aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang16-rt/lib/sanitizer_common/sanitizer_allocator_primary32.h
diff options
context:
space:
mode:
authornkozlovskiy <nmk@ydb.tech>2023-12-04 19:26:35 +0300
committernkozlovskiy <nmk@ydb.tech>2023-12-05 05:25:43 +0300
commite62474f851635573f9f6631039e113a02fd50179 (patch)
tree597d4bc8aad74ef42c55fd062398e93eceebfee3 /contrib/libs/clang16-rt/lib/sanitizer_common/sanitizer_allocator_primary32.h
parente7eddec34be4f360877b46ffa2b70fde8a3a5b8f (diff)
downloadydb-e62474f851635573f9f6631039e113a02fd50179.tar.gz
ydb-oss sync: add clang16-rt/ to additionalPathsToCopy
Diffstat (limited to 'contrib/libs/clang16-rt/lib/sanitizer_common/sanitizer_allocator_primary32.h')
-rw-r--r--contrib/libs/clang16-rt/lib/sanitizer_common/sanitizer_allocator_primary32.h381
1 files changed, 381 insertions, 0 deletions
diff --git a/contrib/libs/clang16-rt/lib/sanitizer_common/sanitizer_allocator_primary32.h b/contrib/libs/clang16-rt/lib/sanitizer_common/sanitizer_allocator_primary32.h
new file mode 100644
index 0000000000..f2471efced
--- /dev/null
+++ b/contrib/libs/clang16-rt/lib/sanitizer_common/sanitizer_allocator_primary32.h
@@ -0,0 +1,381 @@
+//===-- sanitizer_allocator_primary32.h -------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Part of the Sanitizer Allocator.
+//
+//===----------------------------------------------------------------------===//
+#ifndef SANITIZER_ALLOCATOR_H
+#error This file must be included inside sanitizer_allocator.h
+#endif
+
+template<class SizeClassAllocator> struct SizeClassAllocator32LocalCache;
+
+// SizeClassAllocator32 -- allocator for 32-bit address space.
+// This allocator can theoretically be used on 64-bit arch, but there it is less
+// efficient than SizeClassAllocator64.
+//
+// [kSpaceBeg, kSpaceBeg + kSpaceSize) is the range of addresses which can
+// be returned by MmapOrDie().
+//
+// Region:
+// a result of a single call to MmapAlignedOrDieOnFatalError(kRegionSize,
+// kRegionSize).
+// Since the regions are aligned by kRegionSize, there are exactly
+// kNumPossibleRegions possible regions in the address space and so we keep
+// a ByteMap possible_regions to store the size classes of each Region.
+// 0 size class means the region is not used by the allocator.
+//
+// One Region is used to allocate chunks of a single size class.
+// A Region looks like this:
+// UserChunk1 .. UserChunkN <gap> MetaChunkN .. MetaChunk1
+//
+// In order to avoid false sharing the objects of this class should be
+// chache-line aligned.
+
+struct SizeClassAllocator32FlagMasks { // Bit masks.
+ enum {
+ kRandomShuffleChunks = 1,
+ kUseSeparateSizeClassForBatch = 2,
+ };
+};
+
+template <class Params>
+class SizeClassAllocator32 {
+ private:
+ static const u64 kTwoLevelByteMapSize1 =
+ (Params::kSpaceSize >> Params::kRegionSizeLog) >> 12;
+ static const u64 kMinFirstMapSizeTwoLevelByteMap = 4;
