aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang14/tools/extra/clang-tidy/modernize/LoopConvertUtils.cpp
diff options
context:
space:
mode:
authorvitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
committervitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
commit6ffe9e53658409f212834330e13564e4952558f6 (patch)
tree85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/clang14/tools/extra/clang-tidy/modernize/LoopConvertUtils.cpp
parent726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff)
downloadydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/clang14/tools/extra/clang-tidy/modernize/LoopConvertUtils.cpp')
-rw-r--r--contrib/libs/clang14/tools/extra/clang-tidy/modernize/LoopConvertUtils.cpp915
1 files changed, 915 insertions, 0 deletions
diff --git a/contrib/libs/clang14/tools/extra/clang-tidy/modernize/LoopConvertUtils.cpp b/contrib/libs/clang14/tools/extra/clang-tidy/modernize/LoopConvertUtils.cpp
new file mode 100644
index 0000000000..d29e631641
--- /dev/null
+++ b/contrib/libs/clang14/tools/extra/clang-tidy/modernize/LoopConvertUtils.cpp
@@ -0,0 +1,915 @@
+//===--- LoopConvertUtils.cpp - clang-tidy --------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "LoopConvertUtils.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "clang/Basic/LLVM.h"
+#include "clang/Basic/Lambda.h"
+#include "clang/Basic/SourceLocation.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TokenKinds.h"
+#include "clang/Lex/Lexer.h"
+#include "llvm/ADT/APSInt.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Support/Casting.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <string>
+#include <utility>
+
+using namespace clang::ast_matchers;
+
+namespace clang {
+namespace tidy {
+namespace modernize {
+
+/// Tracks a stack of parent statements during traversal.
+///
+/// All this really does is inject push_back() before running
+/// RecursiveASTVisitor::TraverseStmt() and pop_back() afterwards. The Stmt atop
+/// the stack is the parent of the current statement (NULL for the topmost
+/// statement).
+bool StmtAncestorASTVisitor::TraverseStmt(Stmt *Statement) {
+ StmtAncestors.insert(std::make_pair(Statement, StmtStack.back()));
+ StmtStack.push_back(Statement);
+ RecursiveASTVisitor<StmtAncestorASTVisitor>::TraverseStmt(Statement);
+ StmtStack.pop_back();
+ return true;
+}
+
+/// Keep track of the DeclStmt associated with each VarDecl.
+///
+/// Combined with StmtAncestors, this provides roughly the same information as
+/// Scope, as we can map a VarDecl to its DeclStmt, then walk up the parent tree
+/// using StmtAncestors.
+bool StmtAncestorASTVisitor::VisitDeclStmt(DeclStmt *Decls) {
+ for (const auto *Decl : Decls->decls()) {
+ if (const auto *V = dyn_cast<VarDecl>(Decl))
+ DeclParents.insert(std::make_pair(V, Decls));
+ }
+ return true;
+}
+
+/// record the DeclRefExpr as part of the parent expression.
+bool ComponentFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *E) {
+ Components.push_back(E);
+ return true;
+}
+
+/// record the MemberExpr as part of the parent expression.
+bool ComponentFinderASTVisitor::VisitMemberExpr(MemberExpr *Member) {
+ Components.push_back(Member);
+ return true;
+}
+
+/// Forward any DeclRefExprs to a check on the referenced variable
+/// declaration.
+bool DependencyFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *DeclRef) {
+ if (auto *V = dyn_cast_or_null<VarDecl>(DeclRef->getDecl()))
+ return VisitVarDecl(V);
+ return true;
+}
+
+/// Determine if any this variable is declared inside the ContainingStmt.
+bool DependencyFinderASTVisitor::VisitVarDecl(VarDecl *V) {
+ const Stmt *Curr = DeclParents->lookup(V);
+ // First, see if the variable was declared within an inner scope of the loop.
+ while (Curr != nullptr) {
+ if (Curr == ContainingStmt) {
+ DependsOnInsideVariable = true;
+ return false;
+ }
+ Curr = StmtParents->lookup(Curr);
+ }
+
+ // Next, check if the variable was removed from existence by an earlier
+ // iteration.
+ for (const auto &I : *ReplacedVars) {
+ if (I.second == V) {
+ DependsOnInsideVariable = true;
+ return false;
+ }
+ }
+ return true;
+}
+
+/// If we already created a variable for TheLoop, check to make sure
+/// that the name was not already taken.
