aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang16-rt/lib/gwp_asan/guarded_pool_allocator.cpp
diff options
context:
space:
mode:
authornkozlovskiy <nmk@ydb.tech>2023-12-04 19:26:35 +0300
committernkozlovskiy <nmk@ydb.tech>2023-12-05 05:25:43 +0300
commite62474f851635573f9f6631039e113a02fd50179 (patch)
tree597d4bc8aad74ef42c55fd062398e93eceebfee3 /contrib/libs/clang16-rt/lib/gwp_asan/guarded_pool_allocator.cpp
parente7eddec34be4f360877b46ffa2b70fde8a3a5b8f (diff)
downloadydb-e62474f851635573f9f6631039e113a02fd50179.tar.gz
ydb-oss sync: add clang16-rt/ to additionalPathsToCopy
Diffstat (limited to 'contrib/libs/clang16-rt/lib/gwp_asan/guarded_pool_allocator.cpp')
-rw-r--r--contrib/libs/clang16-rt/lib/gwp_asan/guarded_pool_allocator.cpp469
1 files changed, 469 insertions, 0 deletions
diff --git a/contrib/libs/clang16-rt/lib/gwp_asan/guarded_pool_allocator.cpp b/contrib/libs/clang16-rt/lib/gwp_asan/guarded_pool_allocator.cpp
new file mode 100644
index 0000000000..9017ab7cf7
--- /dev/null
+++ b/contrib/libs/clang16-rt/lib/gwp_asan/guarded_pool_allocator.cpp
@@ -0,0 +1,469 @@
+//===-- guarded_pool_allocator.cpp ------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "gwp_asan/guarded_pool_allocator.h"
+
+#include "gwp_asan/crash_handler.h"
+#include "gwp_asan/options.h"
+#include "gwp_asan/utilities.h"
+
+#include <assert.h>
+#include <stddef.h>
+
+using AllocationMetadata = gwp_asan::AllocationMetadata;
+using Error = gwp_asan::Error;
+
+namespace gwp_asan {
+namespace {
+// Forward declare the pointer to the singleton version of this class.
+// Instantiated during initialisation, this allows the signal handler
+// to find this class in order to deduce the root cause of failures. Must not be
+// referenced by users outside this translation unit, in order to avoid
+// init-order-fiasco.
+GuardedPoolAllocator *SingletonPtr = nullptr;
+
+size_t roundUpTo(size_t Size, size_t Boundary) {
+ return (Size + Boundary - 1) & ~(Boundary - 1);
+}
+
+uintptr_t getPageAddr(uintptr_t Ptr, uintptr_t PageSize) {
+ return Ptr & ~(PageSize - 1);
+}
+
+bool isPowerOfTwo(uintptr_t X) { return (X & (X - 1)) == 0; }
+} // anonymous namespace
+
+// Gets the singleton implementation of this class. Thread-compatible until
+// init() is called, thread-safe afterwards.
+GuardedPoolAllocator *GuardedPoolAllocator::getSingleton() {
+ return SingletonPtr;
+}
+
+void GuardedPoolAllocator::init(const options::Options &Opts) {
+ // Note: We return from the constructor here if GWP-ASan is not available.
+ // This will stop heap-allocation of class members, as well as mmap() of the
+ // guarded slots.
+ if (!Opts.Enabled || Opts.SampleRate == 0 ||
+ Opts.MaxSimultaneousAllocations == 0)
+ return;
+
+ Check(Opts.SampleRate >= 0, "GWP-ASan Error: SampleRate is < 0.");
+ Check(Opts.SampleRate < (1 << 30), "GWP-ASan Error: SampleRate is >= 2^30.");
+ Check(Opts.MaxSimultaneousAllocations >= 0,
+ "GWP-ASan Error: MaxSimultaneousAllocations is < 0.");
+
+ SingletonPtr = this;
+ Backtrace = Opts.Backtrace;
+
+ State.VersionMagic = {{AllocatorVersionMagic::kAllocatorVersionMagic[0],
+ AllocatorVersionMagic::kAllocatorVersionMagic[1],
+ AllocatorVersionMagic::kAllocatorVersionMagic[2],
+ AllocatorVersionMagic::kAllocatorVersionMagic[3]},
+ AllocatorVersionMagic::kAllocatorVersion,
+ 0};
+
+ State.MaxSimultaneousAllocations = Opts.MaxSimultaneousAllocations;
+
+ const size_t PageSize = getPlatformPageSize();
+ // getPageAddr() and roundUpTo() assume the page size to be a power of 2.
