aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang16/include/clang/Basic/arm_mve_defs.td
diff options
context:
space:
mode:
authorvitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
committervitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
commit6ffe9e53658409f212834330e13564e4952558f6 (patch)
tree85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/clang16/include/clang/Basic/arm_mve_defs.td
parent726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff)
downloadydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/clang16/include/clang/Basic/arm_mve_defs.td')
-rw-r--r--contrib/libs/clang16/include/clang/Basic/arm_mve_defs.td601
1 files changed, 601 insertions, 0 deletions
diff --git a/contrib/libs/clang16/include/clang/Basic/arm_mve_defs.td b/contrib/libs/clang16/include/clang/Basic/arm_mve_defs.td
new file mode 100644
index 0000000000..1a090c08cc
--- /dev/null
+++ b/contrib/libs/clang16/include/clang/Basic/arm_mve_defs.td
@@ -0,0 +1,601 @@
+//===- arm_mve_defs.td - definitions and infrastructure for arm_mve.td ----===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// The definitions in this file are designed to work in close conjunction with
+// clang/utils/TableGen/MveEmitter.cpp. Comments in there will probably be
+// useful as well.
+//
+//===----------------------------------------------------------------------===//
+
+// -----------------------------------------------------------------------------
+// Forward declarations.
+class Type;
+
+// -----------------------------------------------------------------------------
+// Dummy record used as the dag operator for the argument list of an intrinsic.
+//
+// We store arguments as a dag rather than a list<Type> so that we can give
+// each one a name, to be used in codegen. For example, (args Vector:$a,
+// Scalar:$b) defines the names $a and $b which the specification of the code
+// for that intrinsic can refer to.
+
+def args;
+
+// -----------------------------------------------------------------------------
+// Family of nodes for use in the codegen dag for an intrinsic, corresponding
+// to function calls that return LLVM IR nodes.
+class IRBuilderParam<int index_> { int index = index_; }
+class IRBuilderAddrParam<int index_> : IRBuilderParam<index_>;
+class IRBuilderIntParam<int index_, string type_> : IRBuilderParam<index_> {
+ string type = type_;
+}
+class IRBuilderBase {
+ // The prefix of the function call, including an open parenthesis.
+ string prefix;
+
+ // Any parameters that have types that have to be treated specially by the
+ // Tablegen back end. Generally these will be types other than llvm::Value *,
+ // although not all other types need special treatment (e.g. llvm::Type *).
+ list<IRBuilderParam> special_params = [];
+}
+class IRBuilder<string func> : IRBuilderBase {
+ // The usual case: a method called on the code gen function's instance of
+ // llvm::IRBuilder.
+ let prefix = "Builder." # func # "(";
+}
+class IRFunction<string func> : IRBuilderBase {
+ // Some other function that doesn't use the IRBuilder at all.
+ let prefix = func # "(";
+}
+class CGHelperFn<string func> : IRBuilderBase {
+ // A helper function defined in CGBuiltin.cpp, which takes the IRBuilder as
+ // an argument.
+ let prefix = func # "(Builder, ";
+}
+class CGFHelperFn<string func> : IRBuilderBase {
+ // Like CGHelperFn, but also takes the CodeGenFunction itself.
