diff options
author | nkozlovskiy <nmk@ydb.tech> | 2023-12-04 19:26:35 +0300 |
---|---|---|
committer | nkozlovskiy <nmk@ydb.tech> | 2023-12-05 05:25:43 +0300 |
commit | e62474f851635573f9f6631039e113a02fd50179 (patch) | |
tree | 597d4bc8aad74ef42c55fd062398e93eceebfee3 /contrib/libs/clang16-rt/lib/tsan/rtl/tsan_interceptors_mac.cpp | |
parent | e7eddec34be4f360877b46ffa2b70fde8a3a5b8f (diff) | |
download | ydb-e62474f851635573f9f6631039e113a02fd50179.tar.gz |
ydb-oss sync: add clang16-rt/ to additionalPathsToCopy
Diffstat (limited to 'contrib/libs/clang16-rt/lib/tsan/rtl/tsan_interceptors_mac.cpp')
-rw-r--r-- | contrib/libs/clang16-rt/lib/tsan/rtl/tsan_interceptors_mac.cpp | 521 |
1 files changed, 521 insertions, 0 deletions
diff --git a/contrib/libs/clang16-rt/lib/tsan/rtl/tsan_interceptors_mac.cpp b/contrib/libs/clang16-rt/lib/tsan/rtl/tsan_interceptors_mac.cpp new file mode 100644 index 0000000000..1ee47bcd12 --- /dev/null +++ b/contrib/libs/clang16-rt/lib/tsan/rtl/tsan_interceptors_mac.cpp @@ -0,0 +1,521 @@ +//===-- tsan_interceptors_mac.cpp -----------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file is a part of ThreadSanitizer (TSan), a race detector. +// +// Mac-specific interceptors. +//===----------------------------------------------------------------------===// + +#include "sanitizer_common/sanitizer_platform.h" +#if SANITIZER_APPLE + +#include "interception/interception.h" +#include "tsan_interceptors.h" +#include "tsan_interface.h" +#include "tsan_interface_ann.h" +#include "sanitizer_common/sanitizer_addrhashmap.h" + +#include <errno.h> +#include <libkern/OSAtomic.h> +#include <objc/objc-sync.h> +#include <os/lock.h> +#include <sys/ucontext.h> + +#if defined(__has_include) && __has_include(<xpc/xpc.h>) +#include <xpc/xpc.h> +#endif // #if defined(__has_include) && __has_include(<xpc/xpc.h>) + +typedef long long_t; + +extern "C" { +int getcontext(ucontext_t *ucp) __attribute__((returns_twice)); +int setcontext(const ucontext_t *ucp); +} + +namespace __tsan { + +// The non-barrier versions of OSAtomic* functions are semantically mo_relaxed, +// but the two variants (e.g. OSAtomicAdd32 and OSAtomicAdd32Barrier) are +// actually aliases of each other, and we cannot have different interceptors for +// them, because they're actually the same function. Thus, we have to stay +// conservative and treat the non-barrier versions as mo_acq_rel. +static constexpr morder kMacOrderBarrier = mo_acq_rel; +static constexpr morder kMacOrderNonBarrier = mo_acq_rel; +static constexpr morder kMacFailureOrder = mo_relaxed; + +#define OSATOMIC_INTERCEPTOR(return_t, t, tsan_t, f, tsan_atomic_f, mo) \ + TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) { \ + SCOPED_TSAN_INTERCEPTOR(f, x, ptr); \ + return tsan_atomic_f((volatile tsan_t *)ptr, x, mo); \ + } + +#define OSATOMIC_INTERCEPTOR_PLUS_X(return_t, t, tsan_t, f, tsan_atomic_f, mo) \ + TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) { \ + SCOPED_TSAN_INTERCEPTOR(f, x, ptr); \ + return tsan_atomic_f((volatile tsan_t *)ptr, x, mo) + x; \ + } + +#define OSATOMIC_INTERCEPTOR_PLUS_1(return_t, t, tsan_t, f, tsan_atomic_f, mo) \ + TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) { \ + SCOPED_TSAN_INTERCEPTOR(f, ptr); \ + return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) + 1; \ + } + +#define