+ assert((PageSize & (PageSize - 1)) == 0);
+ State.PageSize = PageSize;
+
+ // Number of pages required =
+ // + MaxSimultaneousAllocations * maximumAllocationSize (N pages per slot)
+ // + MaxSimultaneousAllocations (one guard on the left side of each slot)
+ // + 1 (an extra guard page at the end of the pool, on the right side)
+ // + 1 (an extra page that's used for reporting internally-detected crashes,
+ // like double free and invalid free, to the signal handler; see
+ // raiseInternallyDetectedError() for more info)
+ size_t PoolBytesRequired =
+ PageSize * (2 + State.MaxSimultaneousAllocations) +
+ State.MaxSimultaneousAllocations * State.maximumAllocationSize();
+ assert(PoolBytesRequired % PageSize == 0);
+ void *GuardedPoolMemory = reserveGuardedPool(PoolBytesRequired);
+
+ size_t BytesRequired =
+ roundUpTo(State.MaxSimultaneousAllocations * sizeof(*Metadata), PageSize);
+ Metadata = reinterpret_cast<AllocationMetadata *>(
+ map(BytesRequired, kGwpAsanMetadataName));
+
+ // Allocate memory and set up the free pages queue.
+ BytesRequired = roundUpTo(
+ State.MaxSimultaneousAllocations * sizeof(*FreeSlots), PageSize);
+ FreeSlots =
+ reinterpret_cast<size_t *>(map(BytesRequired, kGwpAsanFreeSlotsName));
+
+ // Multiply the sample rate by 2 to give a good, fast approximation for (1 /
+ // SampleRate) chance of sampling.
+ if (Opts.SampleRate != 1)
+ AdjustedSampleRatePlusOne = static_cast<uint32_t>(Opts.SampleRate) * 2 + 1;
+ else
+ AdjustedSampleRatePlusOne = 2;
+
+ initPRNG();
+ getThreadLocals()->NextSampleCounter =
+ ((getRandomUnsigned32() % (AdjustedSampleRatePlusOne - 1)) + 1) &
+ ThreadLocalPackedVariables::NextSampleCounterMask;
+
+ State.GuardedPagePool = reinterpret_cast<uintptr_t>(GuardedPoolMemory);
+ State.GuardedPagePoolEnd =
+ reinterpret_cast<uintptr_t>(GuardedPoolMemory) + PoolBytesRequired;
+
+ if (Opts.InstallForkHandlers)
+ installAtFork();
+}
+
+void GuardedPoolAllocator::disable() {
+ PoolMutex.lock();
+ BacktraceMutex.lock();
+}
+
+void GuardedPoolAllocator::enable() {
+ PoolMutex.unlock();
+ BacktraceMutex.unlock();
+}
+
+void GuardedPoolAllocator::iterate(void *Base, size_t Size, iterate_callback Cb,
+ void *Arg) {
+ uintptr_t Start = reinterpret_cast<uintptr_t>(Base);
+ for (size_t i = 0; i < State.MaxSimultaneousAllocations; ++i) {
+ const AllocationMetadata &Meta = Metadata[i];
+ if (Meta.Addr && !Meta.IsDeallocated && Meta.Addr >= Start &&
+ Meta.Addr < Start + Size)
+ Cb(Meta.Addr, Meta.RequestedSize, Arg);
+ }
+}
+
+void GuardedPoolAllocator::uninitTestOnly() {
+ if (State.GuardedPagePool) {
+ unreserveGuardedPool();
+ State.GuardedPagePool = 0;
+ State.GuardedPagePoolEnd = 0;
+ }
+ if (Metadata) {
+ unmap(Metadata,
+ roundUpTo(State.MaxSimultaneousAllocations * sizeof(*Metadata),
+ State.PageSize));
+ Metadata = nullptr;
+ }
+ if (FreeSlots) {
+ unmap(FreeSlots,
+ roundUpTo(State.MaxSimultaneousAllocations * sizeof(*FreeSlots),
+ State.PageSize));
+ FreeSlots = nullptr;
+ }
+ *getThreadLocals() = ThreadLocalPackedVariables();
+}
+
+// Note, minimum backing allocation size in GWP-ASan is always one page, and
+// each slot could potentially be multiple pages (but always in
+// page-increments). Thus, for anything that requires less than page size
+// alignment, we don't need to allocate extra padding to ensure the alignment
+// can be met.