+ let prefix = func # "(Builder, this, ";
+}
+def add: IRBuilder<"CreateAdd">;
+def mul: IRBuilder<"CreateMul">;
+def not: IRBuilder<"CreateNot">;
+def or: IRBuilder<"CreateOr">;
+def and: IRBuilder<"CreateAnd">;
+def xor: IRBuilder<"CreateXor">;
+def sub: IRBuilder<"CreateSub">;
+def shl: IRBuilder<"CreateShl">;
+def lshr: IRBuilder<"CreateLShr">;
+def immshr: CGHelperFn<"MVEImmediateShr"> {
+ let special_params = [IRBuilderIntParam<1, "unsigned">,
+ IRBuilderIntParam<2, "bool">];
+}
+def fadd: IRBuilder<"CreateFAdd">;
+def fmul: IRBuilder<"CreateFMul">;
+def fsub: IRBuilder<"CreateFSub">;
+def load: IRBuilder<"CreateLoad"> {
+ let special_params = [IRBuilderAddrParam<0>];
+}
+def store: IRBuilder<"CreateStore"> {
+ let special_params = [IRBuilderAddrParam<1>];
+}
+def xval: IRBuilder<"CreateExtractValue"> {
+ let special_params = [IRBuilderIntParam<1, "unsigned">];
+}
+def ielt_const: IRBuilder<"CreateInsertElement"> {
+ let special_params = [IRBuilderIntParam<2, "uint64_t">];
+}
+def ielt_var: IRBuilder<"CreateInsertElement">;
+def xelt_var: IRBuilder<"CreateExtractElement">;
+def trunc: IRBuilder<"CreateTrunc">;
+def bitcast: IRBuilder<"CreateBitCast">;
+def vreinterpret: CGFHelperFn<"ARMMVEVectorReinterpret">;
+def extend: CGHelperFn<"SignOrZeroExtend"> {
+ let special_params = [IRBuilderIntParam<2, "bool">];
+}
+def zeroinit: IRFunction<"llvm::Constant::getNullValue">;
+def int_min: CGHelperFn<"ARMMVEConstantSplat<1,0>">;
+def int_max: CGHelperFn<"ARMMVEConstantSplat<0,1>">;
+def uint_max: CGHelperFn<"ARMMVEConstantSplat<1,1>">;
+def undef: IRFunction<"UndefValue::get">;
+def icmp_eq: IRBuilder<"CreateICmpEQ">;
+def icmp_ne: IRBuilder<"CreateICmpNE">;
+def icmp_ugt: IRBuilder<"CreateICmpUGT">;
+def icmp_uge: IRBuilder<"CreateICmpUGE">;
+def icmp_ult: IRBuilder<"CreateICmpULT">;
+def icmp_ule: IRBuilder<"CreateICmpULE">;
+def icmp_sgt: IRBuilder<"CreateICmpSGT">;
+def icmp_sge: IRBuilder<"CreateICmpSGE">;
+def icmp_slt: IRBuilder<"CreateICmpSLT">;
+def icmp_sle: IRBuilder<"CreateICmpSLE">;
+def fcmp_eq: IRBuilder<"CreateFCmpOEQ">;
+def fcmp_ne: IRBuilder<"CreateFCmpUNE">; // not O: it must return true on NaNs
+def fcmp_gt: IRBuilder<"CreateFCmpOGT">;
+def fcmp_ge: IRBuilder<"CreateFCmpOGE">;
+def fcmp_lt: IRBuilder<"CreateFCmpOLT">;
+def fcmp_le: IRBuilder<"CreateFCmpOLE">;
+def splat: CGHelperFn<"ARMMVEVectorSplat">;
+def select: IRBuilder<"CreateSelect">;
+def fneg: IRBuilder<"CreateFNeg">;
+def sitofp: IRBuilder<"CreateSIToFP">;
+def uitofp: IRBuilder<"CreateUIToFP">;
+def fptosi: IRBuilder<"CreateFPToSI">;
+def fptoui: IRBuilder<"CreateFPToUI">;
+def vrev: CGHelperFn<"ARMMVEVectorElementReverse"> {
+ let special_params = [IRBuilderIntParam<1, "unsigned">];
+}
+def unzip: CGHelperFn<"VectorUnzip"> {
+ let special_params = [IRBuilderIntParam<1, "bool">];
+}
+def zip: CGHelperFn<"VectorZip">;
+
+// Trivial 'codegen' function that just returns its argument. Useful
+// for wrapping up a variable name like $foo into a thing you can pass
+// around as type 'dag'.
+def id: IRBuilderBase {
+ // All the other cases of IRBuilderBase use 'prefix' to specify a function
+ // call, including the open parenthesis. MveEmitter puts the closing paren on
+ // the end. So if we _just_ specify an open paren with no function name
+ // before it, then the generated C++ code will simply wrap the input value in
+ // parentheses, returning it unchanged.
+ let prefix = "(";
+}
+
+// Helper for making boolean flags in IR
+def i1: IRBuilderBase {
+ let prefix = "llvm::ConstantInt::get(Builder.getInt1Ty(), ";
+ let special_params = [IRBuilderIntParam<0, "bool">];
+}
+
+// A node that makes an Address out of a pointer-typed Value, by
+// providing an alignment as the second argument.
