
+ // The temporary has a constant initializer, use it.
+ emitter.emplace(*this);
+ InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
+ MaterializedType);
+ Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
+ Type = InitialValue->getType();
+ } else {
+ // No initializer, the initialization will be provided when we
+ // initialize the declaration which performed lifetime extension.
+ Type = getTypes().ConvertTypeForMem(MaterializedType);
+ }
+
+ // Create a global variable for this lifetime-extended temporary.
+ llvm::GlobalValue::LinkageTypes Linkage =
+ getLLVMLinkageVarDefinition(VD, Constant);
+ if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
+ const VarDecl *InitVD;
+ if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
+ isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
+ // Temporaries defined inside a class get linkonce_odr linkage because the
+ // class can be defined in multiple translation units.
+ Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
+ } else {
+ // There is no need for this temporary to have external linkage if the
+ // VarDecl has external linkage.
+ Linkage = llvm::GlobalVariable::InternalLinkage;
+ }
+ }
+ auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
+ auto *GV = new llvm::GlobalVariable(
+ getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
+ /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
+ if (emitter) emitter->finalize(GV);
+ // Don't assign dllimport or dllexport to local linkage globals.
+ if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
+ setGVProperties(GV, VD);
+ if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
+ // The reference temporary should never be dllexport.
+ GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
+ }
+ GV->setAlignment(Align.getAsAlign());
+ if (supportsCOMDAT() && GV->isWeakForLinker())
+ GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
+ if (VD->getTLSKind())
+ setTLSMode(GV, *VD);
+ llvm::Constant *CV = GV;
+ if (AddrSpace != LangAS::Default)
+ CV = getTargetCodeGenInfo().performAddrSpaceCast(
+ *this, GV, AddrSpace, LangAS::Default,
+ Type->getPointerTo(
+ getContext().getTargetAddressSpace(LangAS::Default)));
+
+ // Update the map with the new temporary. If we created a placeholder above,
+ // replace it with the new global now.
+ llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
+ if (Entry) {
+ Entry->replaceAllUsesWith(
+ llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
+ llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
+ }
+ Entry = CV;
+
+ return ConstantAddress(CV, Type, Align);
+}
+
+/// EmitObjCPropertyImplementations - Emit information for synthesized
+/// properties for an implementation.
+void CodeGenModule::EmitObjCPropertyImplementations(const
+ ObjCImplementationDecl *D) {
+ for (const auto *PID : D->property_impls()) {
+ // Dynamic is just for type-checking.
+ if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
+ ObjCPropertyDecl *PD = PID->getPropertyDecl();
+
+ // Determine which methods need to be implemented, some may have
+ // been overridden. Note that ::isPropertyAccessor is not the method
+ // we want, that just indicates if the decl came from a
+ // property. What we want to know is if the method is defined in
+ // this implementation.
+ auto *Getter = PID->getGetterMethodDecl();
+ if (!Getter || Getter->isSynthesizedAccessorStub())
+ CodeGenFunction(*this).GenerateObjCGetter(
+ const_cast<ObjCImplementationDecl *>(D), PID);
+ auto *Setter = PID->getSetterMethodDecl();
+ if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
+ CodeGenFunction(*this).GenerateObjCSetter(
+ const_cast<ObjCImplementationDecl *>(D), PID);
+ }
+ }
+}
+
+static bool needsDestructMethod(ObjCImplementationDecl *impl) {
+ const ObjCInterfaceDecl *iface = impl->getClassInterface();
+ for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
+ ivar; ivar = ivar->getNextIvar())
+ if (ivar->getType().isDestructedType())
+ return true;
+
+ return false;
+}
+
+static bool AllTrivialInitializers(CodeGenModule &CGM,
+ ObjCImplementationDecl *D) {
+ CodeGenFunction CGF(CGM);
+ for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
+ E = D->init_end(); B != E; ++B) {
+ CXXCtorInitializer *CtorInitExp = *B;
+ Expr *Init = CtorInitExp->getInit();
+ if (!CGF.isTrivialInitializer(Init))
+ return false;
+ }
+ return true;
+}
+
+/// EmitObjCIvarInitializations - Emit information for ivar initialization
+/// for an implementation.
+void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
+ // We might need a .cxx_destruct even if we don't have any ivar initializers.
+ if (needsDestructMethod(D)) {
+ IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
+ Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
+ ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
+ getContext(), D->getLocation(), D->getLocation(), cxxSelector,
+ getContext().VoidTy, nullptr, D,
+ /*isInstance=*/true, /*isVariadic=*/false,
+ /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
+ /*isImplicitlyDeclared=*/true,
+ /*isDefined=*/false, ObjCMethodDecl::Required);
+ D->addInstanceMethod(DTORMethod);
+ CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
+ D->setHasDestructors(true);
+ }
+
+ // If the implementation doesn't have any ivar initializers, we don't need
+ // a .cxx_construct.