+bool DeclFinderASTVisitor::VisitForStmt(ForStmt *TheLoop) {
+ StmtGeneratedVarNameMap::const_iterator I = GeneratedDecls->find(TheLoop);
+ if (I != GeneratedDecls->end() && I->second == Name) {
+ Found = true;
+ return false;
+ }
+ return true;
+}
+
+/// If any named declaration within the AST subtree has the same name,
+/// then consider Name already taken.
+bool DeclFinderASTVisitor::VisitNamedDecl(NamedDecl *D) {
+ const IdentifierInfo *Ident = D->getIdentifier();
+ if (Ident && Ident->getName() == Name) {
+ Found = true;
+ return false;
+ }
+ return true;
+}
+
+/// Forward any declaration references to the actual check on the
+/// referenced declaration.
+bool DeclFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *DeclRef) {
+ if (auto *D = dyn_cast<NamedDecl>(DeclRef->getDecl()))
+ return VisitNamedDecl(D);
+ return true;
+}
+
+/// If the new variable name conflicts with any type used in the loop,
+/// then we mark that variable name as taken.
+bool DeclFinderASTVisitor::VisitTypeLoc(TypeLoc TL) {
+ QualType QType = TL.getType();
+
+ // Check if our name conflicts with a type, to handle for typedefs.
+ if (QType.getAsString() == Name) {
+ Found = true;
+ return false;
+ }
+ // Check for base type conflicts. For example, when a struct is being
+ // referenced in the body of the loop, the above getAsString() will return the
+ // whole type (ex. "struct s"), but will be caught here.
+ if (const IdentifierInfo *Ident = QType.getBaseTypeIdentifier()) {
+ if (Ident->getName() == Name) {
+ Found = true;
+ return false;
+ }
+ }
+ return true;
+}
+
+/// Look through conversion/copy constructors and member functions to find the
+/// explicit initialization expression, returning it is found.
+///
+/// The main idea is that given
+/// vector<int> v;
+/// we consider either of these initializations
+/// vector<int>::iterator it = v.begin();
+/// vector<int>::iterator it(v.begin());
+/// vector<int>::const_iterator it(v.begin());
+/// and retrieve `v.begin()` as the expression used to initialize `it` but do
+/// not include
+/// vector<int>::iterator it;
+/// vector<int>::iterator it(v.begin(), 0); // if this constructor existed
+/// as being initialized from `v.begin()`
+const Expr *digThroughConstructorsConversions(const Expr *E) {
+ if (!E)
+ return nullptr;
+ E = E->IgnoreImplicit();
+ if (const auto *ConstructExpr = dyn_cast<CXXConstructExpr>(E)) {
+ // The initial constructor must take exactly one parameter, but base class
+ // and deferred constructors can take more.
+ if (ConstructExpr->getNumArgs() != 1 ||
+ ConstructExpr->getConstructionKind() != CXXConstructExpr::CK_Complete)
+ return nullptr;
+ E = ConstructExpr->getArg(0);
+ if (const auto *Temp = dyn_cast<MaterializeTemporaryExpr>(E))
+ E = Temp->getSubExpr();
+ return digThroughConstructorsConversions(E);
+ }
+ // If this is a conversion (as iterators commonly convert into their const
+ // iterator counterparts), dig through that as well.
+ if (const auto *ME = dyn_cast<CXXMemberCallExpr>(E))
+ if (isa<CXXConversionDecl>(ME->getMethodDecl()))
+ return digThroughConstructorsConversions(ME->getImplicitObjectArgument());
+ return E;
+}
+
+/// Returns true when two Exprs are equivalent.
+bool areSameExpr(ASTContext *Context, const Expr *First, const Expr *Second) {
+ if (!First || !Second)
+ return false;
+
+ llvm::FoldingSetNodeID FirstID, SecondID;
+ First->Profile(FirstID, *Context, true);
+ Second->Profile(SecondID, *Context, true);
+ return FirstID == SecondID;
+}
+
+/// Returns the DeclRefExpr represented by E, or NULL if there isn't one.
+const DeclRefExpr *getDeclRef(const Expr *E) {
+ return dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
+}
+
+/// Returns true when two ValueDecls are the same variable.
+bool areSameVariable(const ValueDecl *First, const ValueDecl *Second) {
+ return First && Second &&
+ First->getCanonicalDecl() == Second->getCanonicalDecl();
+}
+
+/// Determines if an expression is a declaration reference to a
+/// particular variable.
+static bool exprReferencesVariable(const ValueDecl *Target, const Expr *E) {
+ if (!Target || !E)
+ return false;
+ const DeclRefExpr *Decl = getDeclRef(E);
+ return Decl && areSameVariable(Target, Decl->getDecl());
+}
+
+/// If the expression is a dereference or call to operator*(), return the
+/// operand. Otherwise, return NULL.