+def address;
+
+// Another node class you can use in the codegen dag. This one corresponds to
+// an IR intrinsic function, which has to be specialized to a particular list
+// of types.
+class IRIntBase<string name_, list<Type> params_ = [], bit appendKind_ = 0> {
+ string intname = name_; // base name of the intrinsic
+ list<Type> params = params_; // list of parameter types
+
+ // If this flag is set, then the IR intrinsic name will get a suffix _s, _u
+ // or _f depending on whether the main parameter type of the ACLE intrinsic
+ // being generated is a signed integer, unsigned integer, or float. Mostly
+ // this is useful for signed vs unsigned integers, because the ACLE
+ // intrinsics and the source-level integer types distinguish them, but at IR
+ // level the distinction has moved from the type system into the operations
+ // and you just have i32 or i16 etc. So when an IR intrinsic has to vary with
+ // signedness, you set this bit, and then you can still put the signed and
+ // unsigned versions in the same subclass of Intrinsic, and the Tablegen
+ // backend will take care of adding _s or _u as appropriate in each instance.
+ bit appendKind = appendKind_;
+}
+
+// Mostly we'll be using @llvm.arm.mve.* intrinsics, so here's a trivial
+// subclass that puts on that prefix.
+class IRInt<string name, list<Type> params = [], bit appendKind = 0>
+ : IRIntBase<"arm_mve_" # name, params, appendKind>;
+
+// The 'seq' node in a codegen dag specifies a set of IR operations to be
+// performed in order. It has the special ability to define extra variable
+// names, on top of the ones that refer to the intrinsic's parameters. For
+// example:
+//
+// (seq (foo this, that):$a,
+// (bar this, $a):$b
+// (add $a, $b))
+//
+// defines the name $a to refer to the return value of the 'foo' operation;
+// then the 'bar' operation uses $a as one of its arguments, and the return
+// value of that is assigned the name $b; finally, $a and $b are added to give
+// the return value of the seq construction as a whole.
+def seq;
+
+// Another magic operation is 'unsignedflag', which you give a scalar
+// _type_ as an argument, and it expands into 1 for an unsigned type
+// and 0 for a signed (or floating) one.
+def unsignedflag;
+
+// 'bitsize' also takes a scalar type, and expands into an integer
+// constant giving its size in bits.
+def bitsize;
+
+// If you put CustomCodegen<"foo"> in an intrinsic's codegen field, it
+// indicates that the IR generation for that intrinsic is done by handwritten
+// C++ and not autogenerated at all. The effect in the MVE builtin codegen
+// function is to break out of the main switch and fall through to the
+// manual-codegen cases below it, having set the CustomCodeGenType enumerated
+// variable to the value given by the 'type' string here.
+class CustomCodegen<string type_> { string type = type_; }
+
+// -----------------------------------------------------------------------------
+// System for building up complex instances of Type from simple ones.
+
+// ComplexType is used to represent any more complicated type: vectors,
+// multivectors, pointers etc. Its dag argument specifies how the type should
+// be constructed from simpler types. The operator of the dag will always be an
+// instance of ComplexTypeOp, defined below.
+class ComplexType<dag spec_>: Type { dag spec = spec_; }
+
+// Operators you can use in the ComplexType spec dag. These are an intermediate
+// layer, interpreted by MveEmitter::getType() in the Tablegen backend, and
+// only used in the definitions below. Actual intrinsic definitions in
+// arm_mve.td will use the defs defined below here.
+class ComplexTypeOp;
+def CTO_Parameter: ComplexTypeOp;
+def CTO_Vec: ComplexTypeOp;
+def CTO_Pred: ComplexTypeOp;
+class CTO_Tuple<int n_>: ComplexTypeOp { int n = n_; }
+class CTO_Pointer<bit const_>: ComplexTypeOp { bit const = const_; }
+def CTO_CopyKind: ComplexTypeOp;
+class CTO_ScaleSize<int num_, int denom_>: ComplexTypeOp {
+ int num = num_;
+ int denom = denom_;
+}
+
+// -----------------------------------------------------------------------------
+// Instances of Type intended to be used directly in the specification of an
+// intrinsic in arm_mve.td.