+ if (D->getNumIvarInitializers() == 0 ||
+ AllTrivialInitializers(*this, D))
+ return;
+
+ IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
+ Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
+ // The constructor returns 'self'.
+ ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
+ getContext(), D->getLocation(), D->getLocation(), cxxSelector,
+ getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
+ /*isVariadic=*/false,
+ /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
+ /*isImplicitlyDeclared=*/true,
+ /*isDefined=*/false, ObjCMethodDecl::Required);
+ D->addInstanceMethod(CTORMethod);
+ CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
+ D->setHasNonZeroConstructors(true);
+}
+
+// EmitLinkageSpec - Emit all declarations in a linkage spec.
+void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
+ if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
+ LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
+ ErrorUnsupported(LSD, "linkage spec");
+ return;
+ }
+
+ EmitDeclContext(LSD);
+}
+
+void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
+ std::unique_ptr<CodeGenFunction> &CurCGF =
+ GlobalTopLevelStmtBlockInFlight.first;
+
+ // We emitted a top-level stmt but after it there is initialization.
+ // Stop squashing the top-level stmts into a single function.
+ if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
+ CurCGF->FinishFunction(D->getEndLoc());
+ CurCGF = nullptr;
+ }
+
+ if (!CurCGF) {
+ // void __stmts__N(void)
+ // FIXME: Ask the ABI name mangler to pick a name.
+ std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
+ FunctionArgList Args;
+ QualType RetTy = getContext().VoidTy;
+ const CGFunctionInfo &FnInfo =
+ getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
+ llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
+ llvm::Function *Fn = llvm::Function::Create(
+ FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
+
+ CurCGF.reset(new CodeGenFunction(*this));
+ GlobalTopLevelStmtBlockInFlight.second = D;
+ CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
+ D->getBeginLoc(), D->getBeginLoc());
+ CXXGlobalInits.push_back(Fn);
+ }
+
+ CurCGF->EmitStmt(D->getStmt());
+}
+
+void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
+ for (auto *I : DC->decls()) {
+ // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
+ // are themselves considered "top-level", so EmitTopLevelDecl on an
+ // ObjCImplDecl does not recursively visit them. We need to do that in
+ // case they're nested inside another construct (LinkageSpecDecl /
+ // ExportDecl) that does stop them from being considered "top-level".
+ if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
+ for (auto *M : OID->methods())
+ EmitTopLevelDecl(M);
+ }
+
+ EmitTopLevelDecl(I);
+ }
+}
+
+/// EmitTopLevelDecl - Emit code for a single top level declaration.
+void CodeGenModule::EmitTopLevelDecl(Decl *D) {
+ // Ignore dependent declarations.
+ if (D->isTemplated())
+ return;
+
+ // Consteval function shouldn't be emitted.
+ if (auto *FD = dyn_cast<FunctionDecl>(D))
+ if (FD->isConsteval())
+ return;
+
+ switch (D->getKind()) {
+ case Decl::CXXConversion:
+ case Decl::CXXMethod:
+ case Decl::Function:
+ EmitGlobal(cast<FunctionDecl>(D));
+ // Always provide some coverage mapping
+ // even for the functions that aren't emitted.
+ AddDeferredUnusedCoverageMapping(D);
+ break;
+
+ case Decl::CXXDeductionGuide:
+ // Function-like, but does not result in code emission.
+ break;
+
+ case Decl::Var:
+ case Decl::Decomposition:
+ case Decl::VarTemplateSpecialization:
+ EmitGlobal(cast<VarDecl>(D));
+ if (auto *DD = dyn_cast<DecompositionDecl>(D))
+ for (auto *B : DD->bindings())
+ if (auto *HD = B->getHoldingVar())
+ EmitGlobal(HD);
+ break;
+
+ // Indirect fields from global anonymous structs and unions can be
+ // ignored; only the actual variable requires IR gen support.
+ case Decl::IndirectField:
+ break;
+
+ // C++ Decls
+ case Decl::Namespace:
+ EmitDeclContext(cast<NamespaceDecl>(D));
+ break;
+ case Decl::ClassTemplateSpecialization: {
+ const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
+ if (CGDebugInfo *DI = getModuleDebugInfo())
+ if (Spec->getSpecializationKind() ==
+ TSK_ExplicitInstantiationDefinition &&
+ Spec->hasDefinition())
+ DI->completeTemplateDefinition(*Spec);
+ } [[fallthrough]];
+ case Decl::CXXRecord: {
+ CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
+ if (CGDebugInfo *DI = getModuleDebugInfo()) {
+ if (CRD->hasDefinition())
+ DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
+ if (auto *ES = D->getASTContext().getExternalSource())
+ if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
+ DI->completeUnusedClass(*CRD);
+ }
+ // Emit any static data members, they may be definitions.