+static const Expr *getDereferenceOperand(const Expr *E) {
+ if (const auto *Uop = dyn_cast<UnaryOperator>(E))
+ return Uop->getOpcode() == UO_Deref ? Uop->getSubExpr() : nullptr;
+
+ if (const auto *OpCall = dyn_cast<CXXOperatorCallExpr>(E)) {
+ return OpCall->getOperator() == OO_Star && OpCall->getNumArgs() == 1
+ ? OpCall->getArg(0)
+ : nullptr;
+ }
+
+ return nullptr;
+}
+
+/// Returns true when the Container contains an Expr equivalent to E.
+template <typename ContainerT>
+static bool containsExpr(ASTContext *Context, const ContainerT *Container,
+ const Expr *E) {
+ llvm::FoldingSetNodeID ID;
+ E->Profile(ID, *Context, true);
+ for (const auto &I : *Container) {
+ if (ID == I.second)
+ return true;
+ }
+ return false;
+}
+
+/// Returns true when the index expression is a declaration reference to
+/// IndexVar.
+///
+/// If the index variable is `index`, this function returns true on
+/// arrayExpression[index];
+/// containerExpression[index];
+/// but not
+/// containerExpression[notIndex];
+static bool isIndexInSubscriptExpr(const Expr *IndexExpr,
+ const VarDecl *IndexVar) {
+ const DeclRefExpr *Idx = getDeclRef(IndexExpr);
+ return Idx && Idx->getType()->isIntegerType() &&
+ areSameVariable(IndexVar, Idx->getDecl());
+}
+
+/// Returns true when the index expression is a declaration reference to
+/// IndexVar, Obj is the same expression as SourceExpr after all parens and
+/// implicit casts are stripped off.
+///
+/// If PermitDeref is true, IndexExpression may
+/// be a dereference (overloaded or builtin operator*).
+///
+/// This function is intended for array-like containers, as it makes sure that
+/// both the container and the index match.
+/// If the loop has index variable `index` and iterates over `container`, then
+/// isIndexInSubscriptExpr returns true for
+/// \code
+/// container[index]
+/// container.at(index)
+/// container->at(index)
+/// \endcode
+/// but not for
+/// \code
+/// container[notIndex]
+/// notContainer[index]
+/// \endcode
+/// If PermitDeref is true, then isIndexInSubscriptExpr additionally returns
+/// true on these expressions:
+/// \code
+/// (*container)[index]
+/// (*container).at(index)
+/// \endcode
+static bool isIndexInSubscriptExpr(ASTContext *Context, const Expr *IndexExpr,
+ const VarDecl *IndexVar, const Expr *Obj,
+ const Expr *SourceExpr, bool PermitDeref) {
+ if (!SourceExpr || !Obj || !isIndexInSubscriptExpr(IndexExpr, IndexVar))
+ return false;
+
+ if (areSameExpr(Context, SourceExpr->IgnoreParenImpCasts(),
+ Obj->IgnoreParenImpCasts()))
+ return true;
+
+ if (const Expr *InnerObj = getDereferenceOperand(Obj->IgnoreParenImpCasts()))
+ if (PermitDeref && areSameExpr(Context, SourceExpr->IgnoreParenImpCasts(),
+ InnerObj->IgnoreParenImpCasts()))
+ return true;
+
+ return false;
+}
+
+/// Returns true when Opcall is a call a one-parameter dereference of
+/// IndexVar.
+///
+/// For example, if the index variable is `index`, returns true for
+/// *index
+/// but not
+/// index
+/// *notIndex
+static bool isDereferenceOfOpCall(const CXXOperatorCallExpr *OpCall,
+ const VarDecl *IndexVar) {
+ return OpCall->getOperator() == OO_Star && OpCall->getNumArgs() == 1 &&
+ exprReferencesVariable(IndexVar, OpCall->getArg(0));
+}
+
+/// Returns true when Uop is a dereference of IndexVar.
+///
+/// For example, if the index variable is `index`, returns true for
+/// *index
+/// but not
+/// index
+/// *notIndex
+static bool isDereferenceOfUop(const UnaryOperator *Uop,
+ const VarDecl *IndexVar) {
+ return Uop->getOpcode() == UO_Deref &&
+ exprReferencesVariable(IndexVar, Uop->getSubExpr());
+}
+
+/// Determines whether the given Decl defines a variable initialized to
+/// the loop object.
