diff options
author | robot-ydb-importer <robot-ydb-importer@yandex-team.com> | 2024-03-19 18:52:14 +0300 |
---|---|---|
committer | robot-ydb-importer <robot-ydb-importer@yandex-team.com> | 2024-03-19 19:24:53 +0300 |
commit | d314d6ddf6131c2ee96e97067fb3e5f560395dfb (patch) | |
tree | 167d2449ac47df359988840007e19e8cd152a09c /contrib/libs/clang14/lib/CodeGen/CGExprScalar.cpp | |
parent | ac62876a4c7633d486f2ecb111720a426a7da258 (diff) | |
download | ydb-d314d6ddf6131c2ee96e97067fb3e5f560395dfb.tar.gz |
YDB Import 588
1384556be6811c00a4098d426b8eda9be6d2a541
Diffstat (limited to 'contrib/libs/clang14/lib/CodeGen/CGExprScalar.cpp')
-rw-r--r-- | contrib/libs/clang14/lib/CodeGen/CGExprScalar.cpp | 5187 |
1 files changed, 0 insertions, 5187 deletions
diff --git a/contrib/libs/clang14/lib/CodeGen/CGExprScalar.cpp b/contrib/libs/clang14/lib/CodeGen/CGExprScalar.cpp deleted file mode 100644 index 4e8933fffe0..00000000000 --- a/contrib/libs/clang14/lib/CodeGen/CGExprScalar.cpp +++ /dev/null @@ -1,5187 +0,0 @@ -//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This contains code to emit Expr nodes with scalar LLVM types as LLVM code. -// -//===----------------------------------------------------------------------===// - -#include "CGCXXABI.h" -#include "CGCleanup.h" -#include "CGDebugInfo.h" -#include "CGObjCRuntime.h" -#include "CGOpenMPRuntime.h" -#include "CodeGenFunction.h" -#include "CodeGenModule.h" -#include "ConstantEmitter.h" -#include "TargetInfo.h" -#include "clang/AST/ASTContext.h" -#include "clang/AST/Attr.h" -#include "clang/AST/DeclObjC.h" -#include "clang/AST/Expr.h" -#include "clang/AST/RecordLayout.h" -#include "clang/AST/StmtVisitor.h" -#include "clang/Basic/CodeGenOptions.h" -#include "clang/Basic/TargetInfo.h" -#include "llvm/ADT/APFixedPoint.h" -#include "llvm/ADT/Optional.h" -#include "llvm/IR/CFG.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/FixedPointBuilder.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GetElementPtrTypeIterator.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/IntrinsicsPowerPC.h" -#include "llvm/IR/MatrixBuilder.h" -#include "llvm/IR/Module.h" -#include <cstdarg> - -using namespace clang; -using namespace CodeGen; -using llvm::Value; - -//===----------------------------------------------------------------------===// -// Scalar Expression Emitter -//===----------------------------------------------------------------------===// - -namespace { - -/// Determine whether the given binary operation may overflow. -/// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, -/// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, -/// the returned overflow check is precise. The returned value is 'true' for -/// all other opcodes, to be conservative. -bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, - BinaryOperator::Opcode Opcode, bool Signed, - llvm::APInt &Result) { - // Assume overflow is possible, unless we can prove otherwise. - bool Overflow = true; - const auto &LHSAP = LHS->getValue(); - const auto &RHSAP = RHS->getValue(); - if (Opcode == BO_Add) { - if (Signed) - Result = LHSAP.sadd_ov(RHSAP, Overflow); - else - Result = LHSAP.uadd_ov(RHSAP, Overflow); - } else if (Opcode == BO_Sub) { - if (Signed) - Result = LHSAP.ssub_ov(RHSAP, Overflow); - else - Result = LHSAP.usub_ov(RHSAP, Overflow); - } else if (Opcode == BO_Mul) { - if (Signed) - Result = LHSAP.smul_ov(RHSAP, Overflow); - else - Result = LHSAP.umul_ov(RHSAP, Overflow); - } else if (Opcode == BO_Div || Opcode == BO_Rem) { - if (Signed && !RHS->isZero()) - Result = LHSAP.sdiv_ov(RHSAP, Overflow); - else - return false; - } - return Overflow; -} - -struct BinOpInfo { - Value *LHS; - Value *RHS; - QualType Ty; // Computation Type. - BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform - FPOptions FPFeatures; - const Expr *E; // Entire expr, for error unsupported. May not be binop. - - /// Check if the binop can result in integer overflow. - bool mayHaveIntegerOverflow() const { - // Without constant input, we can't rule out overflow. - auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); - auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); - if (!LHSCI || !RHSCI) - return true; - - llvm::APInt Result; - return ::mayHaveIntegerOverflow( - LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); - } - - /// Check if the binop computes a division or a remainder. - bool isDivremOp() const { - return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || - Opcode == BO_RemAssign; - } - - /// Check if the binop can result in an integer division by zero. - bool mayHaveIntegerDivisionByZero() const { - if (isDivremOp()) - if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) - return CI->isZero(); - return true; - } - - /// Check if the binop can result in a float division by zero. - bool mayHaveFloatDivisionByZero() const { - if (isDivremOp()) - if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) - return CFP->isZero(); - return true; - } - - /// Check if at least one operand is a fixed point type. In such cases, this - /// operation did not follow usual arithmetic conversion and both operands - /// might not be of the same type. - bool isFixedPointOp() const { - // We cannot simply check the result type since comparison operations return - // an int. - if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) { - QualType LHSType = BinOp->getLHS()->getType(); - QualType RHSType = BinOp->getRHS()->getType(); - return LHSType->isFixedPointType() || RHSType->isFixedPointType(); - } - if (const auto *UnOp = dyn_cast<UnaryOperator>(E)) - return UnOp->getSubExpr()->getType()->isFixedPointType(); - return false; - } -}; - -static bool MustVisitNullValue(const Expr *E) { - // If a null pointer expression's type is the C++0x nullptr_t, then - // it's not necessarily a simple constant and it must be evaluated - // for its potential side effects. - return E->getType()->isNullPtrType(); -} - -/// If \p E is a widened promoted integer, get its base (unpromoted) type. -static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, - const Expr *E) { - const Expr *Base = E->IgnoreImpCasts(); - if (E == Base) - return llvm::None; - - QualType BaseTy = Base->getType(); - if (!BaseTy->isPromotableIntegerType() || - Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) - return llvm::None; - - return BaseTy; -} - -/// Check if \p E is a widened promoted integer. -static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { - return getUnwidenedIntegerType(Ctx, E).hasValue(); -} - -/// Check if we can skip the overflow check for \p Op. -static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { - assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && - "Expected a unary or binary operator"); - - // If the binop has constant inputs and we can prove there is no overflow, - // we can elide the overflow check. - if (!Op.mayHaveIntegerOverflow()) - return true; - - // If a unary op has a widened operand, the op cannot overflow. - if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) - return !UO->canOverflow(); - - // We usually don't need overflow checks for binops with widened operands. - // Multiplication with promoted unsigned operands is a special case. - const auto *BO = cast<BinaryOperator>(Op.E); - auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); - if (!OptionalLHSTy) - return false; - - auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); - if (!OptionalRHSTy) - return false; - - QualType LHSTy = *OptionalLHSTy; - QualType RHSTy = *OptionalRHSTy; - - // This is the simple case: binops without unsigned multiplication, and with - // widened operands. No overflow check is needed here. - if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || - !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) - return true; - - // For unsigned multiplication the overflow check can be elided if either one - // of the unpromoted types are less than half the size of the promoted type. - unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); - return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || - (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; -} - -class ScalarExprEmitter - : public StmtVisitor<ScalarExprEmitter, Value*> { - CodeGenFunction &CGF; - CGBuilderTy &Builder; - bool IgnoreResultAssign; - llvm::LLVMContext &VMContext; -public: - - ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) - : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), - VMContext(cgf.getLLVMContext()) { - } - - //===--------------------------------------------------------------------===// - // Utilities - //===--------------------------------------------------------------------===// - - bool TestAndClearIgnoreResultAssign() { - bool I = IgnoreResultAssign; - IgnoreResultAssign = false; - return I; - } - - llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } - LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } - LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { - return CGF.EmitCheckedLValue(E, TCK); - } - - void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, - const BinOpInfo &Info); - - Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { - return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); - } - - void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { - const AlignValueAttr *AVAttr = nullptr; - if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { - const ValueDecl *VD = DRE->getDecl(); - - if (VD->getType()->isReferenceType()) { - if (const auto *TTy = - dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) - AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); - } else { - // Assumptions for function parameters are emitted at the start of the - // function, so there is no need to repeat that here, - // unless the alignment-assumption sanitizer is enabled, - // then we prefer the assumption over alignment attribute - // on IR function param. - if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) - return; - - AVAttr = VD->getAttr<AlignValueAttr>(); - } - } - - if (!AVAttr) - if (const auto *TTy = - dyn_cast<TypedefType>(E->getType())) - AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); - - if (!AVAttr) - return; - - Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); - llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); - CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI); - } - - /// EmitLoadOfLValue - Given an expression with complex type that represents a - /// value l-value, this method emits the address of the l-value, then loads - /// and returns the result. - Value *EmitLoadOfLValue(const Expr *E) { - Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), - E->getExprLoc()); - - EmitLValueAlignmentAssumption(E, V); - return V; - } - - /// EmitConversionToBool - Convert the specified expression value to a - /// boolean (i1) truth value. This is equivalent to "Val != 0". - Value *EmitConversionToBool(Value *Src, QualType DstTy); - - /// Emit a check that a conversion from a floating-point type does not - /// overflow. - void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, - Value *Src, QualType SrcType, QualType DstType, - llvm::Type *DstTy, SourceLocation Loc); - - /// Known implicit conversion check kinds. - /// Keep in sync with the enum of the same name in ubsan_handlers.h - enum ImplicitConversionCheckKind : unsigned char { - ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. - ICCK_UnsignedIntegerTruncation = 1, - ICCK_SignedIntegerTruncation = 2, - ICCK_IntegerSignChange = 3, - ICCK_SignedIntegerTruncationOrSignChange = 4, - }; - - /// Emit a check that an [implicit] truncation of an integer does not - /// discard any bits. It is not UB, so we use the value after truncation. - void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, - QualType DstType, SourceLocation Loc); - - /// Emit a check that an [implicit] conversion of an integer does not change - /// the sign of the value. It is not UB, so we use the value after conversion. - /// NOTE: Src and Dst may be the exact same value! (point to the same thing) - void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, - QualType DstType, SourceLocation Loc); - - /// Emit a conversion from the specified type to the specified destination - /// type, both of which are LLVM scalar types. - struct ScalarConversionOpts { - bool TreatBooleanAsSigned; - bool EmitImplicitIntegerTruncationChecks; - bool EmitImplicitIntegerSignChangeChecks; - - ScalarConversionOpts() - : TreatBooleanAsSigned(false), - EmitImplicitIntegerTruncationChecks(false), - EmitImplicitIntegerSignChangeChecks(false) {} - - ScalarConversionOpts(clang::SanitizerSet SanOpts) - : TreatBooleanAsSigned(false), - EmitImplicitIntegerTruncationChecks( - SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), - EmitImplicitIntegerSignChangeChecks( - SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} - }; - Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType, - llvm::Type *SrcTy, llvm::Type *DstTy, - ScalarConversionOpts Opts); - Value * - EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, - SourceLocation Loc, - ScalarConversionOpts Opts = ScalarConversionOpts()); - - /// Convert between either a fixed point and other fixed point or fixed point - /// and an integer. - Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, - SourceLocation Loc); - - /// Emit a conversion from the specified complex type to the specified - /// destination type, where the destination type is an LLVM scalar type. - Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, - QualType SrcTy, QualType DstTy, - SourceLocation Loc); - - /// EmitNullValue - Emit a value that corresponds to null for the given type. - Value *EmitNullValue(QualType Ty); - - /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. - Value *EmitFloatToBoolConversion(Value *V) { - // Compare against 0.0 for fp scalars. - llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); - return Builder.CreateFCmpUNE(V, Zero, "tobool"); - } - - /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. - Value *EmitPointerToBoolConversion(Value *V, QualType QT) { - Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); - - return Builder.CreateICmpNE(V, Zero, "tobool"); - } - - Value *EmitIntToBoolConversion(Value *V) { - // Because of the type rules of C, we often end up computing a - // logical value, then zero extending it to int, then wanting it - // as a logical value again. Optimize this common case. - if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { - if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { - Value *Result = ZI->getOperand(0); - // If there aren't any more uses, zap the instruction to save space. - // Note that there can be more uses, for example if this - // is the result of an assignment. - if (ZI->use_empty()) - ZI->eraseFromParent(); - return Result; - } - } - - return Builder.CreateIsNotNull(V, "tobool"); - } - - //===--------------------------------------------------------------------===// - // Visitor Methods - //===--------------------------------------------------------------------===// - - Value *Visit(Expr *E) { - ApplyDebugLocation DL(CGF, E); - return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); - } - - Value *VisitStmt(Stmt *S) { - S->dump(llvm::errs(), CGF.getContext()); - llvm_unreachable("Stmt can't have complex result type!"); - } - Value *VisitExpr(Expr *S); - - Value *VisitConstantExpr(ConstantExpr *E) { - // A constant expression of type 'void' generates no code and produces no - // value. - if (E->getType()->isVoidType()) - return nullptr; - - if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) { - if (E->isGLValue()) - return CGF.Builder.CreateLoad(Address( - Result, CGF.getContext().getTypeAlignInChars(E->getType()))); - return Result; - } - return Visit(E->getSubExpr()); - } - Value *VisitParenExpr(ParenExpr *PE) { - return Visit(PE->getSubExpr()); - } - Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { - return Visit(E->getReplacement()); - } - Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { - return Visit(GE->getResultExpr()); - } - Value *VisitCoawaitExpr(CoawaitExpr *S) { - return CGF.EmitCoawaitExpr(*S).getScalarVal(); - } - Value *VisitCoyieldExpr(CoyieldExpr *S) { - return CGF.EmitCoyieldExpr(*S).getScalarVal(); - } - Value *VisitUnaryCoawait(const UnaryOperator *E) { - return Visit(E->getSubExpr()); - } - - // Leaves. - Value *VisitIntegerLiteral(const IntegerLiteral *E) { - return Builder.getInt(E->getValue()); - } - Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { - return Builder.getInt(E->getValue()); - } - Value *VisitFloatingLiteral(const FloatingLiteral *E) { - return llvm::ConstantFP::get(VMContext, E->getValue()); - } - Value *VisitCharacterLiteral(const CharacterLiteral *E) { - return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); - } - Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { - return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); - } - Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { - return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); - } - Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { - return EmitNullValue(E->getType()); - } - Value *VisitGNUNullExpr(const GNUNullExpr *E) { - return EmitNullValue(E->getType()); - } - Value *VisitOffsetOfExpr(OffsetOfExpr *E); - Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); - Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { - llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); - return Builder.CreateBitCast(V, ConvertType(E->getType())); - } - - Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { - return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); - } - - Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { - return CGF.EmitPseudoObjectRValue(E).getScalarVal(); - } - - Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E); - - Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { - if (E->isGLValue()) - return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), - E->getExprLoc()); - - // Otherwise, assume the mapping is the scalar directly. - return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); - } - - // l-values. - Value *VisitDeclRefExpr(DeclRefExpr *E) { - if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) - return CGF.emitScalarConstant(Constant, E); - return EmitLoadOfLValue(E); - } - - Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { - return CGF.EmitObjCSelectorExpr(E); - } - Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { - return CGF.EmitObjCProtocolExpr(E); - } - Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { - return EmitLoadOfLValue(E); - } - Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { - if (E->getMethodDecl() && - E->getMethodDecl()->getReturnType()->isReferenceType()) - return EmitLoadOfLValue(E); - return CGF.EmitObjCMessageExpr(E).getScalarVal(); - } - - Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { - LValue LV = CGF.EmitObjCIsaExpr(E); - Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); - return V; - } - - Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { - VersionTuple Version = E->getVersion(); - - // If we're checking for a platform older than our minimum deployment - // target, we can fold the check away. - if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) - return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); - - return CGF.EmitBuiltinAvailable(Version); - } - - Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); - Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E); - Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); - Value *VisitConvertVectorExpr(ConvertVectorExpr *E); - Value *VisitMemberExpr(MemberExpr *E); - Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } - Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { - // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which - // transitively calls EmitCompoundLiteralLValue, here in C++ since compound - // literals aren't l-values in C++. We do so simply because that's the - // cleanest way to handle compound literals in C++. - // See the discussion here: https://reviews.llvm.org/D64464 - return EmitLoadOfLValue(E); - } - - Value *VisitInitListExpr(InitListExpr *E); - - Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { - assert(CGF.getArrayInitIndex() && - "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); - return CGF.getArrayInitIndex(); - } - - Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { - return EmitNullValue(E->getType()); - } - Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { - CGF.CGM.EmitExplicitCastExprType(E, &CGF); - return VisitCastExpr(E); - } - Value *VisitCastExpr(CastExpr *E); - - Value *VisitCallExpr(const CallExpr *E) { - if (E->getCallReturnType(CGF.getContext())->isReferenceType()) - return EmitLoadOfLValue(E); - - Value *V = CGF.EmitCallExpr(E).getScalarVal(); - - EmitLValueAlignmentAssumption(E, V); - return V; - } - - Value *VisitStmtExpr(const StmtExpr *E); - - // Unary Operators. - Value *VisitUnaryPostDec(const UnaryOperator *E) { - LValue LV = EmitLValue(E->getSubExpr()); - return EmitScalarPrePostIncDec(E, LV, false, false); - } - Value *VisitUnaryPostInc(const UnaryOperator *E) { - LValue LV = EmitLValue(E->getSubExpr()); - return EmitScalarPrePostIncDec(E, LV, true, false); - } - Value *VisitUnaryPreDec(const UnaryOperator *E) { - LValue LV = EmitLValue(E->getSubExpr()); - return EmitScalarPrePostIncDec(E, LV, false, true); - } - Value *VisitUnaryPreInc(const UnaryOperator *E) { - LValue LV = EmitLValue(E->getSubExpr()); - return EmitScalarPrePostIncDec(E, LV, true, true); - } - - llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, - llvm::Value *InVal, - bool IsInc); - - llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, - bool isInc, bool isPre); - - - Value *VisitUnaryAddrOf(const UnaryOperator *E) { - if (isa<MemberPointerType>(E->getType())) // never sugared - return CGF.CGM.getMemberPointerConstant(E); - - return EmitLValue(E->getSubExpr()).getPointer(CGF); - } - Value *VisitUnaryDeref(const UnaryOperator *E) { - if (E->getType()->isVoidType()) - return Visit(E->getSubExpr()); // the