+ for (auto *I : CRD->decls())
+ if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
+ EmitTopLevelDecl(I);
+ break;
+ }
+ // No code generation needed.
+ case Decl::UsingShadow:
+ case Decl::ClassTemplate:
+ case Decl::VarTemplate:
+ case Decl::Concept:
+ case Decl::VarTemplatePartialSpecialization:
+ case Decl::FunctionTemplate:
+ case Decl::TypeAliasTemplate:
+ case Decl::Block:
+ case Decl::Empty:
+ case Decl::Binding:
+ break;
+ case Decl::Using: // using X; [C++]
+ if (CGDebugInfo *DI = getModuleDebugInfo())
+ DI->EmitUsingDecl(cast<UsingDecl>(*D));
+ break;
+ case Decl::UsingEnum: // using enum X; [C++]
+ if (CGDebugInfo *DI = getModuleDebugInfo())
+ DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
+ break;
+ case Decl::NamespaceAlias:
+ if (CGDebugInfo *DI = getModuleDebugInfo())
+ DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
+ break;
+ case Decl::UsingDirective: // using namespace X; [C++]
+ if (CGDebugInfo *DI = getModuleDebugInfo())
+ DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
+ break;
+ case Decl::CXXConstructor:
+ getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
+ break;
+ case Decl::CXXDestructor:
+ getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
+ break;
+
+ case Decl::StaticAssert:
+ // Nothing to do.
+ break;
+
+ // Objective-C Decls
+
+ // Forward declarations, no (immediate) code generation.
+ case Decl::ObjCInterface:
+ case Decl::ObjCCategory:
+ break;
+
+ case Decl::ObjCProtocol: {
+ auto *Proto = cast<ObjCProtocolDecl>(D);
+ if (Proto->isThisDeclarationADefinition())
+ ObjCRuntime->GenerateProtocol(Proto);
+ break;
+ }
+
+ case Decl::ObjCCategoryImpl:
+ // Categories have properties but don't support synthesize so we
+ // can ignore them here.
+ ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
+ break;
+
+ case Decl::ObjCImplementation: {
+ auto *OMD = cast<ObjCImplementationDecl>(D);
+ EmitObjCPropertyImplementations(OMD);
+ EmitObjCIvarInitializations(OMD);
+ ObjCRuntime->GenerateClass(OMD);
+ // Emit global variable debug information.
+ if (CGDebugInfo *DI = getModuleDebugInfo())
+ if (getCodeGenOpts().hasReducedDebugInfo())
+ DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
+ OMD->getClassInterface()), OMD->getLocation());
+ break;
+ }
+ case Decl::ObjCMethod: {
+ auto *OMD = cast<ObjCMethodDecl>(D);
+ // If this is not a prototype, emit the body.
+ if (OMD->getBody())
+ CodeGenFunction(*this).GenerateObjCMethod(OMD);
+ break;
+ }
+ case Decl::ObjCCompatibleAlias:
+ ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
+ break;
+
+ case Decl::PragmaComment: {
+ const auto *PCD = cast<PragmaCommentDecl>(D);
+ switch (PCD->getCommentKind()) {
+ case PCK_Unknown:
+ llvm_unreachable("unexpected pragma comment kind");
+ case PCK_Linker:
+ AppendLinkerOptions(PCD->getArg());
+ break;
+ case PCK_Lib:
+ AddDependentLib(PCD->getArg());
+ break;
+ case PCK_Compiler:
+ case PCK_ExeStr:
+ case PCK_User:
+ break; // We ignore all of these.
+ }
+ break;
+ }
+
+ case Decl::PragmaDetectMismatch: {
+ const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
+ AddDetectMismatch(PDMD->getName(), PDMD->getValue());
+ break;
+ }
+
+ case Decl::LinkageSpec:
+ EmitLinkageSpec(cast<LinkageSpecDecl>(D));
+ break;
+
+ case Decl::FileScopeAsm: {
+ // File-scope asm is ignored during device-side CUDA compilation.
+ if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
+ break;
+ // File-scope asm is ignored during device-side OpenMP compilation.
+ if (LangOpts.OpenMPIsDevice)
+ break;
+ // File-scope asm is ignored during device-side SYCL compilation.
+ if (LangOpts.SYCLIsDevice)
+ break;
+ auto *AD = cast<FileScopeAsmDecl>(D);
+ getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
+ break;
+ }
+
+ case Decl::TopLevelStmt:
+ EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
+ break;
+
+ case Decl::Import: {
+ auto *Import = cast<ImportDecl>(D);
+
+ // If we've already imported this module, we're done.