+///
+/// This is intended to find cases such as
+/// \code
+/// for (int i = 0; i < arraySize(arr); ++i) {
+/// T t = arr[i];
+/// // use t, do not use i
+/// }
+/// \endcode
+/// and
+/// \code
+/// for (iterator i = container.begin(), e = container.end(); i != e; ++i) {
+/// T t = *i;
+/// // use t, do not use i
+/// }
+/// \endcode
+static bool isAliasDecl(ASTContext *Context, const Decl *TheDecl,
+ const VarDecl *IndexVar) {
+ const auto *VDecl = dyn_cast<VarDecl>(TheDecl);
+ if (!VDecl)
+ return false;
+ if (!VDecl->hasInit())
+ return false;
+
+ bool OnlyCasts = true;
+ const Expr *Init = VDecl->getInit()->IgnoreParenImpCasts();
+ if (isa_and_nonnull<CXXConstructExpr>(Init)) {
+ Init = digThroughConstructorsConversions(Init);
+ OnlyCasts = false;
+ }
+ if (!Init)
+ return false;
+
+ // Check that the declared type is the same as (or a reference to) the
+ // container type.
+ if (!OnlyCasts) {
+ QualType InitType = Init->getType();
+ QualType DeclarationType = VDecl->getType();
+ if (!DeclarationType.isNull() && DeclarationType->isReferenceType())
+ DeclarationType = DeclarationType.getNonReferenceType();
+
+ if (InitType.isNull() || DeclarationType.isNull() ||
+ !Context->hasSameUnqualifiedType(DeclarationType, InitType))
+ return false;
+ }
+
+ switch (Init->getStmtClass()) {
+ case Stmt::ArraySubscriptExprClass: {
+ const auto *E = cast<ArraySubscriptExpr>(Init);
+ // We don't really care which array is used here. We check to make sure
+ // it was the correct one later, since the AST will traverse it next.
+ return isIndexInSubscriptExpr(E->getIdx(), IndexVar);
+ }
+
+ case Stmt::UnaryOperatorClass:
+ return isDereferenceOfUop(cast<UnaryOperator>(Init), IndexVar);
+
+ case Stmt::CXXOperatorCallExprClass: {
+ const auto *OpCall = cast<CXXOperatorCallExpr>(Init);
+ if (OpCall->getOperator() == OO_Star)
+ return isDereferenceOfOpCall(OpCall, IndexVar);
+ if (OpCall->getOperator() == OO_Subscript) {
+ assert(OpCall->getNumArgs() == 2);
+ return isIndexInSubscriptExpr(OpCall->getArg(1), IndexVar);
+ }
+ break;
+ }
+
+ case Stmt::CXXMemberCallExprClass: {
+ const auto *MemCall = cast<CXXMemberCallExpr>(Init);
+ // This check is needed because getMethodDecl can return nullptr if the
+ // callee is a member function pointer.
+ const auto *MDecl = MemCall->getMethodDecl();
+ if (MDecl && !isa<CXXConversionDecl>(MDecl) &&
+ MDecl->getNameAsString() == "at" && MemCall->getNumArgs() == 1) {
+ return isIndexInSubscriptExpr(MemCall->getArg(0), IndexVar);
+ }
+ return false;
+ }
+
+ default:
+ break;
+ }
+ return false;
+}
+
+/// Determines whether the bound of a for loop condition expression is
+/// the same as the statically computable size of ArrayType.
+///
+/// Given
+/// \code
+/// const int N = 5;
+/// int arr[N];
+/// \endcode
+/// This is intended to permit
+/// \code
+/// for (int i = 0; i < N; ++i) { /* use arr[i] */ }
+/// for (int i = 0; i < arraysize(arr); ++i) { /* use arr[i] */ }
+/// \endcode
+static bool arrayMatchesBoundExpr(ASTContext *Context,
+ const QualType &ArrayType,
+ const Expr *ConditionExpr) {
+ if (!ConditionExpr || ConditionExpr->isValueDependent())
+ return false;
+ const ConstantArrayType *ConstType =
+ Context->getAsConstantArrayType(ArrayType);
+ if (!ConstType)
+ return false;
+ Optional<llvm::APSInt> ConditionSize =
+ ConditionExpr->getIntegerConstantExpr(*Context);
+ if (!ConditionSize)
+ return false;
+ llvm::APSInt ArraySize(ConstType->getSize());
+ return llvm::APSInt::isSameValue(*ConditionSize, ArraySize);
+}
+
+ForLoopIndexUseVisitor::ForLoopIndexUseVisitor(ASTContext *Context,
+ const VarDecl *IndexVar,
+ const VarDecl *EndVar,
+ const Expr *ContainerExpr,
+ const Expr *ArrayBoundExpr,
+ bool ContainerNeedsDereference)
+ : Context(Context), IndexVar(IndexVar), EndVar(EndVar),
+ ContainerExpr(ContainerExpr), ArrayBoundExpr(ArrayBoundExpr),
+ ContainerNeedsDereference(ContainerNeedsDereference),
+ OnlyUsedAsIndex(true), AliasDecl(nullptr),
+ ConfidenceLevel(Confidence::CL_Safe), NextStmtParent(nullptr),
+ CurrStmtParent(nullptr), ReplaceWithAliasUse(false),
+ AliasFromForInit(false) {
+ if (ContainerExpr)
+ addComponent(ContainerExpr);
+}
+
+bool ForLoopIndexUseVisitor::findAndVerifyUsages(const Stmt *Body) {
+ TraverseStmt(const_cast<Stmt *>(Body));
+ return OnlyUsedAsIndex && ContainerExpr;
+}
+
+void ForLoopIndexUseVisitor::addComponents(const ComponentVector &Components) {
+ // FIXME: add sort(on ID)+unique to avoid extra work.