+
+// The type Void can be used for the return type of an intrinsic, and as the
+// parameter type for intrinsics that aren't actually parameterised by any kind
+// of _s32 / _f16 / _u8 suffix.
+def Void : Type;
+
+// A wrapper you can put on an intrinsic's argument type to prevent it from
+// being automatically promoted to i32 from a smaller integer type.
+class unpromoted<Type t> : Type { Type underlying_type = t; }
+
+// Primitive types: base class, and an instance for the set of scalar integer
+// and floating types that MVE uses.
+class PrimitiveType<string kind_, int size_>: Type {
+ string kind = kind_;
+ int size = size_;
+ string nameOverride = "";
+}
+
+// The type records defined by these foreaches have names like s32, f16, u8.
+foreach size = [8, 16, 32, 64] in
+ foreach kind = ["u", "s"] in
+ def kind # size: PrimitiveType<kind, size>;
+foreach size = [16, 32] in
+ foreach kind = ["f"] in
+ def kind # size: PrimitiveType<kind, size>;
+
+// Sometimes we need to refer to a type by a different name in C, when
+// ACLE defines a function parameter to be something like 'unsigned'
+// rather than uint32_t.
+def uint: PrimitiveType<"u", 32> { let nameOverride = "unsigned"; }
+def sint: PrimitiveType<"s", 32> { let nameOverride = "int"; }
+
+// VecOf<t> expects t to be a scalar, and gives a 128-bit vector of whatever it
+// is.
+class VecOf<Type t>: ComplexType<(CTO_Vec t)>;
+
+// NarrowedVecOf<t,v> expects t to be a scalar type, and v to be a vector
+// type. It returns a vector type whose element type is t, and whose lane
+// count is the same as the lane count of v. (Used as an intermediate value
+// type in the IR representation of a widening load: you load a vector of
+// small things out of memory, and then zext/sext them into a full 128-bit
+// output vector.)
+class NarrowedVecOf<Type t, Type v>: ComplexType<(CTO_Vec t, v)>;
+
+// PredOf expects t to be a scalar, and expands to a predicate vector which
+// (logically speaking) has the same number of lanes as VecOf<t> would.
+class PredOf<Type t>: ComplexType<(CTO_Pred t)>;
+
+// Scalar expands to whatever is the main parameter type of the current
+// intrinsic. Vector and Predicate expand to the vector and predicate types
+// corresponding to that.
+def Scalar: ComplexType<(CTO_Parameter)>;
+def Vector: VecOf<Scalar>;
+def Predicate: PredOf<Scalar>;
+
+// MultiVector<n> expands to a type containing n instances of Vector. (There's
+// no need to define this for a general underlying vector type, since it's only
+// used by vld2q and friends, which don't need that generality.)
+class MultiVector<int n>: ComplexType<(CTO_Tuple<n> Vector)>;
+
+// Ptr<t> and CPtr<t> expand to a pointer to t, or a pointer to const t,
+// respectively.
+class Ptr<Type t>: ComplexType<(CTO_Pointer<0> t)>;
+class CPtr<Type t>: ComplexType<(CTO_Pointer<1> t)>;
+
+// CopyKind<s,k> expects s and k to be scalar types. It returns a scalar type
+// whose kind (signed, unsigned or float) matches that of k, and whose size
+// matches that of s.
+class CopyKind<Type s, Type k>: ComplexType<(CTO_CopyKind s, k)>;
+
+// DoubleSize<k> expects k to be a scalar type. It returns a scalar type
+// whose kind (signed, unsigned or float) matches that of k, and whose size
+// is double that of k, if possible.
+class DoubleSize<Type k> : ComplexType<(CTO_ScaleSize<2, 1> k)>;
+class HalfSize<Type k> : ComplexType<(CTO_ScaleSize<1, 2> k)>;
+
+// Unsigned<t> expects t to be a scalar type, and expands to the unsigned
+// integer scalar of the same size. So it returns u16 if you give it s16 or
+// f16 (or u16 itself). Similarly, Signed<t> makes the type signed.
+class Unsigned<Type t>: ComplexType<(CTO_CopyKind t, u32)>;
+class Signed<Type t>: ComplexType<(CTO_CopyKind t, s32)>;
+
+// UScalar and UVector expand to the unsigned-integer versions of
+// Scalar and Vector. SScalar and SVector are signed-integer versions.