+ if (!ImportedModules.insert(Import->getImportedModule()))
+ break;
+
+ // Emit debug information for direct imports.
+ if (!Import->getImportedOwningModule()) {
+ if (CGDebugInfo *DI = getModuleDebugInfo())
+ DI->EmitImportDecl(*Import);
+ }
+
+ // For C++ standard modules we are done - we will call the module
+ // initializer for imported modules, and that will likewise call those for
+ // any imports it has.
+ if (CXX20ModuleInits && Import->getImportedOwningModule() &&
+ !Import->getImportedOwningModule()->isModuleMapModule())
+ break;
+
+ // For clang C++ module map modules the initializers for sub-modules are
+ // emitted here.
+
+ // Find all of the submodules and emit the module initializers.
+ llvm::SmallPtrSet<clang::Module *, 16> Visited;
+ SmallVector<clang::Module *, 16> Stack;
+ Visited.insert(Import->getImportedModule());
+ Stack.push_back(Import->getImportedModule());
+
+ while (!Stack.empty()) {
+ clang::Module *Mod = Stack.pop_back_val();
+ if (!EmittedModuleInitializers.insert(Mod).second)
+ continue;
+
+ for (auto *D : Context.getModuleInitializers(Mod))
+ EmitTopLevelDecl(D);
+
+ // Visit the submodules of this module.
+ for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
+ SubEnd = Mod->submodule_end();
+ Sub != SubEnd; ++Sub) {
+ // Skip explicit children; they need to be explicitly imported to emit
+ // the initializers.
+ if ((*Sub)->IsExplicit)
+ continue;
+
+ if (Visited.insert(*Sub).second)
+ Stack.push_back(*Sub);
+ }
+ }
+ break;
+ }
+
+ case Decl::Export:
+ EmitDeclContext(cast<ExportDecl>(D));
+ break;
+
+ case Decl::OMPThreadPrivate:
+ EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
+ break;
+
+ case Decl::OMPAllocate:
+ EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
+ break;
+
+ case Decl::OMPDeclareReduction:
+ EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
+ break;
+
+ case Decl::OMPDeclareMapper:
+ EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
+ break;
+
+ case Decl::OMPRequires:
+ EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
+ break;
+
+ case Decl::Typedef:
+ case Decl::TypeAlias: // using foo = bar; [C++11]
+ if (CGDebugInfo *DI = getModuleDebugInfo())
+ DI->EmitAndRetainType(
+ getContext().getTypedefType(cast<TypedefNameDecl>(D)));
+ break;
+
+ case Decl::Record:
+ if (CGDebugInfo *DI = getModuleDebugInfo())
+ if (cast<RecordDecl>(D)->getDefinition())
+ DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
+ break;
+
+ case Decl::Enum:
+ if (CGDebugInfo *DI = getModuleDebugInfo())
+ if (cast<EnumDecl>(D)->getDefinition())
+ DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
+ break;
+
+ case Decl::HLSLBuffer:
+ getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
+ break;
+
+ default:
+ // Make sure we handled everything we should, every other kind is a
+ // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
+ // function. Need to recode Decl::Kind to do that easily.
+ assert(isa<TypeDecl>(D) && "Unsupported decl kind");
+ break;
+ }
+}
+
+void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
+ // Do we need to generate coverage mapping?
+ if (!CodeGenOpts.CoverageMapping)
+ return;
+ switch (D->getKind()) {
+ case Decl::CXXConversion:
+ case Decl::CXXMethod:
+ case Decl::Function:
+ case Decl::ObjCMethod:
+ case Decl::CXXConstructor:
+ case Decl::CXXDestructor: {
+ if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
+ break;
+ SourceManager &SM = getContext().getSourceManager();
+ if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
+ break;
+ auto I = DeferredEmptyCoverageMappingDecls.find(D);
+ if (I == DeferredEmptyCoverageMappingDecls.end())
+ DeferredEmptyCoverageMappingDecls[D] = true;
+ break;
+ }
+ default:
+ break;
+ };
+}
+
+void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
+ // Do we need to generate coverage mapping?
+ if (!CodeGenOpts.CoverageMapping)
+ return;
+ if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
+ if (Fn->isTemplateInstantiation())
+ ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
+ }
+ auto I = DeferredEmptyCoverageMappingDecls.find(D);
+ if (I == DeferredEmptyCoverageMappingDecls.end())
+ DeferredEmptyCoverageMappingDecls[D] = false;
+ else
+ I->second = false;
+}
+
+void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
+ // We call takeVector() here to avoid use-after-free.
+ // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
+ // we deserialize function bodies to emit coverage info for them, and that
+ // deserializes more declarations. How should we handle that case?
+ for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
+ if (!Entry.second)
+ continue;
+ const Decl *D = Entry.first;
+ switch (D->getKind()) {
+ case Decl::CXXConversion:
+ case Decl::CXXMethod:
+ case Decl::Function:
+ case Decl::ObjCMethod: {
+ CodeGenPGO PGO(*this);
+ GlobalDecl GD(cast<FunctionDecl>(D));
+ PGO.emitEmptyCounterMapping(D, getMangledName(GD),
+ getFunctionLinkage(GD));
+ break;
+ }
+ case Decl::CXXConstructor: {
+ CodeGenPGO PGO(*this);
+ GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
+ PGO.emitEmptyCounterMapping(D, getMangledName(GD),
+ getFunctionLinkage(GD));
+ break;
+ }
+ case Decl::CXXDestructor: {
+ CodeGenPGO PGO(*this);
+ GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
+ PGO.emitEmptyCounterMapping(D, getMangledName(GD),
+ getFunctionLinkage(GD));
+ break;
+ }
+ default:
+ break;
+ };
+ }
+}
+
+void CodeGenModule::EmitMainVoidAlias() {
+ // In order to transition away from "__original_main" gracefully, emit an
+ // alias for "main" in the no-argument case so that libc can detect when
+ // new-style no-argument main is in used.
+ if (llvm::Function *F = getModule().getFunction("main")) {
+ if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
+ F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
+ auto *GA = llvm::GlobalAlias::create("__main_void", F);
+ GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
+ }
+ }
+}
+
+/// Turns the given pointer into a constant.
+static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
+ const void *Ptr) {
+ uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
+ llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
+ return llvm::ConstantInt::get(i64, PtrInt);
+}
+
+static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
+ llvm::NamedMDNode *&GlobalMetadata,
+ GlobalDecl D,
+ llvm::GlobalValue *Addr) {
+ if (!GlobalMetadata)
+ GlobalMetadata =
+ CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
+
+ // TODO: should we report variant information for ctors/dtors?
+ llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
+ llvm::ConstantAsMetadata::get(GetPointerConstant(
+ CGM.getLLVMContext(), D.getDecl()))};
+ GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
+}
+
+bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
+ llvm::GlobalValue *CppFunc) {
+ // Store the list of ifuncs we need to replace uses in.
+ llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
+ // List of ConstantExprs that we should be able to delete when we're done
+ // here.
+ llvm::SmallVector<llvm::ConstantExpr *> CEs;
+
+ // It isn't valid to replace the extern-C ifuncs if all we find is itself!
+ if (Elem == CppFunc)
+ return false;
+
+ // First make sure that all users of this are ifuncs (or ifuncs via a
+ // bitcast), and collect the list of ifuncs and CEs so we can work on them
+ // later.
+ for (llvm::User *User : Elem->users()) {
+ // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
+ // ifunc directly. In any other case, just give up, as we don't know what we
+ // could break by changing those.
+ if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
+ if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
+ return false;
+
+ for (llvm::User *CEUser : ConstExpr->users()) {
+ if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
+ IFuncs.push_back(IFunc);
+ } else {
+ return false;
+ }
+ }
+ CEs.push_back(ConstExpr);
+ } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
+ IFuncs.push_back(IFunc);
+ } else {
+ // This user is one we don't know how to handle, so fail redirection. This
+ // will result in an ifunc retaining a resolver name that will ultimately
+ // fail to be resolved to a defined function.
+ return false;
+ }
+ }
+
+ // Now we know this is a valid case where we can do this alias replacement, we
+ // need to remove all of the references to Elem (and the bitcasts!) so we can
+ // delete it.
+ for (llvm::GlobalIFunc *IFunc : IFuncs)
+ IFunc->setResolver(nullptr);
+ for (llvm::ConstantExpr *ConstExpr : CEs)
+ ConstExpr->destroyConstant();
+
+ // We should now be out of uses for the 'old' version of this function, so we
+ // can erase it as well.
+ Elem->eraseFromParent();
+
+ for (llvm::GlobalIFunc *IFunc : IFuncs) {
+ // The type of the resolver is always just a function-type that returns the
+ // type of the IFunc, so create that here. If the type of the actual
+ // resolver doesn't match, it just gets bitcast to the right thing.
+ auto *ResolverTy =
+ llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
+ llvm::Constant *Resolver = GetOrCreateLLVMFunction(
+ CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
+ IFunc->setResolver(Resolver);
+ }
+ return true;
+}
+
+/// For each function which is declared within an extern "C" region and marked
+/// as 'used', but has internal linkage, create an alias from the unmangled
+/// name to the mangled name if possible. People expect to be able to refer
+/// to such functions with an unmangled name from inline assembly within the
+/// same translation unit.