actual value should be unused - return EmitLoadOfLValue(E); - } - Value *VisitUnaryPlus(const UnaryOperator *E) { - // This differs from gcc, though, most likely due to a bug in gcc. - TestAndClearIgnoreResultAssign(); - return Visit(E->getSubExpr()); - } - Value *VisitUnaryMinus (const UnaryOperator *E); - Value *VisitUnaryNot (const UnaryOperator *E); - Value *VisitUnaryLNot (const UnaryOperator *E); - Value *VisitUnaryReal (const UnaryOperator *E); - Value *VisitUnaryImag (const UnaryOperator *E); - Value *VisitUnaryExtension(const UnaryOperator *E) { - return Visit(E->getSubExpr()); - } - - // C++ - Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { - return EmitLoadOfLValue(E); - } - Value *VisitSourceLocExpr(SourceLocExpr *SLE) { - auto &Ctx = CGF.getContext(); - APValue Evaluated = - SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr()); - return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated, - SLE->getType()); - } - - Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { - CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); - return Visit(DAE->getExpr()); - } - Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { - CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); - return Visit(DIE->getExpr()); - } - Value *VisitCXXThisExpr(CXXThisExpr *TE) { - return CGF.LoadCXXThis(); - } - - Value *VisitExprWithCleanups(ExprWithCleanups *E); - Value *VisitCXXNewExpr(const CXXNewExpr *E) { - return CGF.EmitCXXNewExpr(E); - } - Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { - CGF.EmitCXXDeleteExpr(E); - return nullptr; - } - - Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { - return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); - } - - Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) { - return Builder.getInt1(E->isSatisfied()); - } - - Value *VisitRequiresExpr(const RequiresExpr *E) { - return Builder.getInt1(E->isSatisfied()); - } - - Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { - return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); - } - - Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { - return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); - } - - Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { - // C++ [expr.pseudo]p1: - // The result shall only be used as the operand for the function call - // operator (), and the result of such a call has type void. The only - // effect is the evaluation of the postfix-expression before the dot or - // arrow. - CGF.EmitScalarExpr(E->getBase()); - return nullptr; - } - - Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { - return EmitNullValue(E->getType()); - } - - Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { - CGF.EmitCXXThrowExpr(E); - return nullptr; - } - - Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { - return Builder.getInt1(E->getValue()); - } - - // Binary Operators. - Value *EmitMul(const BinOpInfo &Ops) { - if (Ops.Ty->isSignedIntegerOrEnumerationType()) { - switch (CGF.getLangOpts().getSignedOverflowBehavior()) { - case LangOptions::SOB_Defined: - return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); - case LangOptions::SOB_Undefined: - if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) - return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); - LLVM_FALLTHROUGH; - case LangOptions::SOB_Trapping: - if (CanElideOverflowCheck(CGF.getContext(), Ops)) - return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); - return EmitOverflowCheckedBinOp(Ops); - } - } - - if (Ops.Ty->isConstantMatrixType()) { - llvm::MatrixBuilder<CGBuilderTy> MB(Builder); - // We need to check the types of the operands of the operator to get the - // correct matrix dimensions. - auto *BO = cast<BinaryOperator>(Ops.E); - auto *LHSMatTy = dyn_cast<ConstantMatrixType>( - BO->getLHS()->getType().getCanonicalType()); - auto *RHSMatTy = dyn_cast<ConstantMatrixType>( - BO->getRHS()->getType().getCanonicalType()); - CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); - if (LHSMatTy && RHSMatTy) - return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(), - LHSMatTy->getNumColumns(), - RHSMatTy->getNumColumns()); - return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS); - } - - if (Ops.Ty->isUnsignedIntegerType() && - CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && - !CanElideOverflowCheck(CGF.getContext(), Ops)) - return EmitOverflowCheckedBinOp(Ops); - - if (Ops.LHS->getType()->isFPOrFPVectorTy()) { - // Preserve the old values - CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); - return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); - } - if (Ops.isFixedPointOp()) - return EmitFixedPointBinOp(Ops); - return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); - } - /// Create a binary op that checks for overflow. - /// Currently only supports +, - and *. - Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); - - // Check for undefined division and modulus behaviors. - void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, - llvm::Value *Zero,bool isDiv); - // Common helper for getting how wide LHS of shift is. - static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); - - // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for - // non powers of two. - Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name); - - Value *EmitDiv(const BinOpInfo &Ops); - Value *EmitRem(const BinOpInfo &Ops); - Value *EmitAdd(const BinOpInfo &Ops); - Value *EmitSub(const BinOpInfo &Ops); - Value *EmitShl(const BinOpInfo &Ops); - Value *EmitShr(const BinOpInfo &Ops); - Value *EmitAnd(const BinOpInfo &Ops) { - return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); - } - Value *EmitXor(const BinOpInfo &Ops) { - return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); - } - Value *EmitOr (const BinOpInfo &Ops) { - return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); - } - - // Helper functions for fixed point binary operations. - Value *EmitFixedPointBinOp(const BinOpInfo &Ops); - - BinOpInfo EmitBinOps(const BinaryOperator *E); - LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, - Value *(ScalarExprEmitter::*F)(const BinOpInfo &), - Value *&Result); - - Value *EmitCompoundAssign(const CompoundAssignOperator *E, - Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); - - // Binary operators and binary compound assignment operators. -#define HANDLEBINOP(OP) \ - Value *VisitBin ## OP(const BinaryOperator *E) { \ - return Emit ## OP(EmitBinOps(E)); \ - } \ - Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ - return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ - } - HANDLEBINOP(Mul) - HANDLEBINOP(Div) - HANDLEBINOP(Rem) - HANDLEBINOP(Add) - HANDLEBINOP(Sub) - HANDLEBINOP(Shl) - HANDLEBINOP(Shr) - HANDLEBINOP(And) - HANDLEBINOP(Xor) - HANDLEBINOP(Or) -#undef HANDLEBINOP - - // Comparisons. - Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, - llvm::CmpInst::Predicate SICmpOpc, - llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling); -#define VISITCOMP(CODE, UI, SI, FP, SIG) \ - Value *VisitBin##CODE(const BinaryOperator *E) { \ - return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ - llvm::FCmpInst::FP, SIG); } - VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true) - VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true) - VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true) - VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true) - VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false) - VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false) -#undef VISITCOMP - - Value *VisitBinAssign (const BinaryOperator *E); - - Value *VisitBinLAnd (const BinaryOperator *E); - Value *VisitBinLOr (const BinaryOperator *E); - Value *VisitBinComma (const BinaryOperator *E); - - Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } - Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } - - Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { - return Visit(E->getSemanticForm()); - } - - // Other Operators. - Value *VisitBlockExpr(const BlockExpr *BE); - Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); - Value *VisitChooseExpr(ChooseExpr *CE); - Value *VisitVAArgExpr(VAArgExpr *VE); - Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { - return CGF.EmitObjCStringLiteral(E); - } - Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { - return CGF.EmitObjCBoxedExpr(E); - } - Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { - return CGF.EmitObjCArrayLiteral(E); - } - Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { - return CGF.EmitObjCDictionaryLiteral(E); - } - Value *VisitAsTypeExpr(AsTypeExpr *CE); - Value *VisitAtomicExpr(AtomicExpr *AE); -}; -} // end anonymous namespace. - -//===----------------------------------------------------------------------===// -// Utilities -//===----------------------------------------------------------------------===// - -/// EmitConversionToBool - Convert the specified expression value to a -/// boolean (i1) truth value. This is equivalent to "Val != 0". -Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { - assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); - - if (SrcType->isRealFloatingType()) - return EmitFloatToBoolConversion(Src); - - if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) - return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); - - assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && - "Unknown scalar type to convert"); - - if (isa<llvm::IntegerType>(Src->getType())) - return EmitIntToBoolConversion(Src); - - assert(isa<llvm::PointerType>(Src->getType())); - return EmitPointerToBoolConversion(Src, SrcType); -} - -void ScalarExprEmitter::EmitFloatConversionCheck( - Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, - QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { - assert(SrcType->isFloatingType() && "not a conversion from floating point"); - if (!isa<llvm::IntegerType>(DstTy)) - return; - - CodeGenFunction::SanitizerScope SanScope(&CGF); - using llvm::APFloat; - using llvm::APSInt; - - llvm::Value *Check = nullptr; - const llvm::fltSemantics &SrcSema = - CGF.getContext().getFloatTypeSemantics(OrigSrcType); - - // Floating-point to integer. This has undefined behavior if the source is - // +-Inf, NaN, or doesn't fit into the destination type (after truncation - // to an integer). - unsigned Width = CGF.getContext().getIntWidth(DstType); - bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); - - APSInt Min = APSInt::getMinValue(Width, Unsigned); - APFloat MinSrc(SrcSema, APFloat::uninitialized); - if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & - APFloat::opOverflow) - // Don't need an overflow check for lower bound. Just check for - // -Inf/NaN. - MinSrc = APFloat::getInf(SrcSema, true); - else - // Find the largest value which is too small to represent (before - // truncation toward zero). - MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); - - APSInt Max = APSInt::getMaxValue(Width, Unsigned); - APFloat MaxSrc(SrcSema, APFloat::uninitialized); - if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & - APFloat::opOverflow) - // Don't