+def UScalar: Unsigned<Scalar>;
+def UVector: VecOf<UScalar>;
+def SScalar: Signed<Scalar>;
+def SVector: VecOf<SScalar>;
+
+// DblVector expands to a vector of scalars of size twice the size of Scalar.
+// DblPredicate expands to a predicate corresponding to DblVector
+// HalfVector, similarly, expands to a vector of half-sized scalars. And
+// UHalfVector is a vector of half-sized _unsigned integers_.
+def DblVector: VecOf<DoubleSize<Scalar>>;
+def DblPredicate: PredOf<DoubleSize<Scalar>>;
+def HalfScalar: HalfSize<Scalar>;
+def HalfVector: VecOf<HalfScalar>;
+def UHalfScalar: Unsigned<HalfSize<Scalar>>;
+def UHalfVector: VecOf<UHalfScalar>;
+
+// Expands to the 32-bit integer of the same signedness as Scalar.
+def Scalar32: CopyKind<u32, Scalar>;
+// Expands to the 64-bit integer of the same signedness as Scalar.
+def Scalar64: CopyKind<u64, Scalar>;
+
+// -----------------------------------------------------------------------------
+// Internal definitions for specifying immediate arguments for an intrinsic.
+
+class ImmediateBounds;
+class Immediate<Type type_, ImmediateBounds bounds_>: Type {
+ Type type = type_;
+ ImmediateBounds bounds = bounds_;
+ string extra;
+ string extraarg;
+}
+class IB_ConstRange<int lo_, int hi_> : ImmediateBounds {
+ int lo = lo_;
+ int hi = hi_;
+}
+def IB_UEltValue : ImmediateBounds;
+def IB_LaneIndex : ImmediateBounds;
+class IB_EltBit<int base_, Type type_ = Scalar> : ImmediateBounds {
+ int base = base_;
+ Type type = type_;
+}
+def IB_ExtraArg_LaneSize;
+
+// -----------------------------------------------------------------------------
+// End-user definitions for immediate arguments.
+
+// imm_simd and imm_simd_restrictive are used for the immediate operands to
+// intrinsics like vmvnq or vorrq. imm_simd_restrictive has to be an 8-bit
+// value shifted left by a whole number of bytes; imm_simd_vmvn can also be of
+// the form 0xXXFF for some byte value XX.
+def imm_simd_restrictive : Immediate<Scalar, IB_UEltValue> {
+ let extra = "ShiftedByte";
+ let extraarg = "!lanesize";
+}
+def imm_simd_vmvn : Immediate<Scalar, IB_UEltValue> {
+ let extra = "ShiftedByteOrXXFF";
+ let extraarg = "!lanesize";
+}
+
+// imm_1toN can take any value from 1 to N inclusive, where N is the number of
+// bits in the main parameter type. (E.g. an immediate shift count, in an
+// intrinsic that shifts every lane of a vector by the same amount.)
+//
+// imm_0toNm1 is the same but with the range offset by 1, i.e. 0 to N-1
+// inclusive.
+//
+// imm_1toHalfN is like imm_1toN, but applied to a half-width type.
+// (So if Scalar is s16, for example, it'll give you the range 1 to 8.)
+def imm_1toN : Immediate<sint, IB_EltBit<1>>;
+def imm_0toNm1 : Immediate<sint, IB_EltBit<0>>;
+def imm_1toHalfN : Immediate<sint, IB_EltBit<1, HalfSize<Scalar>>>;
+
+// imm_lane has to be the index of a vector lane in the main vector type, i.e
+// it can range from 0 to (128 / size of scalar)-1 inclusive. (e.g. vgetq_lane)
+def imm_lane : Immediate<sint, IB_LaneIndex>;
+
+// imm_1to32 can be in the range 1 to 32, unconditionally. (e.g. scalar shift
+// intrinsics)
+def imm_1to32 : Immediate<sint, IB_ConstRange<1, 32>>;
+
+// imm_1248 can be 1, 2, 4 or 8. (e.g. vidupq)
+def imm_1248 : Immediate<sint, IB_ConstRange<1, 8>> {
+ let extra = "Power2";
+}
+
+// imm_mem7bit<n> is a valid immediate offset for a load/store intrinsic whose
+// memory access size is n bytes (e.g. 1 for vldrb_[whatever], 2 for vldrh,
+// ...). The set of valid immediates for these is {-127*n, ..., -1*n, 0*n, 1*n,
+// ..., 127*n}.