+ for (const auto &I : Components)
+ addComponent(I);
+}
+
+void ForLoopIndexUseVisitor::addComponent(const Expr *E) {
+ llvm::FoldingSetNodeID ID;
+ const Expr *Node = E->IgnoreParenImpCasts();
+ Node->Profile(ID, *Context, true);
+ DependentExprs.push_back(std::make_pair(Node, ID));
+}
+
+void ForLoopIndexUseVisitor::addUsage(const Usage &U) {
+ SourceLocation Begin = U.Range.getBegin();
+ if (Begin.isMacroID())
+ Begin = Context->getSourceManager().getSpellingLoc(Begin);
+
+ if (UsageLocations.insert(Begin).second)
+ Usages.push_back(U);
+}
+
+/// If the unary operator is a dereference of IndexVar, include it
+/// as a valid usage and prune the traversal.
+///
+/// For example, if container.begin() and container.end() both return pointers
+/// to int, this makes sure that the initialization for `k` is not counted as an
+/// unconvertible use of the iterator `i`.
+/// \code
+/// for (int *i = container.begin(), *e = container.end(); i != e; ++i) {
+/// int k = *i + 2;
+/// }
+/// \endcode
+bool ForLoopIndexUseVisitor::TraverseUnaryOperator(UnaryOperator *Uop) {
+ // If we dereference an iterator that's actually a pointer, count the
+ // occurrence.
+ if (isDereferenceOfUop(Uop, IndexVar)) {
+ addUsage(Usage(Uop));
+ return true;
+ }
+
+ return VisitorBase::TraverseUnaryOperator(Uop);
+}
+
+/// If the member expression is operator-> (overloaded or not) on
+/// IndexVar, include it as a valid usage and prune the traversal.
+///
+/// For example, given
+/// \code
+/// struct Foo { int bar(); int x; };
+/// vector<Foo> v;
+/// \endcode
+/// the following uses will be considered convertible:
+/// \code
+/// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
+/// int b = i->bar();
+/// int k = i->x + 1;
+/// }
+/// \endcode
+/// though
+/// \code
+/// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
+/// int k = i.insert(1);
+/// }
+/// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
+/// int b = e->bar();
+/// }
+/// \endcode
+/// will not.
+bool ForLoopIndexUseVisitor::TraverseMemberExpr(MemberExpr *Member) {
+ const Expr *Base = Member->getBase();
+ const DeclRefExpr *Obj = getDeclRef(Base);
+ const Expr *ResultExpr = Member;
+ QualType ExprType;
+ if (const auto *Call =
+ dyn_cast<CXXOperatorCallExpr>(Base->IgnoreParenImpCasts())) {
+ // If operator->() is a MemberExpr containing a CXXOperatorCallExpr, then
+ // the MemberExpr does not have the expression we want. We therefore catch
+ // that instance here.
+ // For example, if vector<Foo>::iterator defines operator->(), then the
+ // example `i->bar()` at the top of this function is a CXXMemberCallExpr
+ // referring to `i->` as the member function called. We want just `i`, so
+ // we take the argument to operator->() as the base object.
+ if (Call->getOperator() == OO_Arrow) {
+ assert(Call->getNumArgs() == 1 &&
+ "Operator-> takes more than one argument");
+ Obj = getDeclRef(Call->getArg(0));
+ ResultExpr = Obj;
+ ExprType = Call->getCallReturnType(*Context);
+ }
+ }
+
+ if (Obj && exprReferencesVariable(IndexVar, Obj)) {
+ // Member calls on the iterator with '.' are not allowed.