need an overflow check for upper bound. Just check for - // +Inf/NaN. - MaxSrc = APFloat::getInf(SrcSema, false); - else - // Find the smallest value which is too large to represent (before - // truncation toward zero). - MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); - - // If we're converting from __half, convert the range to float to match - // the type of src. - if (OrigSrcType->isHalfType()) { - const llvm::fltSemantics &Sema = - CGF.getContext().getFloatTypeSemantics(SrcType); - bool IsInexact; - MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); - MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); - } - - llvm::Value *GE = - Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); - llvm::Value *LE = - Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); - Check = Builder.CreateAnd(GE, LE); - - llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), - CGF.EmitCheckTypeDescriptor(OrigSrcType), - CGF.EmitCheckTypeDescriptor(DstType)}; - CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), - SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); -} - -// Should be called within CodeGenFunction::SanitizerScope RAII scope. -// Returns 'i1 false' when the truncation Src -> Dst was lossy. -static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, - std::pair<llvm::Value *, SanitizerMask>> -EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, - QualType DstType, CGBuilderTy &Builder) { - llvm::Type *SrcTy = Src->getType(); - llvm::Type *DstTy = Dst->getType(); - (void)DstTy; // Only used in assert() - - // This should be truncation of integral types. - assert(Src != Dst); - assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); - assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && - "non-integer llvm type"); - - bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); - bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); - - // If both (src and dst) types are unsigned, then it's an unsigned truncation. - // Else, it is a signed truncation. - ScalarExprEmitter::ImplicitConversionCheckKind Kind; - SanitizerMask Mask; - if (!SrcSigned && !DstSigned) { - Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; - Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; - } else { - Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; - Mask = SanitizerKind::ImplicitSignedIntegerTruncation; - } - - llvm::Value *Check = nullptr; - // 1. Extend the truncated value back to the same width as the Src. - Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); - // 2. Equality-compare with the original source value - Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); - // If the comparison result is 'i1 false', then the truncation was lossy. - return std::make_pair(Kind, std::make_pair(Check, Mask)); -} - -static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( - QualType SrcType, QualType DstType) { - return SrcType->isIntegerType() && DstType->isIntegerType(); -} - -void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, - Value *Dst, QualType DstType, - SourceLocation Loc) { - if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) - return; - - // We only care about int->int conversions here. - // We ignore conversions to/from pointer and/or bool. - if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, - DstType)) - return; - - unsigned SrcBits = Src->getType()->getScalarSizeInBits(); - unsigned DstBits = Dst->getType()->getScalarSizeInBits(); - // This must be truncation. Else we do not care. - if (SrcBits <= DstBits) - return; - - assert(!DstType->isBooleanType() && "we should not get here with booleans."); - - // If the integer sign change sanitizer is enabled, - // and we are truncating from larger unsigned type to smaller signed type, - // let that next sanitizer deal with it. - bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); - bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); - if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && - (!SrcSigned && DstSigned)) - return; - - CodeGenFunction::SanitizerScope SanScope(&CGF); - - std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, - std::pair<llvm::Value *, SanitizerMask>> - Check = - EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); - // If the comparison result is 'i1 false', then the truncation was lossy. - - // Do we care about this type of truncation? - if (!CGF.SanOpts.has(Check.second.second)) - return; - - llvm::Constant *StaticArgs[] = { - CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), - CGF.EmitCheckTypeDescriptor(DstType), - llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; - CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, - {Src, Dst}); -} - -// Should be called within CodeGenFunction::SanitizerScope RAII scope. -// Returns 'i1 false' when the conversion Src -> Dst changed the sign. -static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, - std::pair<llvm::Value *, SanitizerMask>> -EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, - QualType DstType, CGBuilderTy &Builder) { - llvm::Type *SrcTy = Src->getType(); - llvm::Type *DstTy = Dst->getType(); - - assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && - "non-integer llvm type"); - - bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); - bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); - (void)SrcSigned; // Only used in assert() - (void)DstSigned; // Only used in assert() - unsigned SrcBits = SrcTy->getScalarSizeInBits(); - unsigned DstBits = DstTy->getScalarSizeInBits(); - (void)SrcBits; // Only used in assert() - (void)DstBits; // Only used in assert() - - assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && - "either the widths should be different, or the signednesses."); - - // NOTE: zero value is considered to be non-negative. - auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, - const char *Name) -> Value * { - // Is this value a signed type? - bool VSigned = VType->isSignedIntegerOrEnumerationType(); - llvm::Type *VTy = V->getType(); - if (!VSigned) { - // If the value is unsigned, then it is never negative. - // FIXME: can we encounter non-scalar VTy here? - return llvm::ConstantInt::getFalse(VTy->getContext()); - } - // Get the zero of the same type with which we will be comparing. - llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); - // %V.isnegative = icmp slt %V, 0 - // I.e is %V *strictly* less than zero, does it have negative value? - return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, - llvm::Twine(Name) + "." + V->getName() + - ".negativitycheck"); - }; - - // 1. Was the old Value negative? - llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); - // 2. Is the new Value negative? - llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); - // 3. Now, was the 'negativity status' preserved during the conversion? - // NOTE: conversion from negative to zero is considered to change the sign. - // (We want to get 'false' when the conversion changed the sign) - // So we should just equality-compare the negativity statuses. - llvm::Value *Check = nullptr; - Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); - // If the comparison result is 'false', then the conversion changed the sign. - return std::make_pair( - ScalarExprEmitter::ICCK_IntegerSignChange, - std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); -} - -void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, - Value *Dst, QualType DstType, - SourceLocation Loc) { - if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) - return; - - llvm::Type *SrcTy = Src->getType(); - llvm::Type *DstTy = Dst->getType(); - - // We only care about int->int conversions here. - // We ignore conversions to/from pointer and/or bool. - if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, - DstType)) - return; - - bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); - bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); - unsigned SrcBits = SrcTy->getScalarSizeInBits(); - unsigned DstBits = DstTy->getScalarSizeInBits(); - - // Now, we do not need to emit the check in *all* of the cases. - // We can avoid emitting it in some obvious cases where it would have been - // dropped by the opt passes (instcombine) always anyways. - // If it's a cast between effectively the same type, no check. - // NOTE: this is *not* equivalent to checking the canonical types. - if (SrcSigned == DstSigned && SrcBits == DstBits) - return; - // At least one of the values needs to have signed type. - // If both are unsigned, then obviously, neither of them can be negative. - if (!SrcSigned && !DstSigned) - return; - // If the conversion is to *larger* *signed* type, then no check is needed. - // Because either sign-extension happens (so the sign will remain), - // or zero-extension will happen (the sign bit will be zero.) - if ((DstBits > SrcBits) && DstSigned) - return; - if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && - (SrcBits > DstBits) && SrcSigned) { - // If the signed integer truncation sanitizer is enabled, - // and this is a truncation from signed type, then no check is needed. - // Because here sign change check is interchangeable with truncation check. - return; - } - // That's it. We can't rule out any more cases with the data we have. - - CodeGenFunction::SanitizerScope SanScope(&CGF); - - std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, - std::pair<llvm::Value *, SanitizerMask>> - Check; - - // Each of these checks needs to return 'false' when an issue was detected. - ImplicitConversionCheckKind CheckKind; - llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; - // So we can 'and' all the checks together, and still get 'false', - // if at least one of the checks detected an issue. - - Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); - CheckKind = Check.first; - Checks.emplace_back(Check.second); - - if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && - (SrcBits > DstBits) && !SrcSigned && DstSigned) { - // If the signed integer truncation sanitizer was enabled, - // and we are truncating from larger unsigned type to smaller signed type, - // let's handle the case we skipped in that check. - Check = - EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); - CheckKind = ICCK_SignedIntegerTruncationOrSignChange; - Checks.emplace_back(Check.second); - // If the comparison result is 'i1 false', then the truncation was lossy. - } - - llvm::Constant *StaticArgs[] = { - CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), - CGF.EmitCheckTypeDescriptor(DstType), - llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; - // EmitCheck() will 'and' all the checks together. - CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, - {Src, Dst}); -} - -Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType, - QualType DstType, llvm::Type *SrcTy, - llvm::Type *DstTy, - ScalarConversionOpts Opts) { - // The Element types determine the type of cast to perform. - llvm::Type *SrcElementTy; - llvm::Type *DstElementTy; - QualType