+void CodeGenModule::EmitStaticExternCAliases() {
+ if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
+ return;
+ for (auto &I : StaticExternCValues) {
+ IdentifierInfo *Name = I.first;
+ llvm::GlobalValue *Val = I.second;
+
+ // If Val is null, that implies there were multiple declarations that each
+ // had a claim to the unmangled name. In this case, generation of the alias
+ // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
+ if (!Val)
+ break;
+
+ llvm::GlobalValue *ExistingElem =
+ getModule().getNamedValue(Name->getName());
+
+ // If there is either not something already by this name, or we were able to
+ // replace all uses from IFuncs, create the alias.
+ if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
+ addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
+ }
+}
+
+bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
+ GlobalDecl &Result) const {
+ auto Res = Manglings.find(MangledName);
+ if (Res == Manglings.end())
+ return false;
+ Result = Res->getValue();
+ return true;
+}
+
+/// Emits metadata nodes associating all the global values in the
+/// current module with the Decls they came from. This is useful for
+/// projects using IR gen as a subroutine.
+///
+/// Since there's currently no way to associate an MDNode directly
+/// with an llvm::GlobalValue, we create a global named metadata
+/// with the name 'clang.global.decl.ptrs'.
+void CodeGenModule::EmitDeclMetadata() {
+ llvm::NamedMDNode *GlobalMetadata = nullptr;
+
+ for (auto &I : MangledDeclNames) {
+ llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
+ // Some mangled names don't necessarily have an associated GlobalValue
+ // in this module, e.g. if we mangled it for DebugInfo.
+ if (Addr)
+ EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
+ }
+}
+
+/// Emits metadata nodes for all the local variables in the current
+/// function.
+void CodeGenFunction::EmitDeclMetadata() {
+ if (LocalDeclMap.empty()) return;
+
+ llvm::LLVMContext &Context = getLLVMContext();
+
+ // Find the unique metadata ID for this name.
+ unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
+
+ llvm::NamedMDNode *GlobalMetadata = nullptr;
+
+ for (auto &I : LocalDeclMap) {
+ const Decl *D = I.first;
+ llvm::Value *Addr = I.second.getPointer();
+ if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
+ llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
+ Alloca->setMetadata(
+ DeclPtrKind, llvm::MDNode::get(
+ Context, llvm::ValueAsMetadata::getConstant(DAddr)));
+ } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
+ GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
+ EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
+ }
+ }
+}
+
+void CodeGenModule::EmitVersionIdentMetadata() {
+ llvm::NamedMDNode *IdentMetadata =
+ TheModule.getOrInsertNamedMetadata("llvm.ident");
+ std::string Version = getClangFullVersion();
+ llvm::LLVMContext &Ctx = TheModule.getContext();
+
+ llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
+ IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
+}
+
+void CodeGenModule::EmitCommandLineMetadata() {
+ llvm::NamedMDNode *CommandLineMetadata =
+ TheModule.getOrInsertNamedMetadata("llvm.commandline");
+ std::string CommandLine = getCodeGenOpts().RecordCommandLine;
+ llvm::LLVMContext &Ctx = TheModule.getContext();
+
+ llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
+ CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
+}
+
+void CodeGenModule::EmitCoverageFile() {
+ if (getCodeGenOpts().CoverageDataFile.empty() &&
+ getCodeGenOpts().CoverageNotesFile.empty())
+ return;
+
+ llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
+ if (!CUNode)
+ return;
+
+ llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
+ llvm::LLVMContext &Ctx = TheModule.getContext();
+ auto *CoverageDataFile =
+ llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
+ auto *CoverageNotesFile =
+ llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
+ for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
+ llvm::MDNode *CU = CUNode->getOperand(i);
+ llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
+ GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
+ }
+}
+
+llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
+ bool ForEH) {
+ // Return a bogus pointer if RTTI is disabled, unless it's for EH.
+ // FIXME: should we even be calling this method if RTTI is disabled
+ // and it's not for EH?
+ if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
+ (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
+ getTriple().isNVPTX()))
+ return llvm::Constant::getNullValue(Int8PtrTy);
+
+ if (ForEH && Ty->isObjCObjectPointerType() &&
+ LangOpts.ObjCRuntime.isGNUFamily())
+ return ObjCRuntime->GetEHType(Ty);
+
+ return getCXXABI().getAddrOfRTTIDescriptor(Ty);
+}
+
+void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
+ // Do not emit threadprivates in simd-only mode.