+size_t GuardedPoolAllocator::getRequiredBackingSize(size_t Size,
+ size_t Alignment,
+ size_t PageSize) {
+ assert(isPowerOfTwo(Alignment) && "Alignment must be a power of two!");
+ assert(Alignment != 0 && "Alignment should be non-zero");
+ assert(Size != 0 && "Size should be non-zero");
+
+ if (Alignment <= PageSize)
+ return Size;
+
+ return Size + Alignment - PageSize;
+}
+
+uintptr_t GuardedPoolAllocator::alignUp(uintptr_t Ptr, size_t Alignment) {
+ assert(isPowerOfTwo(Alignment) && "Alignment must be a power of two!");
+ assert(Alignment != 0 && "Alignment should be non-zero");
+ if ((Ptr & (Alignment - 1)) == 0)
+ return Ptr;
+
+ Ptr += Alignment - (Ptr & (Alignment - 1));
+ return Ptr;
+}
+
+uintptr_t GuardedPoolAllocator::alignDown(uintptr_t Ptr, size_t Alignment) {
+ assert(isPowerOfTwo(Alignment) && "Alignment must be a power of two!");
+ assert(Alignment != 0 && "Alignment should be non-zero");
+ if ((Ptr & (Alignment - 1)) == 0)
+ return Ptr;
+
+ Ptr -= Ptr & (Alignment - 1);
+ return Ptr;
+}
+
+void *GuardedPoolAllocator::allocate(size_t Size, size_t Alignment) {
+ // GuardedPagePoolEnd == 0 when GWP-ASan is disabled. If we are disabled, fall
+ // back to the supporting allocator.
+ if (State.GuardedPagePoolEnd == 0) {
+ getThreadLocals()->NextSampleCounter =
+ (AdjustedSampleRatePlusOne - 1) &
+ ThreadLocalPackedVariables::NextSampleCounterMask;
+ return nullptr;
+ }
+
+ if (Size == 0)
+ Size = 1;
+ if (Alignment == 0)
+ Alignment = alignof(max_align_t);
+
+ if (!isPowerOfTwo(Alignment) || Alignment > State.maximumAllocationSize() ||
+ Size > State.maximumAllocationSize())
+ return nullptr;
+
+ size_t BackingSize = getRequiredBackingSize(Size, Alignment, State.PageSize);
+ if (BackingSize > State.maximumAllocationSize())
+ return nullptr;
+
+ // Protect against recursivity.
+ if (getThreadLocals()->RecursiveGuard)
+ return nullptr;
+ ScopedRecursiveGuard SRG;
+
+ size_t Index;
+ {
+ ScopedLock L(PoolMutex);
+ Index = reserveSlot();
+ }
+
+ if (Index == kInvalidSlotID)
+ return nullptr;
+
+ uintptr_t SlotStart = State.slotToAddr(Index);
+ AllocationMetadata *Meta = addrToMetadata(SlotStart);
+ uintptr_t SlotEnd = State.slotToAddr(Index) + State.maximumAllocationSize();
+ uintptr_t UserPtr;
+ // Randomly choose whether to left-align or right-align the allocation, and
+ // then apply the necessary adjustments to get an aligned pointer.
+ if (getRandomUnsigned32() % 2 == 0)
+ UserPtr = alignUp(SlotStart, Alignment);
+ else
+ UserPtr = alignDown(SlotEnd - Size, Alignment);
+
+ assert(UserPtr >= SlotStart);
+ assert(UserPtr + Size <= SlotEnd);
+
+ // If a slot is multiple pages in size, and the allocation takes up a single
+ // page, we can improve overflow detection by leaving the unused pages as
+ // unmapped.
+ const size_t PageSize = State.PageSize;
+ allocateInGuardedPool(
+ reinterpret_cast<void *>(getPageAddr(UserPtr, PageSize)),
+ roundUpTo(Size, PageSize));
+
+ Meta->RecordAllocation(UserPtr, Size);
+ {
+ ScopedLock UL(BacktraceMutex);
+ Meta->AllocationTrace.RecordBacktrace(Backtrace);
+ }
+
+ return reinterpret_cast<void *>(UserPtr);
+}
+
+void GuardedPoolAllocator::raiseInternallyDetectedError(uintptr_t Address,
+ Error E) {
+ // Disable the allocator before setting the internal failure state. In
+ // non-recoverable mode, the allocator will be permanently disabled, and so
+ // things will be accessed without locks.