OSATOMIC_INTERCEPTOR_MINUS_1(return_t, t, tsan_t, f, tsan_atomic_f, \ + mo) \ + TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) { \ + SCOPED_TSAN_INTERCEPTOR(f, ptr); \ + return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) - 1; \ + } + +#define OSATOMIC_INTERCEPTORS_ARITHMETIC(f, tsan_atomic_f, m) \ + m(int32_t, int32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f, \ + kMacOrderNonBarrier) \ + m(int32_t, int32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f, \ + kMacOrderBarrier) \ + m(int64_t, int64_t, a64, f##64, __tsan_atomic64_##tsan_atomic_f, \ + kMacOrderNonBarrier) \ + m(int64_t, int64_t, a64, f##64##Barrier, __tsan_atomic64_##tsan_atomic_f, \ + kMacOrderBarrier) + +#define OSATOMIC_INTERCEPTORS_BITWISE(f, tsan_atomic_f, m, m_orig) \ + m(int32_t, uint32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f, \ + kMacOrderNonBarrier) \ + m(int32_t, uint32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f, \ + kMacOrderBarrier) \ + m_orig(int32_t, uint32_t, a32, f##32##Orig, __tsan_atomic32_##tsan_atomic_f, \ + kMacOrderNonBarrier) \ + m_orig(int32_t, uint32_t, a32, f##32##OrigBarrier, \ + __tsan_atomic32_##tsan_atomic_f, kMacOrderBarrier) + +OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicAdd, fetch_add, + OSATOMIC_INTERCEPTOR_PLUS_X) +OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicIncrement, fetch_add, + OSATOMIC_INTERCEPTOR_PLUS_1) +OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicDecrement, fetch_sub, + OSATOMIC_INTERCEPTOR_MINUS_1) +OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicOr, fetch_or, OSATOMIC_INTERCEPTOR_PLUS_X, + OSATOMIC_INTERCEPTOR) +OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicAnd, fetch_and, + OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR) +OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicXor, fetch_xor, + OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR) + +#define OSATOMIC_INTERCEPTORS_CAS(f, tsan_atomic_f, tsan_t, t) \ + TSAN_INTERCEPTOR(bool, f, t old_value, t new_value, t volatile *ptr) { \ + SCOPED_TSAN_INTERCEPTOR(f, old_value, new_value, ptr); \ + return tsan_atomic_f##_compare_exchange_strong( \ + (volatile tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value, \ + kMacOrderNonBarrier, kMacFailureOrder); \ + } \ + \ + TSAN_INTERCEPTOR(bool, f##Barrier, t old_value, t new_value, \ + t volatile *ptr) { \ + SCOPED_TSAN_INTERCEPTOR(f##Barrier, old_value, new_value, ptr); \ + return tsan_atomic_f##_compare_exchange_strong( \ + (volatile tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value, \ + kMacOrderBarrier, kMacFailureOrder); \ + } + +OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapInt, __tsan_atomic32, a32, int) +OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapLong, __tsan_atomic64, a64, + long_t) +OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapPtr, __tsan_atomic64, a64, + void *) +OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap32, __tsan_atomic32, a32, + int32_t) +OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap64, __tsan_atomic64, a64, + int64_t) + +#define OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, mo) \ + TSAN_INTERCEPTOR(bool, f, uint32_t n, volatile void *ptr) { \ + SCOPED_TSAN_INTERCEPTOR(f, n, ptr); \ + volatile char *byte_ptr = ((volatile char *)ptr) + (n >> 3); \ + char bit = 0x80u >> (n & 7); \ + char mask = clear ? ~bit : bit; \ + char orig_byte = op((volatile a8 *)byte_ptr, mask, mo); \ + return orig_byte & bit; \ + } + +#define OSATOMIC_INTERCEPTORS_BITOP(f, op, clear) \ + OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, kMacOrderNonBarrier) \ + OSATOMIC_INTERCEPTOR_BITOP(f##Barrier, op, clear, kMacOrderBarrier) + +OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndSet, __tsan_atomic8_fetch_or, false) +OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndClear, __tsan_atomic8_fetch_and, + true) + +TSAN_INTERCEPTOR(void, OSAtomicEnqueue, OSQueueHead *list, void *item, + size_t offset) { + SCOPED_TSAN_INTERCEPTOR(OSAtomicEnqueue, list, item, offset); + __tsan_release(item); + REAL(OSAtomicEnqueue)(list, item, offset); +} + +TSAN_INTERCEPTOR(void *, OSAtomicDequeue, OSQueueHead *list, size_t offset) { + SCOPED_TSAN_INTERCEPTOR(OSAtomicDequeue, list, offset); + void *item = REAL(OSAtomicDequeue)(list, offset); + if (item) __tsan_acquire(item); + return item; +} + +// OSAtomicFifoEnqueue and OSAtomicFifoDequeue are only on OS X. +#if !SANITIZER_IOS + +TSAN_INTERCEPTOR(void, OSAtomicFifoEnqueue, OSFifoQueueHead *list, void *item, + size_t offset) { + SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoEnqueue, list, item, offset); + __tsan_release(item); + REAL(OSAtomicFifoEnqueue)(list, item, offset); +} + +TSAN_INTERCEPTOR(void *, OSAtomicFifoDequeue, OSFifoQueueHead *list, + size_t offset) { + SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoDequeue, list, offset); + void *item = REAL(OSAtomicFifoDequeue)(list, offset); + if (item) __tsan_acquire(item); + return item; +} + +#endif + +TSAN_INTERCEPTOR(void, OSSpinLockLock, volatile OSSpinLock *lock) { + CHECK(!cur_thread()->is_dead); + if (!cur_thread()->is_inited) { + return REAL(OSSpinLockLock)(lock); + } + SCOPED_TSAN_INTERCEPTOR(OSSpinLockLock, lock); + REAL(OSSpinLockLock)(lock); + Acquire(thr, pc, (uptr)lock); +} + +TSAN_INTERCEPTOR(bool, OSSpinLockTry, volatile OSSpinLock *lock) { + CHECK(!cur_thread()->is_dead); + if (!cur_thread()->is_inited) { + return REAL(OSSpinLockTry)(lock); + } + SCOPED_TSAN_INTERCEPTOR(OSSpinLockTry, lock); + bool result = REAL(OSSpinLockTry)(lock); + if (result) + Acquire(thr, pc, (uptr)lock); + return result; +} + +TSAN_INTERCEPTOR(void, OSSpinLockUnlock, volatile OSSpinLock *lock) { + CHECK(!cur_thread()->is_dead); + if (!cur_thread()->is_inited) { + return REAL(OSSpinLockUnlock)(lock); + } + SCOPED_TSAN_INTERCEPTOR(OSSpinLockUnlock, lock); + Release(thr, pc, (uptr)lock); + REAL(OSSpinLockUnlock)(lock); +} + +TSAN_INTERCEPTOR(void, os_lock_lock, void *lock) { + CHECK(!cur_thread()->is_dead); + if (!cur_thread()->is_inited) { + return REAL(os_lock_lock)(lock); + } + SCOPED_TSAN_INTERCEPTOR(os_lock_lock, lock); + REAL(os_lock_lock)(lock); + Acquire(thr, pc, (uptr)lock); +} + +TSAN_INTERCEPTOR(bool, os_lock_trylock, void *lock) { + CHECK(!cur_thread()->is_dead); + if (!cur_thread()->is_inited) { + return REAL(os_lock_trylock)(lock); + } + SCOPED_TSAN_INTERCEPTOR(os_lock_trylock, lock); + bool result = REAL(os_lock_trylock)(lock); + if (result) + Acquire(thr, pc, (uptr)lock); + return result; +} + +TSAN_INTERCEPTOR(void, os_lock_unlock, void *lock) { + CHECK(!cur_thread()->is_dead); + if (!cur_thread()->is_inited) { + return