+ if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
+ return;
+ for (auto RefExpr : D->varlists()) {
+ auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
+ bool PerformInit =
+ VD->getAnyInitializer() &&
+ !VD->getAnyInitializer()->isConstantInitializer(getContext(),
+ /*ForRef=*/false);
+
+ Address Addr(GetAddrOfGlobalVar(VD),
+ getTypes().ConvertTypeForMem(VD->getType()),
+ getContext().getDeclAlign(VD));
+ if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
+ VD, Addr, RefExpr->getBeginLoc(), PerformInit))
+ CXXGlobalInits.push_back(InitFunction);
+ }
+}
+
+llvm::Metadata *
+CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
+ StringRef Suffix) {
+ if (auto *FnType = T->getAs<FunctionProtoType>())
+ T = getContext().getFunctionType(
+ FnType->getReturnType(), FnType->getParamTypes(),
+ FnType->getExtProtoInfo().withExceptionSpec(EST_None));
+
+ llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
+ if (InternalId)
+ return InternalId;
+
+ if (isExternallyVisible(T->getLinkage())) {
+ std::string OutName;
+ llvm::raw_string_ostream Out(OutName);
+ getCXXABI().getMangleContext().mangleTypeName(T, Out);
+ Out << Suffix;
+
+ InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
+ } else {
+ InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
+ llvm::ArrayRef<llvm::Metadata *>());
+ }
+
+ return InternalId;
+}
+
+llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
+ return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
+}
+
+llvm::Metadata *
+CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
+ return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
+}
+
+// Generalize pointer types to a void pointer with the qualifiers of the
+// originally pointed-to type, e.g. 'const char *' and 'char * const *'
+// generalize to 'const void *' while 'char *' and 'const char **' generalize to
+// 'void *'.
+static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
+ if (!Ty->isPointerType())
+ return Ty;
+
+ return Ctx.getPointerType(
+ QualType(Ctx.VoidTy).withCVRQualifiers(
+ Ty->getPointeeType().getCVRQualifiers()));
+}
+
+// Apply type generalization to a FunctionType's return and argument types
+static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
+ if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
+ SmallVector<QualType, 8> GeneralizedParams;
+ for (auto &Param : FnType->param_types())
+ GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
+
+ return Ctx.getFunctionType(
+ GeneralizeType(Ctx, FnType->getReturnType()),
+ GeneralizedParams, FnType->getExtProtoInfo());
+ }
+
+ if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
+ return Ctx.getFunctionNoProtoType(
+ GeneralizeType(Ctx, FnType->getReturnType()));
+
+ llvm_unreachable("Encountered unknown FunctionType");
+}
+
+llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
+ return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
+ GeneralizedMetadataIdMap, ".generalized");
+}
+
+/// Returns whether this module needs the "all-vtables" type identifier.
+bool CodeGenModule::NeedAllVtablesTypeId() const {
+ // Returns true if at least one of vtable-based CFI checkers is enabled and
+ // is not in the trapping mode.
+ return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
+ !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
+ (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
+ !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
+ (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
+ !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
+ (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
+ !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
+}
+
+void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
+ CharUnits Offset,
+ const CXXRecordDecl *RD) {
+ llvm::Metadata *MD =
+ CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
+ VTable->addTypeMetadata(Offset.getQuantity(), MD);
+
+ if (CodeGenOpts.SanitizeCfiCrossDso)
+ if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
+ VTable->addTypeMetadata(Offset.getQuantity(),
+ llvm::ConstantAsMetadata::get(CrossDsoTypeId));
+
+ if (NeedAllVtablesTypeId()) {
+ llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
+ VTable->addTypeMetadata(Offset.getQuantity(), MD);
+ }
+}
+
+llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
+ if (!SanStats)
+ SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
+
+ return *SanStats;
+}
+
+llvm::Value *
+CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
+ CodeGenFunction &CGF) {
+ llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
+ auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
+ auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
+ auto *Call = CGF.EmitRuntimeCall(
+ CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
+ return Call;
+}
+
+CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
+ QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
+ return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
+ /* forPointeeType= */ true);
+}
+
+CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
+ LValueBaseInfo *BaseInfo,
+ TBAAAccessInfo *TBAAInfo,
+ bool forPointeeType) {
+ if (TBAAInfo)
+ *TBAAInfo = getTBAAAccessInfo(T);
+
+ // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
+ // that doesn't return the information we need to compute BaseInfo.
+
+ // Honor alignment typedef attributes even on incomplete types.
+ // We also honor them straight for C++ class types, even as pointees;
+ // there's an expressivity gap here.