+ disable();
+
+ // Races between internally- and externally-raised faults can happen. Right
+ // now, in this thread we've locked the allocator in order to raise an
+ // internally-detected fault, and another thread could SIGSEGV to raise an
+ // externally-detected fault. What will happen is that the other thread will
+ // wait in the signal handler, as we hold the allocator's locks from the
+ // disable() above. We'll trigger the signal handler by touching the
+ // internal-signal-raising address below, and the signal handler from our
+ // thread will get to run first as we will continue to hold the allocator
+ // locks until the enable() at the end of this function. Be careful though, if
+ // this thread receives another SIGSEGV after the disable() above, but before
+ // touching the internal-signal-raising address below, then this thread will
+ // get an "externally-raised" SIGSEGV while *also* holding the allocator
+ // locks, which means this thread's signal handler will deadlock. This could
+ // be resolved with a re-entrant lock, but asking platforms to implement this
+ // seems unnecessary given the only way to get a SIGSEGV in this critical
+ // section is either a memory safety bug in the couple lines of code below (be
+ // careful!), or someone outside uses `kill(this_thread, SIGSEGV)`, which
+ // really shouldn't happen.
+
+ State.FailureType = E;
+ State.FailureAddress = Address;
+
+ // Raise a SEGV by touching a specific address that identifies to the crash
+ // handler that this is an internally-raised fault. Changing this address?
+ // Don't forget to update __gwp_asan_get_internal_crash_address.
+ volatile char *p =
+ reinterpret_cast<char *>(State.internallyDetectedErrorFaultAddress());
+ *p = 0;
+
+ // This should never be reached in non-recoverable mode. Ensure that the
+ // signal handler called handleRecoverablePostCrashReport(), which was
+ // responsible for re-setting these fields.
+ assert(State.FailureType == Error::UNKNOWN);
+ assert(State.FailureAddress == 0u);
+
+ // In recoverable mode, the signal handler (after dumping the crash) marked
+ // the page containing the InternalFaultSegvAddress as read/writeable, to
+ // allow the second touch to succeed after returning from the signal handler.
+ // Now, we need to mark the page as non-read/write-able again, so future
+ // internal faults can be raised.
+ deallocateInGuardedPool(
+ reinterpret_cast<void *>(getPageAddr(
+ State.internallyDetectedErrorFaultAddress(), State.PageSize)),
+ State.PageSize);
+
+ // And now we're done with patching ourselves back up, enable the allocator.
+ enable();
+}
+
+void GuardedPoolAllocator::deallocate(void *Ptr) {
+ assert(pointerIsMine(Ptr) && "Pointer is not mine!");
+ uintptr_t UPtr = reinterpret_cast<uintptr_t>(Ptr);
+ size_t Slot = State.getNearestSlot(UPtr);
+ uintptr_t SlotStart = State.slotToAddr(Slot);
+ AllocationMetadata *Meta = addrToMetadata(UPtr);
+
+ // If this allocation is responsible for crash, never recycle it. Turn the
+ // deallocate() call into a no-op.
+ if (Meta->HasCrashed)
+ return;
+
+ if (Meta->Addr != UPtr) {
+ raiseInternallyDetectedError(UPtr, Error::INVALID_FREE);
+ return;
+ }
+ if (Meta->IsDeallocated) {
+ raiseInternallyDetectedError(UPtr, Error::DOUBLE_FREE);
+ return;
+ }
+
+ // Intentionally scope the mutex here, so that other threads can access the
+ // pool during the expensive markInaccessible() call.
+ {
+ ScopedLock L(PoolMutex);
+
+ // Ensure that the deallocation is recorded before marking the page as
+ // inaccessible. Otherwise, a racy use-after-free will have inconsistent
+ // metadata.
+ Meta->RecordDeallocation();
+
+ // Ensure that the unwinder is not called if the recursive flag is set,
+ // otherwise non-reentrant unwinders may deadlock.
+ if (!getThreadLocals()->RecursiveGuard) {
+ ScopedRecursiveGuard SRG;
+ ScopedLock UL(BacktraceMutex);
+ Meta->DeallocationTrace.RecordBacktrace(Backtrace);
+ }
+ }
+
+ deallocateInGuardedPool(reinterpret_cast<void *>(SlotStart),
+ State.maximumAllocationSize());
+
+ // And finally, lock again to release the slot back into the pool.
+ ScopedLock L(PoolMutex);
+ freeSlot(Slot);
+}
+
+// Thread-compatible, protected by PoolMutex.