+ if (!Member->isArrow()) {
+ OnlyUsedAsIndex = false;
+ return true;
+ }
+
+ if (ExprType.isNull())
+ ExprType = Obj->getType();
+
+ if (!ExprType->isPointerType())
+ return false;
+
+ // FIXME: This works around not having the location of the arrow operator.
+ // Consider adding OperatorLoc to MemberExpr?
+ SourceLocation ArrowLoc = Lexer::getLocForEndOfToken(
+ Base->getExprLoc(), 0, Context->getSourceManager(),
+ Context->getLangOpts());
+ // If something complicated is happening (i.e. the next token isn't an
+ // arrow), give up on making this work.
+ if (ArrowLoc.isValid()) {
+ addUsage(Usage(ResultExpr, Usage::UK_MemberThroughArrow,
+ SourceRange(Base->getExprLoc(), ArrowLoc)));
+ return true;
+ }
+ }
+ return VisitorBase::TraverseMemberExpr(Member);
+}
+
+/// If a member function call is the at() accessor on the container with
+/// IndexVar as the single argument, include it as a valid usage and prune
+/// the traversal.
+///
+/// Member calls on other objects will not be permitted.
+/// Calls on the iterator object are not permitted, unless done through
+/// operator->(). The one exception is allowing vector::at() for pseudoarrays.
+bool ForLoopIndexUseVisitor::TraverseCXXMemberCallExpr(
+ CXXMemberCallExpr *MemberCall) {
+ auto *Member =
+ dyn_cast<MemberExpr>(MemberCall->getCallee()->IgnoreParenImpCasts());
+ if (!Member)
+ return VisitorBase::TraverseCXXMemberCallExpr(MemberCall);
+
+ // We specifically allow an accessor named "at" to let STL in, though
+ // this is restricted to pseudo-arrays by requiring a single, integer
+ // argument.
+ const IdentifierInfo *Ident = Member->getMemberDecl()->getIdentifier();
+ if (Ident && Ident->isStr("at") && MemberCall->getNumArgs() == 1) {
+ if (isIndexInSubscriptExpr(Context, MemberCall->getArg(0), IndexVar,
+ Member->getBase(), ContainerExpr,
+ ContainerNeedsDereference)) {
+ addUsage(Usage(MemberCall));
+ return true;
+ }
+ }
+
+ if (containsExpr(Context, &DependentExprs, Member->getBase()))
+ ConfidenceLevel.lowerTo(Confidence::CL_Risky);
+
+ return VisitorBase::TraverseCXXMemberCallExpr(MemberCall);
+}
+
+/// If an overloaded operator call is a dereference of IndexVar or
+/// a subscript of the container with IndexVar as the single argument,
+/// include it as a valid usage and prune the traversal.
+///
+/// For example, given
+/// \code
+/// struct Foo { int bar(); int x; };
+/// vector<Foo> v;
+/// void f(Foo);
+/// \endcode
+/// the following uses will be considered convertible:
+/// \code
+/// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
+/// f(*i);
+/// }
+/// for (int i = 0; i < v.size(); ++i) {
+/// int i = v[i] + 1;
+/// }
+/// \endcode
+bool ForLoopIndexUseVisitor::TraverseCXXOperatorCallExpr(
+ CXXOperatorCallExpr *OpCall) {
+ switch (OpCall->getOperator()) {
+ case OO_Star:
+ if (isDereferenceOfOpCall(OpCall, IndexVar)) {
+ addUsage(Usage(OpCall));
+ return true;
+ }
+ break;
+
+ case OO_Subscript:
+ if (OpCall->getNumArgs() != 2)
+ break;
+ if (isIndexInSubscriptExpr(Context, OpCall->getArg(1), IndexVar,
+ OpCall->getArg(0), ContainerExpr,
+ ContainerNeedsDereference)) {
+ addUsage(Usage(OpCall));
+ return true;
+ }
+ break;
+
+ default:
+ break;
+ }
+ return VisitorBase::TraverseCXXOperatorCallExpr(OpCall);
+}
+
+/// If we encounter an array with IndexVar as the index of an
+/// ArraySubscriptExpression, note it as a consistent usage and prune the
+/// AST traversal.
+///
+/// For example, given
+/// \code
+/// const int N = 5;
+/// int arr[N];
+/// \endcode
+/// This is intended to permit
+/// \code
+/// for (int i = 0; i < N; ++i) { /* use arr[i] */ }
+/// \endcode
+/// but not
+/// \code
+/// for (int i = 0; i < N; ++i) { /* use notArr[i] */ }
+/// \endcode
+/// and further checking needs to be done later to ensure that exactly one array
+/// is referenced.