+
+ public:
+ using AddressSpaceView = typename Params::AddressSpaceView;
+ static const uptr kSpaceBeg = Params::kSpaceBeg;
+ static const u64 kSpaceSize = Params::kSpaceSize;
+ static const uptr kMetadataSize = Params::kMetadataSize;
+ typedef typename Params::SizeClassMap SizeClassMap;
+ static const uptr kRegionSizeLog = Params::kRegionSizeLog;
+ typedef typename Params::MapUnmapCallback MapUnmapCallback;
+ using ByteMap = typename conditional<
+ (kTwoLevelByteMapSize1 < kMinFirstMapSizeTwoLevelByteMap),
+ FlatByteMap<(Params::kSpaceSize >> Params::kRegionSizeLog),
+ AddressSpaceView>,
+ TwoLevelByteMap<kTwoLevelByteMapSize1, 1 << 12, AddressSpaceView>>::type;
+
+ COMPILER_CHECK(!SANITIZER_SIGN_EXTENDED_ADDRESSES ||
+ (kSpaceSize & (kSpaceSize - 1)) == 0);
+
+ static const bool kRandomShuffleChunks = Params::kFlags &
+ SizeClassAllocator32FlagMasks::kRandomShuffleChunks;
+ static const bool kUseSeparateSizeClassForBatch = Params::kFlags &
+ SizeClassAllocator32FlagMasks::kUseSeparateSizeClassForBatch;
+
+ struct TransferBatch {
+ static const uptr kMaxNumCached = SizeClassMap::kMaxNumCachedHint - 2;
+ void SetFromArray(void *batch[], uptr count) {
+ DCHECK_LE(count, kMaxNumCached);
+ count_ = count;
+ for (uptr i = 0; i < count; i++)
+ batch_[i] = batch[i];
+ }
+ uptr Count() const { return count_; }
+ void Clear() { count_ = 0; }
+ void Add(void *ptr) {
+ batch_[count_++] = ptr;
+ DCHECK_LE(count_, kMaxNumCached);
+ }
+ void CopyToArray(void *to_batch[]) const {
+ for (uptr i = 0, n = Count(); i < n; i++)
+ to_batch[i] = batch_[i];
+ }
+
+ // How much memory do we need for a batch containing n elements.
+ static uptr AllocationSizeRequiredForNElements(uptr n) {
+ return sizeof(uptr) * 2 + sizeof(void *) * n;
+ }
+ static uptr MaxCached(uptr size) {
+ return Min(kMaxNumCached, SizeClassMap::MaxCachedHint(size));
+ }
+
+ TransferBatch *next;
+
+ private:
+ uptr count_;
+ void *batch_[kMaxNumCached];
+ };
+
+ static const uptr kBatchSize = sizeof(TransferBatch);
+ COMPILER_CHECK((kBatchSize & (kBatchSize - 1)) == 0);
+ COMPILER_CHECK(kBatchSize == SizeClassMap::kMaxNumCachedHint * sizeof(uptr));
+
+ static uptr ClassIdToSize(uptr class_id) {
+ return (class_id == SizeClassMap::kBatchClassID) ?
+ kBatchSize : SizeClassMap::Size(class_id);
+ }
+
+ typedef SizeClassAllocator32<Params> ThisT;
+ typedef SizeClassAllocator32LocalCache<ThisT> AllocatorCache;
+
+ void Init(s32 release_to_os_interval_ms, uptr heap_start = 0) {
+ CHECK(!heap_start);
+ possible_regions.Init();
+ internal_memset(size_class_info_array, 0, sizeof(size_class_info_array));
+ }
+
+ s32 ReleaseToOSIntervalMs() const {
+ return kReleaseToOSIntervalNever;
+ }
+
+ void SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms) {
+ // This is empty here. Currently only implemented in 64-bit allocator.
+ }
+
+ void ForceReleaseToOS() {
+ // Currently implemented in 64-bit allocator only.