+ if (auto TT = T->getAs<TypedefType>()) {
+ if (auto Align = TT->getDecl()->getMaxAlignment()) {
+ if (BaseInfo)
+ *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
+ return getContext().toCharUnitsFromBits(Align);
+ }
+ }
+
+ bool AlignForArray = T->isArrayType();
+
+ // Analyze the base element type, so we don't get confused by incomplete
+ // array types.
+ T = getContext().getBaseElementType(T);
+
+ if (T->isIncompleteType()) {
+ // We could try to replicate the logic from
+ // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
+ // type is incomplete, so it's impossible to test. We could try to reuse
+ // getTypeAlignIfKnown, but that doesn't return the information we need
+ // to set BaseInfo. So just ignore the possibility that the alignment is
+ // greater than one.
+ if (BaseInfo)
+ *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
+ return CharUnits::One();
+ }
+
+ if (BaseInfo)
+ *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
+
+ CharUnits Alignment;
+ const CXXRecordDecl *RD;
+ if (T.getQualifiers().hasUnaligned()) {
+ Alignment = CharUnits::One();
+ } else if (forPointeeType && !AlignForArray &&
+ (RD = T->getAsCXXRecordDecl())) {
+ // For C++ class pointees, we don't know whether we're pointing at a
+ // base or a complete object, so we generally need to use the
+ // non-virtual alignment.
+ Alignment = getClassPointerAlignment(RD);
+ } else {
+ Alignment = getContext().getTypeAlignInChars(T);
+ }
+
+ // Cap to the global maximum type alignment unless the alignment
+ // was somehow explicit on the type.
+ if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
+ if (Alignment.getQuantity() > MaxAlign &&
+ !getContext().isAlignmentRequired(T))
+ Alignment = CharUnits::fromQuantity(MaxAlign);
+ }
+ return Alignment;
+}
+
+bool CodeGenModule::stopAutoInit() {
+ unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
+ if (StopAfter) {
+ // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
+ // used
+ if (NumAutoVarInit >= StopAfter) {
+ return true;
+ }
+ if (!NumAutoVarInit) {
+ unsigned DiagID = getDiags().getCustomDiagID(
+ DiagnosticsEngine::Warning,
+ "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
+ "number of times ftrivial-auto-var-init=%1 gets applied.");
+ getDiags().Report(DiagID)
+ << StopAfter
+ << (getContext().getLangOpts().getTrivialAutoVarInit() ==
+ LangOptions::TrivialAutoVarInitKind::Zero
+ ? "zero"
+ : "pattern");
+ }
+ ++NumAutoVarInit;
+ }
+ return false;
+}
+
+void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
+ const Decl *D) const {
+ // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
+ // postfix beginning with '.' since the symbol name can be demangled.
+ if (LangOpts.HIP)
+ OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
+ else
+ OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
+
+ // If the CUID is not specified we try to generate a unique postfix.
+ if (getLangOpts().CUID.empty()) {
+ SourceManager &SM = getContext().getSourceManager();
+ PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
+ assert(PLoc.isValid() && "Source location is expected to be valid.");
+
+ // Get the hash of the user defined macros.
+ llvm::MD5 Hash;
+ llvm::MD5::MD5Result Result;
+ for (const auto &Arg : PreprocessorOpts.Macros)
+ Hash.update(Arg.first);
+ Hash.final(Result);
+
+ // Get the UniqueID for the file containing the decl.
+ llvm::sys::fs::UniqueID ID;
+ if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
+ PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
+ assert(PLoc.isValid() && "Source location is expected to be valid.");
+ if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
+ SM.getDiagnostics().Report(diag::err_cannot_open_file)
+ << PLoc.getFilename() << EC.message();
+ }
+ OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
+ << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
+ } else {
+ OS << getContext().getCUIDHash();
+ }
+}
+
+void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
+ assert(DeferredDeclsToEmit.empty() &&
+ "Should have emitted all decls deferred to emit.");
+ assert(NewBuilder->DeferredDecls.empty() &&
+ "Newly created module should not have deferred decls");
+ NewBuilder->DeferredDecls = std::move(DeferredDecls);
+
+ assert(NewBuilder->DeferredVTables.empty() &&
+ "Newly created module should not have deferred vtables");
+ NewBuilder->DeferredVTables = std::move(DeferredVTables);
+
+ assert(NewBuilder->MangledDeclNames.empty() &&
+ "Newly created module should not have mangled decl names");
+ assert(NewBuilder->Manglings.empty() &&
+ "Newly created module should not have manglings");
+ NewBuilder->Manglings = std::move(Manglings);
+
+ assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied");
+ NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
+
+ NewBuilder->TBAA = std::move(TBAA);
+
+ assert(NewBuilder->EmittedDeferredDecls.empty() &&
+ "Still have (unmerged) EmittedDeferredDecls deferred decls");
+
+ NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls);
+
+ NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
+}