+bool ForLoopIndexUseVisitor::TraverseArraySubscriptExpr(ArraySubscriptExpr *E) {
+ Expr *Arr = E->getBase();
+ if (!isIndexInSubscriptExpr(E->getIdx(), IndexVar))
+ return VisitorBase::TraverseArraySubscriptExpr(E);
+
+ if ((ContainerExpr &&
+ !areSameExpr(Context, Arr->IgnoreParenImpCasts(),
+ ContainerExpr->IgnoreParenImpCasts())) ||
+ !arrayMatchesBoundExpr(Context, Arr->IgnoreImpCasts()->getType(),
+ ArrayBoundExpr)) {
+ // If we have already discovered the array being indexed and this isn't it
+ // or this array doesn't match, mark this loop as unconvertible.
+ OnlyUsedAsIndex = false;
+ return VisitorBase::TraverseArraySubscriptExpr(E);
+ }
+
+ if (!ContainerExpr)
+ ContainerExpr = Arr;
+
+ addUsage(Usage(E));
+ return true;
+}
+
+/// If we encounter a reference to IndexVar in an unpruned branch of the
+/// traversal, mark this loop as unconvertible.
+///
+/// This determines the set of convertible loops: any usages of IndexVar
+/// not explicitly considered convertible by this traversal will be caught by
+/// this function.
+///
+/// Additionally, if the container expression is more complex than just a
+/// DeclRefExpr, and some part of it is appears elsewhere in the loop, lower
+/// our confidence in the transformation.
+///
+/// For example, these are not permitted:
+/// \code
+/// for (int i = 0; i < N; ++i) { printf("arr[%d] = %d", i, arr[i]); }
+/// for (vector<int>::iterator i = container.begin(), e = container.end();
+/// i != e; ++i)
+/// i.insert(0);
+/// for (vector<int>::iterator i = container.begin(), e = container.end();
+/// i != e; ++i)
+/// if (i + 1 != e)
+/// printf("%d", *i);
+/// \endcode
+///
+/// And these will raise the risk level:
+/// \code
+/// int arr[10][20];
+/// int l = 5;
+/// for (int j = 0; j < 20; ++j)
+/// int k = arr[l][j] + l; // using l outside arr[l] is considered risky
+/// for (int i = 0; i < obj.getVector().size(); ++i)
+/// obj.foo(10); // using `obj` is considered risky
+/// \endcode
+bool ForLoopIndexUseVisitor::VisitDeclRefExpr(DeclRefExpr *E) {
+ const ValueDecl *TheDecl = E->getDecl();
+ if (areSameVariable(IndexVar, TheDecl) ||
+ exprReferencesVariable(IndexVar, E) || areSameVariable(EndVar, TheDecl) ||
+ exprReferencesVariable(EndVar, E))
+ OnlyUsedAsIndex = false;
+ if (containsExpr(Context, &DependentExprs, E))
+ ConfidenceLevel.lowerTo(Confidence::CL_Risky);
+ return true;
+}
+
+/// If the loop index is captured by a lambda, replace this capture
+/// by the range-for loop variable.
+///
+/// For example:
+/// \code
+/// for (int i = 0; i < N; ++i) {
+/// auto f = [v, i](int k) {
+/// printf("%d\n", v[i] + k);
+/// };
+/// f(v[i]);
+/// }
+/// \endcode
+///
+/// Will be replaced by:
+/// \code
+/// for (auto & elem : v) {
+/// auto f = [v, elem](int k) {
+/// printf("%d\n", elem + k);
+/// };
+/// f(elem);
+/// }
+/// \endcode
+bool ForLoopIndexUseVisitor::TraverseLambdaCapture(LambdaExpr *LE,
+ const LambdaCapture *C,
+ Expr *Init) {
+ if (C->capturesVariable()) {
+ const VarDecl *VDecl = C->getCapturedVar();
+ if (areSameVariable(IndexVar, cast<ValueDecl>(VDecl))) {
+ // FIXME: if the index is captured, it will count as an usage and the
+ // alias (if any) won't work, because it is only used in case of having
+ // exactly one usage.
+ addUsage(Usage(nullptr,
+ C->getCaptureKind() == LCK_ByCopy ? Usage::UK_CaptureByCopy
+ : Usage::UK_CaptureByRef,
+ C->getLocation()));
+ }
+ }
+ return VisitorBase::TraverseLambdaCapture(LE, C, Init);
+}
+
+/// If we find that another variable is created just to refer to the loop
+/// element, note it for reuse as the loop variable.
+///
+/// See the comments for isAliasDecl.