+ }
+
+ void *MapWithCallback(uptr size) {
+ void *res = MmapOrDie(size, PrimaryAllocatorName);
+ MapUnmapCallback().OnMap((uptr)res, size);
+ return res;
+ }
+
+ void UnmapWithCallback(uptr beg, uptr size) {
+ MapUnmapCallback().OnUnmap(beg, size);
+ UnmapOrDie(reinterpret_cast<void *>(beg), size);
+ }
+
+ static bool CanAllocate(uptr size, uptr alignment) {
+ return size <= SizeClassMap::kMaxSize &&
+ alignment <= SizeClassMap::kMaxSize;
+ }
+
+ void *GetMetaData(const void *p) {
+ CHECK(kMetadataSize);
+ CHECK(PointerIsMine(p));
+ uptr mem = reinterpret_cast<uptr>(p);
+ uptr beg = ComputeRegionBeg(mem);
+ uptr size = ClassIdToSize(GetSizeClass(p));
+ u32 offset = mem - beg;
+ uptr n = offset / (u32)size; // 32-bit division
+ uptr meta = (beg + kRegionSize) - (n + 1) * kMetadataSize;
+ return reinterpret_cast<void*>(meta);
+ }
+
+ NOINLINE TransferBatch *AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
+ uptr class_id) {
+ DCHECK_LT(class_id, kNumClasses);
+ SizeClassInfo *sci = GetSizeClassInfo(class_id);
+ SpinMutexLock l(&sci->mutex);
+ if (sci->free_list.empty()) {
+ if (UNLIKELY(!PopulateFreeList(stat, c, sci, class_id)))
+ return nullptr;
+ DCHECK(!sci->free_list.empty());
+ }
+ TransferBatch *b = sci->free_list.front();
+ sci->free_list.pop_front();
+ return b;
+ }
+
+ NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id,
+ TransferBatch *b) {
+ DCHECK_LT(class_id, kNumClasses);
+ CHECK_GT(b->Count(), 0);
+ SizeClassInfo *sci = GetSizeClassInfo(class_id);
+ SpinMutexLock l(&sci->mutex);
+ sci->free_list.push_front(b);
+ }
+
+ bool PointerIsMine(const void *p) const {
+ uptr mem = reinterpret_cast<uptr>(p);
+ if (SANITIZER_SIGN_EXTENDED_ADDRESSES)
+ mem &= (kSpaceSize - 1);
+ if (mem < kSpaceBeg || mem >= kSpaceBeg + kSpaceSize)
+ return false;
+ return GetSizeClass(p) != 0;
+ }
+
+ uptr GetSizeClass(const void *p) const {
+ uptr id = ComputeRegionId(reinterpret_cast<uptr>(p));
+ return possible_regions.contains(id) ? possible_regions[id] : 0;
+ }
+
+ void *GetBlockBegin(const void *p) {
+ CHECK(PointerIsMine(p));
+ uptr mem = reinterpret_cast<uptr>(p);
+ uptr beg = ComputeRegionBeg(mem);
+ uptr size = ClassIdToSize(GetSizeClass(p));
+ u32 offset = mem - beg;
+ u32 n = offset / (u32)size; // 32-bit division
+ uptr res = beg + (n * (u32)size);
+ return reinterpret_cast<void*>(res);
+ }
+
+ uptr GetActuallyAllocatedSize(void *p) {
+ CHECK(PointerIsMine(p));
+ return ClassIdToSize(GetSizeClass(p));
+ }
+
+ static uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
+
+ uptr TotalMemoryUsed() {
+ // No need to lock here.
+ uptr res = 0;
+ for (uptr i = 0; i < kNumPossibleRegions; i++)
+ if (possible_regions[i])
+ res += kRegionSize;
+ return res;
+ }
+
+ void TestOnlyUnmap() {
+ for (uptr i = 0; i < kNumPossibleRegions; i++)
+ if (possible_regions[i])
+ UnmapWithCallback((i * kRegionSize), kRegionSize);
+ }
+
+ // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
+ // introspection API.
+ void ForceLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
+ for (uptr i = 0; i < kNumClasses; i++) {
+ GetSizeClassInfo(i)->mutex.Lock();
+ }
+ }
+
+ void ForceUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
+ for (int i = kNumClasses - 1; i >= 0; i--) {
+ GetSizeClassInfo(i)->mutex.Unlock();
+ }
+ }
+
+ // Iterate over all existing chunks.
+ // The allocator must be locked when calling this function.