REAL(os_lock_unlock)(lock); + } + SCOPED_TSAN_INTERCEPTOR(os_lock_unlock, lock); + Release(thr, pc, (uptr)lock); + REAL(os_lock_unlock)(lock); +} + +TSAN_INTERCEPTOR(void, os_unfair_lock_lock, os_unfair_lock_t lock) { + if (!cur_thread()->is_inited || cur_thread()->is_dead) { + return REAL(os_unfair_lock_lock)(lock); + } + SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_lock, lock); + REAL(os_unfair_lock_lock)(lock); + Acquire(thr, pc, (uptr)lock); +} + +TSAN_INTERCEPTOR(void, os_unfair_lock_lock_with_options, os_unfair_lock_t lock, + u32 options) { + if (!cur_thread()->is_inited || cur_thread()->is_dead) { + return REAL(os_unfair_lock_lock_with_options)(lock, options); + } + SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_lock_with_options, lock, options); + REAL(os_unfair_lock_lock_with_options)(lock, options); + Acquire(thr, pc, (uptr)lock); +} + +TSAN_INTERCEPTOR(bool, os_unfair_lock_trylock, os_unfair_lock_t lock) { + if (!cur_thread()->is_inited || cur_thread()->is_dead) { + return REAL(os_unfair_lock_trylock)(lock); + } + SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_trylock, lock); + bool result = REAL(os_unfair_lock_trylock)(lock); + if (result) + Acquire(thr, pc, (uptr)lock); + return result; +} + +TSAN_INTERCEPTOR(void, os_unfair_lock_unlock, os_unfair_lock_t lock) { + if (!cur_thread()->is_inited || cur_thread()->is_dead) { + return REAL(os_unfair_lock_unlock)(lock); + } + SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_unlock, lock); + Release(thr, pc, (uptr)lock); + REAL(os_unfair_lock_unlock)(lock); +} + +#if defined(__has_include) && __has_include(<xpc/xpc.h>) + +TSAN_INTERCEPTOR(void, xpc_connection_set_event_handler, + xpc_connection_t connection, xpc_handler_t handler) { + SCOPED_TSAN_INTERCEPTOR(xpc_connection_set_event_handler, connection, + handler); + Release(thr, pc, (uptr)connection); + xpc_handler_t new_handler = ^(xpc_object_t object) { + { + SCOPED_INTERCEPTOR_RAW(xpc_connection_set_event_handler); + Acquire(thr, pc, (uptr)connection); + } + handler(object); + }; + REAL(xpc_connection_set_event_handler)(connection, new_handler); +} + +TSAN_INTERCEPTOR(void, xpc_connection_send_barrier, xpc_connection_t connection, + dispatch_block_t barrier) { + SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_barrier, connection, barrier); + Release(thr, pc, (uptr)connection); + dispatch_block_t new_barrier = ^() { + { + SCOPED_INTERCEPTOR_RAW(xpc_connection_send_barrier); + Acquire(thr, pc, (uptr)connection); + } + barrier(); + }; + REAL(xpc_connection_send_barrier)(connection, new_barrier); +} + +TSAN_INTERCEPTOR(void, xpc_connection_send_message_with_reply, + xpc_connection_t connection, xpc_object_t message, + dispatch_queue_t replyq, xpc_handler_t handler) { + SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_message_with_reply, connection, + message, replyq, handler); + Release(thr, pc, (uptr)connection); + xpc_handler_t new_handler = ^(xpc_object_t object) { + { + SCOPED_INTERCEPTOR_RAW(xpc_connection_send_message_with_reply); + Acquire(thr, pc, (uptr)connection); + } + handler(object); + }; + REAL(xpc_connection_send_message_with_reply) + (connection, message, replyq, new_handler); +} + +TSAN_INTERCEPTOR(void, xpc_connection_cancel, xpc_connection_t connection) { + SCOPED_TSAN_INTERCEPTOR(xpc_connection_cancel, connection); + Release(thr, pc, (uptr)connection); + REAL(xpc_connection_cancel)(connection); +} + +#endif // #if defined(__has_include) && __has_include(<xpc/xpc.h>) + +// Determines whether the Obj-C object pointer is a tagged pointer. Tagged +// pointers encode the object data directly in their pointer bits and do not +// have an associated memory allocation. The Obj-C runtime uses tagged pointers +// to transparently optimize small objects. +static bool IsTaggedObjCPointer(id obj) { + const uptr kPossibleTaggedBits = 0x8000000000000001ull; + return ((uptr)obj & kPossibleTaggedBits) != 0; +} + +// Returns an address which can be used to inform TSan about synchronization +// points (MutexLock/Unlock). The TSan infrastructure expects this to be a valid +// address in the process space. We do a small allocation here to obtain a +// stable address (the array backing the hash map can change). The memory is +// never free'd (leaked) and allocation and locking are slow, but this code only +// runs for @synchronized with tagged pointers, which is very rare. +static uptr GetOrCreateSyncAddress(uptr addr, ThreadState *thr, uptr pc) { + typedef AddrHashMap<uptr, 5> Map; + static Map Addresses; + Map::Handle h(&Addresses, addr); + if (h.created()) { + ThreadIgnoreBegin(thr, pc); + *h = (uptr) user_alloc(thr, pc, /*size=*/1); + ThreadIgnoreEnd(thr); + } + return *h; +} + +// Returns an address on which we can synchronize given an Obj-C object pointer. +// For normal object pointers, this is just the address of the object in memory. +// Tagged pointers are not backed by an actual memory allocation, so we need to +// synthesize a valid address. +static uptr SyncAddressForObjCObject(id obj, ThreadState *thr, uptr pc) { + if (IsTaggedObjCPointer(obj)) + return GetOrCreateSyncAddress((uptr)obj, thr, pc); + return (uptr)obj; +} + +TSAN_INTERCEPTOR(int, objc_sync_enter, id obj) { + SCOPED_TSAN_INTERCEPTOR(objc_sync_enter, obj); + if (!obj) return REAL(objc_sync_enter)(obj); + uptr addr = SyncAddressForObjCObject(obj, thr, pc); + MutexPreLock(thr, pc, addr, MutexFlagWriteReentrant); + int result = REAL(objc_sync_enter)(obj); + CHECK_EQ(result, OBJC_SYNC_SUCCESS); + MutexPostLock(thr, pc, addr, MutexFlagWriteReentrant); + return result; +} + +TSAN_INTERCEPTOR(int, objc_sync_exit, id obj) { + SCOPED_TSAN_INTERCEPTOR(objc_sync_exit, obj); + if (!obj) return REAL(objc_sync_exit)(obj); + uptr addr = SyncAddressForObjCObject(obj, thr, pc); + MutexUnlock(thr, pc, addr); + int result = REAL(objc_sync_exit)(obj); + if (result != OBJC_SYNC_SUCCESS) MutexInvalidAccess(thr, pc, addr); + return result; +} + +TSAN_INTERCEPTOR(int, swapcontext, ucontext_t *oucp, const ucontext_t *ucp) { + { + SCOPED_INTERCEPTOR_RAW(swapcontext, oucp, ucp); + } + // Because of swapcontext() semantics we have no option but to copy its + // implementation here + if (!oucp || !ucp) { + errno = EINVAL; + return -1; + } + ThreadState *thr = cur_thread(); + const int UCF_SWAPPED = 0x80000000; + oucp->uc_onstack &= ~UCF_SWAPPED; + thr->ignore_interceptors++; + int ret = getcontext(oucp); + if (!