+bool ForLoopIndexUseVisitor::VisitDeclStmt(DeclStmt *S) {
+ if (!AliasDecl && S->isSingleDecl() &&
+ isAliasDecl(Context, S->getSingleDecl(), IndexVar)) {
+ AliasDecl = S;
+ if (CurrStmtParent) {
+ if (isa<IfStmt>(CurrStmtParent) || isa<WhileStmt>(CurrStmtParent) ||
+ isa<SwitchStmt>(CurrStmtParent))
+ ReplaceWithAliasUse = true;
+ else if (isa<ForStmt>(CurrStmtParent)) {
+ if (cast<ForStmt>(CurrStmtParent)->getConditionVariableDeclStmt() == S)
+ ReplaceWithAliasUse = true;
+ else
+ // It's assumed S came the for loop's init clause.
+ AliasFromForInit = true;
+ }
+ }
+ }
+
+ return true;
+}
+
+bool ForLoopIndexUseVisitor::TraverseStmt(Stmt *S) {
+ // If this is an initialization expression for a lambda capture, prune the
+ // traversal so that we don't end up diagnosing the contained DeclRefExpr as
+ // inconsistent usage. No need to record the usage here -- this is done in
+ // TraverseLambdaCapture().
+ if (const auto *LE = dyn_cast_or_null<LambdaExpr>(NextStmtParent)) {
+ // Any child of a LambdaExpr that isn't the body is an initialization
+ // expression.
+ if (S != LE->getBody()) {
+ return true;
+ }
+ }
+
+ // All this pointer swapping is a mechanism for tracking immediate parentage
+ // of Stmts.
+ const Stmt *OldNextParent = NextStmtParent;
+ CurrStmtParent = NextStmtParent;
+ NextStmtParent = S;
+ bool Result = VisitorBase::TraverseStmt(S);
+ NextStmtParent = OldNextParent;
+ return Result;
+}
+
+std::string VariableNamer::createIndexName() {
+ // FIXME: Add in naming conventions to handle:
+ // - How to handle conflicts.
+ // - An interactive process for naming.
+ std::string IteratorName;
+ StringRef ContainerName;
+ if (TheContainer)
+ ContainerName = TheContainer->getName();
+
+ size_t Len = ContainerName.size();
+ if (Len > 1 && ContainerName.endswith(Style == NS_UpperCase ? "S" : "s")) {
+ IteratorName = std::string(ContainerName.substr(0, Len - 1));
+ // E.g.: (auto thing : things)
+ if (!declarationExists(IteratorName) || IteratorName == OldIndex->getName())
+ return IteratorName;
+ }
+
+ if (Len > 2 && ContainerName.endswith(Style == NS_UpperCase ? "S_" : "s_")) {
+ IteratorName = std::string(ContainerName.substr(0, Len - 2));
+ // E.g.: (auto thing : things_)
+ if (!declarationExists(IteratorName) || IteratorName == OldIndex->getName())
+ return IteratorName;
+ }
+
+ return std::string(OldIndex->getName());
+}
+
+/// Determines whether or not the name \a Symbol conflicts with
+/// language keywords or defined macros. Also checks if the name exists in
+/// LoopContext, any of its parent contexts, or any of its child statements.
+///
+/// We also check to see if the same identifier was generated by this loop
+/// converter in a loop nested within SourceStmt.
+bool VariableNamer::declarationExists(StringRef Symbol) {
+ assert(Context != nullptr && "Expected an ASTContext");
+ IdentifierInfo &Ident = Context->Idents.get(Symbol);
+
+ // Check if the symbol is not an identifier (ie. is a keyword or alias).
+ if (!isAnyIdentifier(Ident.getTokenID()))
+ return true;
+
+ // Check for conflicting macro definitions.
+ if (Ident.hasMacroDefinition())
+ return true;
+
+ // Determine if the symbol was generated in a parent context.
+ for (const Stmt *S = SourceStmt; S != nullptr; S = ReverseAST->lookup(S)) {
+ StmtGeneratedVarNameMap::const_iterator I = GeneratedDecls->find(S);
+ if (I != GeneratedDecls->end() && I->second == Symbol)
+ return true;
+ }
+
+ // FIXME: Rather than detecting conflicts at their usages, we should check the
+ // parent context.
+ // For some reason, lookup() always returns the pair (NULL, NULL) because its
+ // StoredDeclsMap is not initialized (i.e. LookupPtr.getInt() is false inside
+ // of DeclContext::lookup()). Why is this?
+
+ // Finally, determine if the symbol was used in the loop or a child context.
+ DeclFinderASTVisitor DeclFinder(std::string(Symbol), GeneratedDecls);
+ return DeclFinder.findUsages(SourceStmt);
+}
+
+} // namespace modernize
+} // namespace tidy
+} // namespace clang