+class imm_mem7bit<int membytes>
+ : Immediate<sint, IB_ConstRange<!mul(membytes, -127), !mul(membytes, 127)>> {
+ let extra = !if(!eq(membytes, 1), ?, "Multiple");
+ let extraarg = !cast<string>(membytes);
+}
+
+// -----------------------------------------------------------------------------
+// Specification of ways that the full name of an intrinsic can be mapped to
+// its shorter polymorphic name.
+
+class PolymorphicNameType<int nt_, string x_> {
+ int NumTypeSuffixesToDiscard = nt_;
+ string ExtraSuffixToDiscard = x_;
+}
+
+// PNT_None: the intrinsic is not polymorphic at all, so its short name is the
+// same as its long name. (E.g. scalar shift intrinsics such as uqshl.)
+def PNT_None: PolymorphicNameType<0, ?>;
+
+// PNT_Type: the usual case, in which the polymorphic name is made by dropping
+// the type suffix, so it ends up the same as the Tablegen record name. E.g.
+// vaddq_u16 -> vaddq.
+def PNT_Type: PolymorphicNameType<1, ?>;
+
+// PNT_2Type: the polymorphic name is made by dropping _two_ type suffixes.
+// E.g. vcvtq_f16_u16 -> vcvtq.
+def PNT_2Type: PolymorphicNameType<2, ?>;
+
+// PNT_NType: the polymorphic name is made by dropping an "_n" suffix and a
+// type. E.g. vaddq_n_u16 -> vaddq.
+def PNT_NType: PolymorphicNameType<1, "n">;
+
+// PNT_NType: the polymorphic name is made by just dropping an "_n" suffix
+// (even if it isn't at the end of the name). E.g. vidupq_n_u16 -> vidupq_u16.
+def PNT_N: PolymorphicNameType<0, "n">;
+
+// PNT_WBType: the polymorphic name is made by dropping an "_wb" suffix and a
+// type. E.g. vidupq_m_wb_u16 -> vidupq_m.
+def PNT_WBType: PolymorphicNameType<1, "wb">;
+
+// PNT_WB: the polymorphic name is made by just dropping "_wb". E.g.
+// vidupq_wb_u16 -> vidupq_u16.
+def PNT_WB: PolymorphicNameType<0, "wb">;
+
+// -----------------------------------------------------------------------------
+// The main class Intrinsic. Define one of these for each family of ACLE
+// intrinsics which are the same apart from some final type suffix (e.g.
+// vaddq_{s8,u8,f16,...}.
+//
+// The record's name plus that type suffix is taken to be the full unambiguous
+// name of the function. Its shorter polymorphic name is constructed from that
+// in turn, in a way specified by the PolymorphicNameType system above.
+
+class Intrinsic<Type ret_, dag args_, dag codegen_> {
+ // List of parameter types to suffix to this intrinsic's name. A separate
+ // actual ACLE intrinsic will be generated for each of these. Set it to
+ // [Void] if the intrinsic is not polymorphic at all.
+ list<Type> params;
+
+ // Return type and arguments for the intrinsic.
+ Type ret = ret_;
+ dag args = args_;
+
+ // Specification of how to generate its IR.
+ dag codegen = codegen_;
+
+ // Default to PNT_Type, which is by far the most common case.
+ PolymorphicNameType pnt = PNT_Type;
+
+ // A very few intrinsics _only_ have a polymorphic name.
+ bit polymorphicOnly = 0;
+
+ // True if the builtin has to avoid evaluating its arguments.
+ bit nonEvaluating = 0;
+
+ // True if the intrinsic needs only the C header part (no codegen, semantic
+ // checks, etc). Used for redeclaring MVE intrinsics in the arm_cde.h header.
+ bit headerOnly = 0;
+
+ // Use to override the suffix letter to make e.g.vfooq_p16
+ // with an override suffix letter of "p".