+ void ForEachChunk(ForEachChunkCallback callback, void *arg) const {
+ for (uptr region = 0; region < kNumPossibleRegions; region++)
+ if (possible_regions.contains(region) && possible_regions[region]) {
+ uptr chunk_size = ClassIdToSize(possible_regions[region]);
+ uptr max_chunks_in_region = kRegionSize / (chunk_size + kMetadataSize);
+ uptr region_beg = region * kRegionSize;
+ for (uptr chunk = region_beg;
+ chunk < region_beg + max_chunks_in_region * chunk_size;
+ chunk += chunk_size) {
+ // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
+ callback(chunk, arg);
+ }
+ }
+ }
+
+ void PrintStats() {}
+
+ static uptr AdditionalSize() { return 0; }
+
+ typedef SizeClassMap SizeClassMapT;
+ static const uptr kNumClasses = SizeClassMap::kNumClasses;
+
+ private:
+ static const uptr kRegionSize = 1 << kRegionSizeLog;
+ static const uptr kNumPossibleRegions = kSpaceSize / kRegionSize;
+
+ struct ALIGNED(SANITIZER_CACHE_LINE_SIZE) SizeClassInfo {
+ StaticSpinMutex mutex;
+ IntrusiveList<TransferBatch> free_list;
+ u32 rand_state;
+ };
+ COMPILER_CHECK(sizeof(SizeClassInfo) % kCacheLineSize == 0);
+
+ uptr ComputeRegionId(uptr mem) const {
+ if (SANITIZER_SIGN_EXTENDED_ADDRESSES)
+ mem &= (kSpaceSize - 1);
+ const uptr res = mem >> kRegionSizeLog;
+ CHECK_LT(res, kNumPossibleRegions);
+ return res;
+ }
+
+ uptr ComputeRegionBeg(uptr mem) const { return mem & ~(kRegionSize - 1); }
+
+ uptr AllocateRegion(AllocatorStats *stat, uptr class_id) {
+ DCHECK_LT(class_id, kNumClasses);
+ const uptr res = reinterpret_cast<uptr>(MmapAlignedOrDieOnFatalError(
+ kRegionSize, kRegionSize, PrimaryAllocatorName));
+ if (UNLIKELY(!res))
+ return 0;
+ MapUnmapCallback().OnMap(res, kRegionSize);
+ stat->Add(AllocatorStatMapped, kRegionSize);
+ CHECK(IsAligned(res, kRegionSize));
+ possible_regions[ComputeRegionId(res)] = class_id;
+ return res;
+ }
+
+ SizeClassInfo *GetSizeClassInfo(uptr class_id) {
+ DCHECK_LT(class_id, kNumClasses);
+ return &size_class_info_array[class_id];
+ }
+
+ bool PopulateBatches(AllocatorCache *c, SizeClassInfo *sci, uptr class_id,
+ TransferBatch **current_batch, uptr max_count,
+ uptr *pointers_array, uptr count) {
+ // If using a separate class for batches, we do not need to shuffle it.
+ if (kRandomShuffleChunks && (!kUseSeparateSizeClassForBatch ||
+ class_id != SizeClassMap::kBatchClassID))
+ RandomShuffle(pointers_array, count, &sci->rand_state);
+ TransferBatch *b = *current_batch;
+ for (uptr i = 0; i < count; i++) {
+ if (!b) {
+ b = c->CreateBatch(class_id, this, (TransferBatch*)pointers_array[i]);
+ if (UNLIKELY(!b))
+ return false;
+ b->Clear();
+ }
+ b->Add((void*)pointers_array[i]);
+ if (b->Count() == max_count) {
+ sci->free_list.push_back(b);
+ b = nullptr;
+ }
+ }
+ *current_batch = b;
+ return true;
+ }
+
+ bool PopulateFreeList(AllocatorStats *stat, AllocatorCache *c,
+ SizeClassInfo *sci, uptr class_id) {
+ const uptr region = AllocateRegion(stat, class_id);
+ if (UNLIKELY(!region))
+ return false;
+ if (kRandomShuffleChunks)
+ if (UNLIKELY(sci->rand_state == 0))
+ // The random state is initialized from ASLR (PIE) and time.
+ sci->rand_state = reinterpret_cast<uptr>(sci) ^ NanoTime();
+ const uptr size = ClassIdToSize(class_id);
+ const uptr n_chunks = kRegionSize / (size + kMetadataSize);
+ const uptr max_count = TransferBatch::MaxCached(size);
+ DCHECK_GT(max_count, 0);
+ TransferBatch *b = nullptr;
+ constexpr uptr kShuffleArraySize = 48;
+ uptr shuffle_array[kShuffleArraySize];
+ uptr count = 0;
+ for (uptr i = region; i < region + n_chunks * size; i += size) {
+ shuffle_array[count++] = i;
+ if (count == kShuffleArraySize) {
+ if (UNLIKELY(!PopulateBatches(c, sci, class_id, &b, max_count,
+ shuffle_array, count)))
+ return false;
+ count = 0;
+ }
+ }
+ if (count) {
+ if (UNLIKELY(!PopulateBatches(c, sci, class_id, &b, max_count,
+ shuffle_array, count)))
+ return false;
+ }
+ if (b) {
+ CHECK_GT(b->Count(), 0);
+ sci->free_list.push_back(b);
+ }
+ return true;
+ }
+
+ ByteMap possible_regions;
+ SizeClassInfo size_class_info_array[kNumClasses];
+};