SrcElementType; - QualType DstElementType; - if (SrcType->isMatrixType() && DstType->isMatrixType()) { - SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType(); - DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType(); - SrcElementType = SrcType->castAs<MatrixType>()->getElementType(); - DstElementType = DstType->castAs<MatrixType>()->getElementType(); - } else { - assert(!SrcType->isMatrixType() && !DstType->isMatrixType() && - "cannot cast between matrix and non-matrix types"); - SrcElementTy = SrcTy; - DstElementTy = DstTy; - SrcElementType = SrcType; - DstElementType = DstType; - } - - if (isa<llvm::IntegerType>(SrcElementTy)) { - bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType(); - if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) { - InputSigned = true; - } - - if (isa<llvm::IntegerType>(DstElementTy)) - return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); - if (InputSigned) - return Builder.CreateSIToFP(Src, DstTy, "conv"); - return Builder.CreateUIToFP(Src, DstTy, "conv"); - } - - if (isa<llvm::IntegerType>(DstElementTy)) { - assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion"); - bool IsSigned = DstElementType->isSignedIntegerOrEnumerationType(); - - // If we can't recognize overflow as undefined behavior, assume that - // overflow saturates. This protects against normal optimizations if we are - // compiling with non-standard FP semantics. - if (!CGF.CGM.getCodeGenOpts().StrictFloatCastOverflow) { - llvm::Intrinsic::ID IID = - IsSigned ? llvm::Intrinsic::fptosi_sat : llvm::Intrinsic::fptoui_sat; - return Builder.CreateCall(CGF.CGM.getIntrinsic(IID, {DstTy, SrcTy}), Src); - } - - if (IsSigned) - return Builder.CreateFPToSI(Src, DstTy, "conv"); - return Builder.CreateFPToUI(Src, DstTy, "conv"); - } - - if (DstElementTy->getTypeID() < SrcElementTy->getTypeID()) - return Builder.CreateFPTrunc(Src, DstTy, "conv"); - return Builder.CreateFPExt(Src, DstTy, "conv"); -} - -/// Emit a conversion from the specified type to the specified destination type, -/// both of which are LLVM scalar types. -Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, - QualType DstType, - SourceLocation Loc, - ScalarConversionOpts Opts) { - // All conversions involving fixed point types should be handled by the - // EmitFixedPoint family functions. This is done to prevent bloating up this - // function more, and although fixed point numbers are represented by - // integers, we do not want to follow any logic that assumes they should be - // treated as integers. - // TODO(leonardchan): When necessary, add another if statement checking for - // conversions to fixed point types from other types. - if (SrcType->isFixedPointType()) { - if (DstType->isBooleanType()) - // It is important that we check this before checking if the dest type is - // an integer because booleans are technically integer types. - // We do not need to check the padding bit on unsigned types if unsigned - // padding is enabled because overflow into this bit is undefined - // behavior. - return Builder.CreateIsNotNull(Src, "tobool"); - if (DstType->isFixedPointType() || DstType->isIntegerType() || - DstType->isRealFloatingType()) - return EmitFixedPointConversion(Src, SrcType, DstType, Loc); - - llvm_unreachable( - "Unhandled scalar conversion from a fixed point type to another type."); - } else if (DstType->isFixedPointType()) { - if (SrcType->isIntegerType() || SrcType->isRealFloatingType()) - // This also includes converting booleans and enums to fixed point types. - return EmitFixedPointConversion(Src, SrcType, DstType, Loc); - - llvm_unreachable( - "Unhandled scalar conversion to a fixed point type from another type."); - } - - QualType NoncanonicalSrcType = SrcType; - QualType NoncanonicalDstType = DstType; - - SrcType = CGF.getContext().getCanonicalType(SrcType); - DstType = CGF.getContext().getCanonicalType(DstType); - if (SrcType == DstType) return Src; - - if (DstType->isVoidType()) return nullptr; - - llvm::Value *OrigSrc = Src; - QualType OrigSrcType = SrcType; - llvm::Type *SrcTy = Src->getType(); - - // Handle conversions to bool first, they are special: comparisons against 0. - if (DstType->isBooleanType()) - return EmitConversionToBool(Src, SrcType); - - llvm::Type *DstTy = ConvertType(DstType); - - // Cast from half through float if half isn't a native type. - if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { - // Cast to FP using the intrinsic if the half type itself isn't supported. - if (DstTy->isFloatingPointTy()) { - if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) - return Builder.CreateCall( - CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), - Src); - } else { - // Cast to other types through float, using either the intrinsic or FPExt, - // depending on whether the half type itself is supported - // (as opposed to operations on half, available with NativeHalfType). - if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { - Src = Builder.CreateCall( - CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, - CGF.CGM.FloatTy), - Src); - } else { - Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); - } - SrcType = CGF.getContext().FloatTy; - SrcTy = CGF.FloatTy; - } - } - - // Ignore conversions like int -> uint. - if (SrcTy == DstTy) { - if (Opts.EmitImplicitIntegerSignChangeChecks) - EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, - NoncanonicalDstType, Loc); - - return Src; - } - - // Handle pointer conversions next: pointers can only be converted to/from - // other pointers and integers. Check for pointer types in terms of LLVM, as - // some native types (like Obj-C id) may map to a pointer type. - if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { - // The source value may be an integer, or a pointer. - if (isa<llvm::PointerType>(SrcTy)) - return Builder.CreateBitCast(Src, DstTy, "conv"); - - assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); - // First, convert to the correct width so that we control the kind of - // extension. - llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); - bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); - llvm::Value* IntResult = - Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); - // Then, cast to pointer. - return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); - } - - if (isa<llvm::PointerType>(SrcTy)) { - // Must be an ptr to int cast. - assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); - return Builder.CreatePtrToInt(Src, DstTy, "conv"); - } - - // A scalar can be splatted to an extended vector of the same element type - if (DstType->isExtVectorType() && !SrcType->isVectorType()) { - // Sema should add casts to make sure that the source expression's type is - // the same as the vector's element type (sans qualifiers) - assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == - SrcType.getTypePtr() && - "Splatted expr doesn't match with vector element type?"); - - // Splat the element across to all elements - unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); - return Builder.CreateVectorSplat(NumElements, Src, "splat"); - } - - if (SrcType->isMatrixType() && DstType->isMatrixType()) - return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts); - - if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { - // Allow bitcast from vector to integer/fp of the same size. - unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); - unsigned DstSize = DstTy->getPrimitiveSizeInBits(); - if (SrcSize == DstSize) - return Builder.CreateBitCast(Src, DstTy, "conv"); - - // Conversions between vectors of different sizes are not allowed except - // when vectors of half are involved. Operations on storage-only half - // vectors require promoting half vector operands to float vectors and - // truncating the result, which is either an int or float vector, to a - // short or half vector. - - // Source and destination are both expected to be vectors. - llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType(); - llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType(); - (void)DstElementTy; - - assert(((SrcElementTy->isIntegerTy() && - DstElementTy->isIntegerTy()) || - (SrcElementTy->isFloatingPointTy() && - DstElementTy->isFloatingPointTy())) && - "unexpected conversion between a floating-point vector and an " - "integer vector"); - - // Truncate an i32 vector to an i16 vector. - if (SrcElementTy->isIntegerTy()) - return Builder.CreateIntCast(Src, DstTy, false, "conv"); - - // Truncate a float vector to a half vector. - if (SrcSize > DstSize) - return Builder.CreateFPTrunc(Src, DstTy, "conv"); - - // Promote a half vector to a float vector. - return Builder.CreateFPExt(Src, DstTy, "conv"); - } - - // Finally, we have the arithmetic types: real int/float. - Value *Res = nullptr; - llvm::Type *ResTy = DstTy; - - // An overflowing conversion has undefined behavior if either the source type - // or the destination type is a floating-point type. However, we consider the - // range of representable values for all floating-point types to be - // [-inf,+inf], so no overflow can ever happen when the destination type is a - // floating-point type. - if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && - OrigSrcType->isFloatingType()) - EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, - Loc); - - // Cast to half through float if half isn't a native type. - if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { - // Make sure we cast in a single step if from another FP type. - if (SrcTy->isFloatingPointTy()) { - // Use the intrinsic if the half type itself isn't supported - // (as opposed to operations on half, available with NativeHalfType). - if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) - return Builder.CreateCall( - CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); - // If the half type is supported, just use an fptrunc. - return Builder.CreateFPTrunc(Src, DstTy); - } - DstTy = CGF.FloatTy; - } - - Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts); - - if (DstTy != ResTy) { - if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { - assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); - Res = Builder.CreateCall( - CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), - Res); - } else { - Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); - } - } - - if (Opts.EmitImplicitIntegerTruncationChecks) - EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, - NoncanonicalDstType, Loc); - - if (Opts.EmitImplicitIntegerSignChangeChecks) - EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, - NoncanonicalDstType, Loc); - - return Res; -} - -Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, - QualType DstTy, - SourceLocation Loc) { - llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); - llvm::Value *Result; - if (SrcTy->isRealFloatingType()) - Result = FPBuilder.CreateFloatingToFixed(Src, - CGF.getContext().getFixedPointSemantics(DstTy)); - else if (DstTy->isRealFloatingType()) - Result = FPBuilder.CreateFixedToFloating(Src, - CGF.getContext().getFixedPointSemantics(SrcTy), - ConvertType(DstTy)); - else { - auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy); - auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy); - - if (DstTy->isIntegerType()) - Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema, - DstFPSema.getWidth(), - DstFPSema.isSigned()); - else if (SrcTy->isIntegerType()) - Result = FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(), - DstFPSema); - else - Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema); - } - return Result; -} - -/// Emit a conversion from the specified complex type to the specified -/// destination type, where the destination type is an LLVM scalar type. -Value *ScalarExprEmitter::EmitComplexToScalarConversion( - CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, - SourceLocation Loc) { - // Get the source element type. - SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); - - // Handle conversions to bool first, they are special: comparisons against 0. - if (DstTy->isBooleanType()) { - // Complex != 0 -> (Real != 0) | (Imag != 0) - Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); - Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); - return Builder.CreateOr(Src.first, Src.second, "tobool"); - } - - // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, - // the imaginary part of the complex value is discarded and the value of the - // real part is converted according to the conversion rules for the - // corresponding real type. - return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); -} - -Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { - return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); -} - -/// Emit a sanitization check for the given "binary" operation (which -/// might actually be a unary increment which has been lowered to a binary -/// operation). The check passes if all values in \p Checks (which are \c i1), -/// are \c true. -void ScalarExprEmitter::EmitBinOpCheck( - ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { - assert(CGF.IsSanitizerScope); - SanitizerHandler Check; - SmallVector<llvm::Constant *, 4> StaticData; - SmallVector<llvm::Value *, 2> DynamicData; - - BinaryOperatorKind Opcode = Info.Opcode; - if (BinaryOperator::isCompoundAssignmentOp(Opcode)) - Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); - - StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); - const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); - if (UO && UO->getOpcode() == UO_Minus) { - Check = SanitizerHandler::NegateOverflow; - StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); - DynamicData.push_back(Info.RHS); - } else { - if (BinaryOperator::isShiftOp(Opcode)) { - // Shift LHS negative or too large, or RHS out of bounds. - Check = SanitizerHandler::ShiftOutOfBounds; - const BinaryOperator *BO = cast<BinaryOperator>(Info.E); - StaticData.push_back( - CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); - StaticData.push_back( - CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); - } else if (Opcode == BO_Div || Opcode == BO_Rem) { - // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). - Check = SanitizerHandler::DivremOverflow; - StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); - } else { - // Arithmetic overflow (+, -, *). - switch (Opcode) { - case BO_Add: Check = SanitizerHandler::AddOverflow; break; - case BO_Sub: Check = SanitizerHandler::SubOverflow; break; - case BO_Mul: Check = SanitizerHandler::MulOverflow; break; - default: llvm_unreachable("unexpected opcode for bin op check"); - } - StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); - } - DynamicData.push_back(Info.LHS); - DynamicData.push_back(Info.RHS); - } - - CGF.EmitCheck(Checks, Check, StaticData, DynamicData); -} - -//===----------------------------------------------------------------------===// -// Visitor Methods -//===----------------------------------------------------------------------===// - -Value *ScalarExprEmitter::VisitExpr(Expr *E) { - CGF.ErrorUnsupported(E, "scalar expression"); - if (E->getType()->isVoidType()) - return nullptr; - return llvm::UndefValue::get(CGF.ConvertType(E->getType())); -} - -Value * -ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) { - ASTContext &Context = CGF.getContext(); - llvm::Optional<LangAS> GlobalAS = - Context.getTargetInfo().getConstantAddressSpace(); - llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr( - E->ComputeName(Context), "__usn_str", - static_cast<unsigned>(GlobalAS.getValueOr(LangAS::Default))); - - unsigned ExprAS = Context.getTargetAddressSpace(E->getType()); - - if (GlobalConstStr->getType()->getPointerAddressSpace() == ExprAS) - return GlobalConstStr; - - llvm::PointerType *PtrTy = cast<llvm::PointerType>(GlobalConstStr->getType()); - llvm::PointerType *NewPtrTy = - llvm::PointerType::getWithSamePointeeType(PtrTy, ExprAS); - return Builder.CreateAddrSpaceCast(GlobalConstStr, NewPtrTy, "usn_addr_cast"); -} - -Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { - // Vector Mask Case - if (E->getNumSubExprs() == 2) { - Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); - Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); - Value *Mask; - - auto *LTy = cast<llvm::FixedVectorType>(LHS->getType()); - unsigned LHSElts = LTy->getNumElements(); - - Mask = RHS; - - auto *MTy = cast<llvm::FixedVectorType>(Mask->getType()); - - // Mask off the high bits of each shuffle index. - Value *MaskBits = - llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); - Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); - - // newv = undef - // mask = mask & maskbits - // for each elt - // n = extract mask i - // x = extract val n - // newv = insert newv, x, i - auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(), - MTy->getNumElements()); - Value* NewV = llvm::UndefValue::get(RTy); - for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { - Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); - Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); - - Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); - NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); - } - return NewV; - } - - Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); - Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); - - SmallVector<int, 32> Indices; - for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { - llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); - // Check for -1 and output it as undef in the IR. - if (Idx.isSigned() && Idx.isAllOnes()) - Indices.push_back(-1); - else - Indices.push_back(Idx.getZExtValue()); - } - - return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle"); -} - -Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { - QualType SrcType = E->getSrcExpr()->getType(), - DstType = E->getType(); - - Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); - - SrcType = CGF.getContext().getCanonicalType(SrcType); - DstType = CGF.getContext().getCanonicalType(DstType); - if (SrcType == DstType) return Src; - - assert(SrcType->isVectorType() && - "ConvertVector source type must be a vector"); - assert(DstType->isVectorType() && - "ConvertVector destination type must be a vector"); - - llvm::Type *SrcTy = Src->getType(); - llvm::Type *DstTy = ConvertType(DstType); - - // Ignore conversions like int -> uint. - if (SrcTy == DstTy) - return Src; - - QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(), - DstEltType = DstType->castAs<VectorType>()->getElementType(); - - assert(SrcTy->isVectorTy() && - "ConvertVector source IR type must be a vector"); - assert(DstTy->isVectorTy() && - "ConvertVector destination IR type must be a vector"); - - llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(), - *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType(); - - if (DstEltType->isBooleanType()) { - assert((SrcEltTy->isFloatingPointTy() || - isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); - - llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); - if (SrcEltTy->isFloatingPointTy()) { - return Builder.CreateFCmpUNE(Src, Zero, "tobool"); - } else { - return Builder.CreateICmpNE(Src, Zero, "tobool"); - } - } - - // We have the arithmetic types: real int/float. - Value *Res = nullptr; - - if (isa<llvm::IntegerType>(SrcEltTy)) { - bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); - if (isa<llvm::IntegerType>(DstEltTy)) - Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); - else if (InputSigned) - Res = Builder.CreateSIToFP(Src, DstTy, "conv"); - else - Res = Builder.CreateUIToFP(Src, DstTy, "conv"); - } else if (isa<llvm::IntegerType>(DstEltTy)) { - assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); - if (DstEltType->isSignedIntegerOrEnumerationType()) - Res = Builder.CreateFPToSI(Src, DstTy, "conv"); - else - Res = Builder.CreateFPToUI(Src, DstTy, "conv"); - } else { - assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && - "Unknown real conversion"); - if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) - Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); - else - Res = Builder.CreateFPExt(Src, DstTy, "conv"); - } - - return Res; -} - -Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { - if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { - CGF.EmitIgnoredExpr(E->getBase()); - return CGF.emitScalarConstant(Constant, E); - } else { - Expr::EvalResult Result; - if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { - llvm::APSInt Value = Result.Val.getInt(); - CGF.EmitIgnoredExpr(E->getBase()); - return Builder.getInt(Value); - } - } - - return EmitLoadOfLValue(E); -} - -Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { - TestAndClearIgnoreResultAssign(); - - // Emit subscript expressions in rvalue context's. For most cases, this just - // loads the lvalue formed by the subscript expr. However, we have to be - // careful, because the base of a vector subscript is occasionally an rvalue, - // so we can't get it as an lvalue. - if (!E->getBase()->getType()->isVectorType()) - return EmitLoadOfLValue(E); - - // Handle the vector case. The base must be a vector, the index must be an - // integer value. - Value *Base = Visit(E->getBase()); - Value *Idx = Visit(E->getIdx()); - QualType IdxTy = E->getIdx()->getType(); - - if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) - CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); - - return Builder.CreateExtractElement(Base, Idx, "vecext"); -} - -Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) { - TestAndClearIgnoreResultAssign(); - - // Handle the vector case. The base must be a vector, the index must be an - // integer value. - Value *RowIdx = Visit(E->getRowIdx()); - Value *ColumnIdx = Visit(E->getColumnIdx()); - - const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>(); - unsigned NumRows = MatrixTy->getNumRows(); - llvm::MatrixBuilder<CGBuilderTy> MB(Builder); - Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows); - if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0) - MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened()); - - Value *Matrix = Visit(E->getBase()); - - // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds? - return Builder.CreateExtractElement(Matrix, Idx, "matrixext"); -} - -static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, - unsigned Off) { - int MV = SVI->getMaskValue(Idx); - if (MV == -1) - return -1; - return Off + MV; -} - -static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { - assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && - "Index operand too large for shufflevector mask!"); - return C->getZExtValue(); -} - -Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { - bool Ignore = TestAndClearIgnoreResultAssign(); - (void)Ignore; - assert (Ignore == false && "init list ignored"); - unsigned NumInitElements = E->getNumInits(); - - if (E->hadArrayRangeDesignator()) - CGF.ErrorUnsupported(E, "GNU array range designator extension"); - - llvm::VectorType *VType = - dyn_cast<llvm::VectorType>(ConvertType(E->getType())); - - if (!VType) { - if (NumInitElements == 0) { - // C++11 value-initialization for the scalar. - return EmitNullValue(E->getType()); - } - // We have a scalar in braces. Just use the first element. - return Visit(E->getInit(0)); - } - - unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements(); - - // Loop over initializers collecting the Value for each, and remembering - // whether the source was swizzle (ExtVectorElementExpr). This will allow - // us to fold the shuffle for the swizzle into the shuffle for the vector - // initializer, since LLVM optimizers generally do not want to touch - // shuffles. - unsigned CurIdx = 0; - bool VIsUndefShuffle = false; - llvm::Value *V = llvm::UndefValue::get(VType); - for (unsigned i = 0; i != NumInitElements; ++i) { - Expr *IE = E->getInit(i); - Value *Init = Visit(IE); - SmallVector<int, 16> Args; - - llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); - - // Handle scalar elements. If the scalar initializer is actually one - // element of a different vector of the same width, use shuffle instead of - // extract+insert. - if (!VVT) { - if (isa<ExtVectorElementExpr>(IE)) { - llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); - - if (cast<llvm::FixedVectorType>(EI->getVectorOperandType()) - ->getNumElements() == ResElts) { - llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); - Value *LHS = nullptr, *RHS = nullptr; - if (CurIdx == 0) { - // insert into undef -> shuffle (src, undef) - // shufflemask must use an i32 - Args.push_back(getAsInt32(C, CGF.Int32Ty)); - Args.resize(ResElts, -1); - - LHS = EI->getVectorOperand(); - RHS = V; - VIsUndefShuffle = true; - } else if (VIsUndefShuffle) { - // insert into undefshuffle && size match -> shuffle (v, src) - llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); - for (unsigned j = 0; j != CurIdx; ++j) - Args.push_back(getMaskElt(SVV, j, 0)); - Args.push_back(ResElts + C->getZExtValue()); - Args.resize(ResElts, -1); - - LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); - RHS = EI->getVectorOperand(); - VIsUndefShuffle = false; - } - if (!Args.empty()) { - V = Builder.CreateShuffleVector(LHS, RHS, Args); - ++CurIdx; - continue; - } - } - } - V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), - "vecinit"); - VIsUndefShuffle = false; - ++CurIdx; - continue; - } - - unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements(); - - // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's - // input is the same width as the vector being constructed, generate an - // optimized shuffle of the swizzle input into the result. - unsigned Offset = (CurIdx == 0) ? 0 : ResElts; - if (isa<ExtVectorElementExpr>(IE)) { - llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); - Value *SVOp = SVI->getOperand(0); - auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType()); - - if (OpTy->getNumElements() == ResElts) { - for (unsigned j = 0; j != CurIdx; ++j) { - // If the current vector initializer is a shuffle with undef, merge - // this shuffle directly into it. - if (VIsUndefShuffle) { - Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0)); - } else { - Args.push_back(j); - } - } - for (unsigned j = 0, je = InitElts; j != je; ++j) - Args.push_back(getMaskElt(SVI, j, Offset)); - Args.resize(ResElts, -1); - - if (VIsUndefShuffle) - V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); - - Init = SVOp; - } - } - - // Extend init to result vector length, and then shuffle its contribution - // to the vector initializer into V. - if (Args.empty()) { - for (unsigned j = 0; j != InitElts; ++j) - Args.push_back(j); - Args.resize(ResElts, -1); - Init = Builder.CreateShuffleVector(Init, Args, "vext"); - - Args.clear(); - for (unsigned j = 0; j != CurIdx; ++j) - Args.push_back(j); - for (unsigned j = 0; j != InitElts; ++j) - Args.push_back(j + Offset); - Args.resize(ResElts, -1); - } - - // If V is undef, make sure it ends up on the RHS of the shuffle to aid - // merging subsequent shuffles into this one. - if (CurIdx == 0) - std::swap(V, Init); - V = Builder.CreateShuffleVector(V, Init, Args, "vecinit"); - VIsUndefShuffle = isa<llvm::UndefValue>(Init); - CurIdx += InitElts; - } - - // FIXME: evaluate codegen vs. shuffling against constant null vector. - // Emit remaining default initializers. - llvm::Type *EltTy = VType->getElementType(); - - // Emit remaining default initializers - for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { - Value *Idx = Builder.getInt32(CurIdx); - llvm::Value *Init = llvm::Constant::getNullValue(EltTy); - V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); - } - return V; -} - -bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { - const Expr *E = CE->getSubExpr(); - - if (CE->getCastKind() == CK_UncheckedDerivedToBase) - return false; - - if (isa<CXXThisExpr>(E->IgnoreParens())) { - // We always assume that 'this' is never null. - return false; - } - - if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { - // And that glvalue casts are never null. - if (ICE->isGLValue()) - return false; - } - - return true; -} - -// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts -// have to handle a more broad range of conversions than explicit casts, as they -// handle things like function to ptr-to-function decay etc. -Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { - Expr *E = CE->getSubExpr(); - QualType DestTy = CE->getType(); - CastKind Kind = CE->getCastKind(); - - // These cases are generally not written to ignore the result of - // evaluating their sub-expressions, so we clear this now. - bool Ignored = TestAndClearIgnoreResultAssign(); - - // Since almost all cast kinds apply to scalars, this switch doesn't have - // a default case, so the compiler will warn on a missing case. The cases - // are in the same order as in the CastKind enum. - switch (Kind) { - case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); - case CK_BuiltinFnToFnPtr: - llvm_unreachable("builtin functions are handled elsewhere"); - - case CK_LValueBitCast: - case CK_ObjCObjectLValueCast: { - Address Addr = EmitLValue(E).getAddress(CGF); - Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); - LValue LV = CGF.MakeAddrLValue(Addr, DestTy); - return EmitLoadOfLValue(LV, CE->getExprLoc()); - } - - case CK_LValueToRValueBitCast: { - LValue SourceLVal = CGF.EmitLValue(E); - Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF), - CGF.ConvertTypeForMem(DestTy)); - LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); - DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); - return EmitLoadOfLValue(DestLV, CE->getExprLoc()); - } - - case CK_CPointerToObjCPointerCast: - case CK_BlockPointerToObjCPointerCast: - case CK_AnyPointerToBlockPointerCast: - case CK_BitCast: { - Value *Src = Visit(const_cast<Expr*>(E)); - llvm::Type *SrcTy = Src->getType(); - llvm::Type *DstTy = ConvertType(DestTy); - if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && - SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { - llvm_unreachable("wrong cast for pointers in different address spaces" - "(must be an address space cast)!"); - } - - if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { - if (auto PT = DestTy->getAs<PointerType>()) - CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, - /*MayBeNull=*/true, - CodeGenFunction::CFITCK_UnrelatedCast, - CE->getBeginLoc()); - } - - if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { - const QualType SrcType = E->getType(); - - if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { - // Casting to pointer that could carry dynamic information (provided by - // invariant.group) requires launder. - Src = Builder.CreateLaunderInvariantGroup(Src); - } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { - // Casting to pointer that does not carry dynamic information (provided - // by invariant.group) requires stripping it. Note that we don't do it - // if the source could not be dynamic type and destination could be - // dynamic because dynamic information is already laundered. It is - // because launder(strip(src)) == launder(src), so there is no need to - // add extra strip before launder. - Src = Builder.CreateStripInvariantGroup(Src); - } - } - - // Update heapallocsite metadata when there is an explicit pointer cast. - if (auto *CI = dyn_cast<llvm::CallBase>(Src)) { - if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) { - QualType PointeeType = DestTy->getPointeeType(); - if (!PointeeType.isNull()) - CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType, - CE->getExprLoc()); - } - } - - // If Src is a fixed vector and Dst is a scalable vector, and both have the - // same element type, use the llvm.experimental.vector.insert intrinsic to - // perform the bitcast. - if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) { - if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) { - // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate - // vector, use a vector insert and bitcast the result. - bool NeedsBitCast = false; - auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); - llvm::Type *OrigType = DstTy; - if (ScalableDst == PredType && - FixedSrc->getElementType() == Builder.getInt8Ty()) { - DstTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); - ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy); - NeedsBitCast = true; - } - if (FixedSrc->getElementType() == ScalableDst->getElementType()) { - llvm::Value *UndefVec = llvm::UndefValue::get(DstTy); - llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); - llvm::Value *Result = Builder.CreateInsertVector( - DstTy, UndefVec, Src, Zero, "castScalableSve"); - if (NeedsBitCast) - Result = Builder.CreateBitCast(Result, OrigType); - return Result; - } - } - } - - // If Src is a scalable vector and Dst is a fixed vector, and both have the - // same element type, use the llvm.experimental.vector.extract intrinsic to - // perform the bitcast. - if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) { - if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) { - // If we are casting a scalable 16 x i1 predicate vector to a fixed i8 - // vector, bitcast the source and use a vector