+ string overrideKindLetter = "";
+
+ // Name of the architecture extension, used in the Clang builtin name
+ string builtinExtension = "mve";
+}
+
+// Sometimes you have to use two separate Intrinsic declarations to
+// declare intrinsics that are logically the same family (e.g. vaddq,
+// because it needs to expand to an Add or FAdd IR node depending on
+// type). For that purpose, you can derive from NameOverride to
+// specify the intrinsic's base name independently of the Tablegen
+// record name.
+
+class NameOverride<string basename_> {
+ string basename = basename_;
+}
+
+// A wrapper to define both _m and _x versions of a predicated
+// intrinsic.
+//
+// We provide optional parameters to override the polymorphic name
+// types separately for the _m and _x variants, because sometimes they
+// polymorph differently (typically because the type of the inactive
+// parameter can be used as a disambiguator if it's present).
+multiclass IntrinsicMX<Type rettype, dag arguments, dag cg,
+ bit wantXVariant = 1,
+ string nameSuffix = "",
+ PolymorphicNameType pnt_m = PNT_Type,
+ PolymorphicNameType pnt_x = PNT_Type> {
+ // The _m variant takes an initial parameter called $inactive, which
+ // provides the input value of the output register, i.e. all the
+ // inactive lanes in the predicated operation take their values from
+ // this.
+ def : Intrinsic<rettype, !con((args rettype:$inactive), arguments), cg>,
+ NameOverride<NAME # "_m" # nameSuffix> {
+ let pnt = pnt_m;
+ }
+
+ if wantXVariant then {
+ // The _x variant leaves off that parameter, and simply uses an
+ // undef value of the same type.
+
+ def : Intrinsic<rettype, arguments, (seq (undef rettype):$inactive, cg)>,
+ NameOverride<NAME # "_x" # nameSuffix> {
+ let pnt = pnt_x;
+ }
+ }
+}
+
+// Same as above, but with an additional parameter 'basename' which overrides
+// the C intrinsic base name
+multiclass IntrinsicMXNameOverride<Type rettype, dag arguments, dag cg,
+ string basename, bit wantXVariant = 1,
+ string nameSuffix = "",
+ PolymorphicNameType pnt_m = PNT_Type,
+ PolymorphicNameType pnt_x = PNT_Type> {
+ def "_m" # nameSuffix:
+ Intrinsic<rettype, !con((args rettype:$inactive), arguments), cg>,
+ NameOverride<basename # "_m" # nameSuffix> {
+ let pnt = pnt_m;
+ }
+
+ if wantXVariant then {
+ def "_x" # nameSuffix:
+ Intrinsic<rettype, arguments, (seq (undef rettype):$inactive, cg)>,
+ NameOverride<basename # "_x" # nameSuffix> {
+ let pnt = pnt_x;
+ }
+ }
+}
+
+
+// -----------------------------------------------------------------------------
+// Convenience lists of parameter types. 'T' is just a container record, so you
+// can define a typical intrinsic with 'let Params = T.Usual', or similar,
+// instead of having to repeat a long list every time.
+
+def T {
+ list<Type> None = [Void];
+ list<Type> Signed = [s8, s16, s32];
+ list<Type> Unsigned = [u8, u16, u32];
+ list<Type> Int = Signed # Unsigned;
+ list<Type> Float = [f16, f32];
+ list<Type> Usual = Int # Float;
+ list<Type> Int8 = [s8, u8];
+ list<Type> Int16 = [s16, u16];
+ list<Type> Int32 = [s32, u32];
+ list<Type> Int64 = [s64, u64];
+ list<Type> Poly = [u8, u16]; // Actually p8 and p16
+ list<Type> All8 = Int8;
+ list<Type> All16 = Int16 # [f16];
+ list<Type> All32 = Int32 # [f32];
+ list<Type> All64 = Int64;
+ list<Type> All = Usual # All64;
+}
+
+// -----------------------------------------------------------------------------
+// Container record for DAG constant values. These constants are used because
+// bit/int class/multiclass parameters cannot be used to produce a dag node:
+// for example (u32 x) where x is 0 is transformed into (u32 { 0 }) by the
+// Tablegen parser.
+def V {
+ dag False = (u32 0);
+ dag True = (u32 1);
+}