+static bool PreviousRecursiveGuard;
+
+void GuardedPoolAllocator::preCrashReport(void *Ptr) {
+ assert(pointerIsMine(Ptr) && "Pointer is not mine!");
+ uintptr_t InternalCrashAddr = __gwp_asan_get_internal_crash_address(
+ &State, reinterpret_cast<uintptr_t>(Ptr));
+ if (!InternalCrashAddr)
+ disable();
+
+ // If something in the signal handler calls malloc() while dumping the
+ // GWP-ASan report (e.g. backtrace_symbols()), make sure that GWP-ASan doesn't
+ // service that allocation. `PreviousRecursiveGuard` is protected by the
+ // allocator locks taken in disable(), either explicitly above for
+ // externally-raised errors, or implicitly in raiseInternallyDetectedError()
+ // for internally-detected errors.
+ PreviousRecursiveGuard = getThreadLocals()->RecursiveGuard;
+ getThreadLocals()->RecursiveGuard = true;
+}
+
+void GuardedPoolAllocator::postCrashReportRecoverableOnly(void *SignalPtr) {
+ uintptr_t SignalUPtr = reinterpret_cast<uintptr_t>(SignalPtr);
+ uintptr_t InternalCrashAddr =
+ __gwp_asan_get_internal_crash_address(&State, SignalUPtr);
+ uintptr_t ErrorUptr = InternalCrashAddr ?: SignalUPtr;
+
+ AllocationMetadata *Metadata = addrToMetadata(ErrorUptr);
+ Metadata->HasCrashed = true;
+
+ allocateInGuardedPool(
+ reinterpret_cast<void *>(getPageAddr(SignalUPtr, State.PageSize)),
+ State.PageSize);
+
+ // Clear the internal state in order to not confuse the crash handler if a
+ // use-after-free or buffer-overflow comes from a different allocation in the
+ // future.
+ if (InternalCrashAddr) {
+ State.FailureType = Error::UNKNOWN;
+ State.FailureAddress = 0;
+ }
+
+ size_t Slot = State.getNearestSlot(ErrorUptr);
+ // If the slot is available, remove it permanently.
+ for (size_t i = 0; i < FreeSlotsLength; ++i) {
+ if (FreeSlots[i] == Slot) {
+ FreeSlots[i] = FreeSlots[FreeSlotsLength - 1];
+ FreeSlotsLength -= 1;
+ break;
+ }
+ }
+
+ getThreadLocals()->RecursiveGuard = PreviousRecursiveGuard;
+ if (!InternalCrashAddr)
+ enable();
+}
+
+size_t GuardedPoolAllocator::getSize(const void *Ptr) {
+ assert(pointerIsMine(Ptr));
+ ScopedLock L(PoolMutex);
+ AllocationMetadata *Meta = addrToMetadata(reinterpret_cast<uintptr_t>(Ptr));
+ assert(Meta->Addr == reinterpret_cast<uintptr_t>(Ptr));
+ return Meta->RequestedSize;
+}
+
+AllocationMetadata *GuardedPoolAllocator::addrToMetadata(uintptr_t Ptr) const {
+ return &Metadata[State.getNearestSlot(Ptr)];
+}
+
+size_t GuardedPoolAllocator::reserveSlot() {
+ // Avoid potential reuse of a slot before we have made at least a single
+ // allocation in each slot. Helps with our use-after-free detection.
+ if (NumSampledAllocations < State.MaxSimultaneousAllocations)
+ return NumSampledAllocations++;
+
+ if (FreeSlotsLength == 0)
+ return kInvalidSlotID;
+
+ size_t ReservedIndex = getRandomUnsigned32() % FreeSlotsLength;
+ size_t SlotIndex = FreeSlots[ReservedIndex];
+ FreeSlots[ReservedIndex] = FreeSlots[--FreeSlotsLength];
+ return SlotIndex;
+}
+
+void GuardedPoolAllocator::freeSlot(size_t SlotIndex) {
+ assert(FreeSlotsLength < State.MaxSimultaneousAllocations);
+ FreeSlots[FreeSlotsLength++] = SlotIndex;
+}
+
+uint32_t GuardedPoolAllocator::getRandomUnsigned32() {
+ uint32_t RandomState = getThreadLocals()->RandomState;
+ RandomState ^= RandomState << 13;
+ RandomState ^= RandomState >> 17;
+ RandomState ^= RandomState << 5;
+ getThreadLocals()->RandomState = RandomState;
+ return RandomState;
+}
+} // namespace gwp_asan