(oucp->uc_onstack & UCF_SWAPPED)) { + thr->ignore_interceptors--; + if (!ret) { + oucp->uc_onstack |= UCF_SWAPPED; + ret = setcontext(ucp); + } + } + return ret; +} + +// On macOS, libc++ is always linked dynamically, so intercepting works the +// usual way. +#define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR + +namespace { +struct fake_shared_weak_count { + volatile a64 shared_owners; + volatile a64 shared_weak_owners; + virtual void _unused_0x0() = 0; + virtual void _unused_0x8() = 0; + virtual void on_zero_shared() = 0; + virtual void _unused_0x18() = 0; + virtual void on_zero_shared_weak() = 0; + virtual ~fake_shared_weak_count() = 0; // suppress -Wnon-virtual-dtor +}; +} // namespace + +// The following code adds libc++ interceptors for: +// void __shared_weak_count::__release_shared() _NOEXCEPT; +// bool __shared_count::__release_shared() _NOEXCEPT; +// Shared and weak pointers in C++ maintain reference counts via atomics in +// libc++.dylib, which are TSan-invisible, and this leads to false positives in +// destructor code. These interceptors re-implements the whole functions so that +// the mo_acq_rel semantics of the atomic decrement are visible. +// +// Unfortunately, the interceptors cannot simply Acquire/Release some sync +// object and call the original function, because it would have a race between +// the sync and the destruction of the object. Calling both under a lock will +// not work because the destructor can invoke this interceptor again (and even +// in a different thread, so recursive locks don't help). + +STDCXX_INTERCEPTOR(void, _ZNSt3__119__shared_weak_count16__release_sharedEv, + fake_shared_weak_count *o) { + if (!flags()->shared_ptr_interceptor) + return REAL(_ZNSt3__119__shared_weak_count16__release_sharedEv)(o); + + SCOPED_TSAN_INTERCEPTOR(_ZNSt3__119__shared_weak_count16__release_sharedEv, + o); + if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) { + Acquire(thr, pc, (uptr)&o->shared_owners); + o->on_zero_shared(); + if (__tsan_atomic64_fetch_add(&o->shared_weak_owners, -1, mo_release) == + 0) { + Acquire(thr, pc, (uptr)&o->shared_weak_owners); + o->on_zero_shared_weak(); + } + } +} + +STDCXX_INTERCEPTOR(bool, _ZNSt3__114__shared_count16__release_sharedEv, + fake_shared_weak_count *o) { + if (!flags()->shared_ptr_interceptor) + return REAL(_ZNSt3__114__shared_count16__release_sharedEv)(o); + + SCOPED_TSAN_INTERCEPTOR(_ZNSt3__114__shared_count16__release_sharedEv, o); + if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) { + Acquire(thr, pc, (uptr)&o->shared_owners); + o->on_zero_shared(); + return true; + } + return false; +} + +namespace { +struct call_once_callback_args { + void (*orig_func)(void *arg); + void *orig_arg; + void *flag; +}; + +void call_once_callback_wrapper(void *arg) { + call_once_callback_args *new_args = (call_once_callback_args *)arg; + new_args->orig_func(new_args->orig_arg); + __tsan_release(new_args->flag); +} +} // namespace + +// This adds a libc++ interceptor for: +// void __call_once(volatile unsigned long&, void*, void(*)(void*)); +// C++11 call_once is implemented via an internal function __call_once which is +// inside libc++.dylib, and the atomic release store inside it is thus +// TSan-invisible. To avoid false positives, this interceptor wraps the callback +// function and performs an explicit Release after the user code has run. +STDCXX_INTERCEPTOR(void, _ZNSt3__111__call_onceERVmPvPFvS2_E, void *flag, + void *arg, void (*func)(void *arg)) { + call_once_callback_args new_args = {func, arg, flag}; + REAL(_ZNSt3__111__call_onceERVmPvPFvS2_E)(flag, &new_args, + call_once_callback_wrapper); +} + +} // namespace __tsan + +#endif // SANITIZER_APPLE |