extract. - auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); - if (ScalableSrc == PredType && - FixedDst->getElementType() == Builder.getInt8Ty()) { - SrcTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); - ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy); - Src = Builder.CreateBitCast(Src, SrcTy); - } - if (ScalableSrc->getElementType() == FixedDst->getElementType()) { - llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); - return Builder.CreateExtractVector(DstTy, Src, Zero, "castFixedSve"); - } - } - } - - // Perform VLAT <-> VLST bitcast through memory. - // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics - // require the element types of the vectors to be the same, we - // need to keep this around for bitcasts between VLAT <-> VLST where - // the element types of the vectors are not the same, until we figure - // out a better way of doing these casts. - if ((isa<llvm::FixedVectorType>(SrcTy) && - isa<llvm::ScalableVectorType>(DstTy)) || - (isa<llvm::ScalableVectorType>(SrcTy) && - isa<llvm::FixedVectorType>(DstTy))) { - Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value"); - LValue LV = CGF.MakeAddrLValue(Addr, E->getType()); - CGF.EmitStoreOfScalar(Src, LV); - Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy), - "castFixedSve"); - LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); - DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); - return EmitLoadOfLValue(DestLV, CE->getExprLoc()); - } - - return Builder.CreateBitCast(Src, DstTy); - } - case CK_AddressSpaceConversion: { - Expr::EvalResult Result; - if (E->EvaluateAsRValue(Result, CGF.getContext()) && - Result.Val.isNullPointer()) { - // If E has side effect, it is emitted even if its final result is a - // null pointer. In that case, a DCE pass should be able to - // eliminate the useless instructions emitted during translating E. - if (Result.HasSideEffects) - Visit(E); - return CGF.CGM.getNullPointer(cast<llvm::PointerType>( - ConvertType(DestTy)), DestTy); - } - // Since target may map different address spaces in AST to the same address - // space, an address space conversion may end up as a bitcast. - return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( - CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), - DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); - } - case CK_AtomicToNonAtomic: - case CK_NonAtomicToAtomic: - case CK_UserDefinedConversion: - return Visit(const_cast<Expr*>(E)); - - case CK_NoOp: { - llvm::Value *V = Visit(const_cast<Expr *>(E)); - if (V) { - // CK_NoOp can model a pointer qualification conversion, which can remove - // an array bound and change the IR type. - // FIXME: Once pointee types are removed from IR, remove this. - llvm::Type *T = ConvertType(DestTy); - if (T != V->getType()) - V = Builder.CreateBitCast(V, T); - } - return V; - } - - case CK_BaseToDerived: { - const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); - assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); - - Address Base = CGF.EmitPointerWithAlignment(E); - Address Derived = - CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, - CE->path_begin(), CE->path_end(), - CGF.ShouldNullCheckClassCastValue(CE)); - - // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is - // performed and the object is not of the derived type. - if (CGF.sanitizePerformTypeCheck()) - CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), - Derived.getPointer(), DestTy->getPointeeType()); - - if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) - CGF.EmitVTablePtrCheckForCast( - DestTy->getPointeeType(), Derived.getPointer(), - /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, - CE->getBeginLoc()); - - return Derived.getPointer(); - } - case CK_UncheckedDerivedToBase: - case CK_DerivedToBase: { - // The EmitPointerWithAlignment path does this fine; just discard - // the alignment. - return CGF.EmitPointerWithAlignment(CE).getPointer(); - } - - case CK_Dynamic: { - Address V = CGF.EmitPointerWithAlignment(E); - const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); - return CGF.EmitDynamicCast(V, DCE); - } - - case CK_ArrayToPointerDecay: - return CGF.EmitArrayToPointerDecay(E).getPointer(); - case CK_FunctionToPointerDecay: - return EmitLValue(E).getPointer(CGF); - - case CK_NullToPointer: - if (MustVisitNullValue(E)) - CGF.EmitIgnoredExpr(E); - - return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), - DestTy); - - case CK_NullToMemberPointer: { - if (MustVisitNullValue(E)) - CGF.EmitIgnoredExpr(E); - - const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); - return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); - } - - case CK_ReinterpretMemberPointer: - case CK_BaseToDerivedMemberPointer: - case CK_DerivedToBaseMemberPointer: { - Value *Src = Visit(E); - - // Note that the AST doesn't distinguish between checked and - // unchecked member pointer conversions, so we always have to - // implement checked conversions here. This is inefficient when - // actual control flow may be required in order to perform the - // check, which it is for data member pointers (but not member - // function pointers on Itanium and ARM). - return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); - } - - case CK_ARCProduceObject: - return CGF.EmitARCRetainScalarExpr(E); - case CK_ARCConsumeObject: - return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); - case CK_ARCReclaimReturnedObject: - return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); - case CK_ARCExtendBlockObject: - return CGF.EmitARCExtendBlockObject(E); - - case CK_CopyAndAutoreleaseBlockObject: - return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); - - case CK_FloatingRealToComplex: - case CK_FloatingComplexCast: - case CK_IntegralRealToComplex: - case CK_IntegralComplexCast: - case CK_IntegralComplexToFloatingComplex: - case CK_FloatingComplexToIntegralComplex: - case CK_ConstructorConversion: - case CK_ToUnion: - llvm_unreachable("scalar cast to non-scalar value"); - - case CK_LValueToRValue: - assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); - assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); - return Visit(const_cast<Expr*>(E)); - - case CK_IntegralToPointer: { - Value *Src = Visit(const_cast<Expr*>(E)); - - // First, convert to the correct width so that we control the kind of - // extension. - auto DestLLVMTy = ConvertType(DestTy); - llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); - bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); - llvm::Value* IntResult = - Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); - - auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); - - if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { - // Going from integer to pointer that could be dynamic requires reloading - // dynamic information from invariant.group. - if (DestTy.mayBeDynamicClass()) - IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); - } - return IntToPtr; - } - case CK_PointerToIntegral: { - assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); - auto *PtrExpr = Visit(E); - - if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { - const QualType SrcType = E->getType(); - - // Casting to integer requires stripping dynamic information as it does - // not carries it. - if (SrcType.mayBeDynamicClass()) - PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); - } - - return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); - } - case CK_ToVoid: { - CGF.EmitIgnoredExpr(E); - return nullptr; - } - case CK_MatrixCast: { - return EmitScalarConversion(Visit(E), E->getType(), DestTy, - CE->getExprLoc()); - } - case CK_VectorSplat: { - llvm::Type *DstTy = ConvertType(DestTy); - Value *Elt = Visit(const_cast<Expr*>(E)); - // Splat the element across to all elements - unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); - return Builder.CreateVectorSplat(NumElements, Elt, "splat"); - } - - case CK_FixedPointCast: - return EmitScalarConversion(Visit(E), E->getType(), DestTy, - CE->getExprLoc()); - - case CK_FixedPointToBoolean: - assert(E->getType()->isFixedPointType() && - "Expected src type to be fixed point type"); - assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); - return EmitScalarConversion(Visit(E), E->getType(), DestTy, - CE->getExprLoc()); - - case CK_FixedPointToIntegral: - assert(E->getType()->isFixedPointType() && - "Expected src type to be fixed point type"); - assert(DestTy->isIntegerType() && "Expected dest type to be an integer"); - return EmitScalarConversion(Visit(E), E->getType(), DestTy, - CE->getExprLoc()); - - case CK_IntegralToFixedPoint: - assert(E->getType()->isIntegerType() && - "Expected src type to be an integer"); - assert(DestTy->isFixedPointType() && - "Expected dest type to be fixed point type"); - return EmitScalarConversion(Visit(E), E->getType(), DestTy, - CE->getExprLoc()); - - case CK_IntegralCast: { - ScalarConversionOpts Opts; - if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { - if (!ICE->isPartOfExplicitCast()) - Opts = ScalarConversionOpts(CGF.SanOpts); - } - return EmitScalarConversion(Visit(E), E->getType(), DestTy, - CE->getExprLoc(), Opts); - } - case CK_IntegralToFloating: - case CK_FloatingToIntegral: - case CK_FloatingCast: - case CK_FixedPointToFloating: - case CK_FloatingToFixedPoint: { - CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); - return EmitScalarConversion(Visit(E), E->getType(), DestTy, - CE->getExprLoc()); - } - case CK_BooleanToSignedIntegral: { - ScalarConversionOpts Opts; - Opts.TreatBooleanAsSigned = true; - return EmitScalarConversion(Visit(E), E->getType(), DestTy, - CE->getExprLoc(), Opts); - } - case CK_IntegralToBoolean: - return EmitIntToBoolConversion(Visit(E)); - case CK_PointerToBoolean: - return EmitPointerToBoolConversion(Visit(E), E->getType()); - case CK_FloatingToBoolean: { - CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); - return EmitFloatToBoolConversion(Visit(E)); - } - case CK_MemberPointerToBoolean: { - llvm::Value *MemPtr = Visit(E); - const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); - return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); - } - - case CK_FloatingComplexToReal: - case CK_IntegralComplexToReal: - return CGF.EmitComplexExpr(E, false, true).first; - - case CK_FloatingComplexToBoolean: - case CK_IntegralComplexToBoolean: { - CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); - - // TODO: kill this function off, inline appropriate case here - return EmitComplexToScalarConversion(V, E->getType(), DestTy, - CE->getExprLoc()); - } - - case CK_ZeroToOCLOpaqueType: { - assert((DestTy->isEventT() || DestTy->isQueueT() || - DestTy->isOCLIntelSubgroupAVCType()) && - "CK_ZeroToOCLEvent cast on non-event type"); - return llvm::Constant::getNullValue(ConvertType(DestTy)); - } - - case CK_IntToOCLSampler: - return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); - - } // end of switch - - llvm_unreachable("unknown scalar cast"); -} - -Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { - CodeGenFunction::StmtExprEvaluation eval(CGF); - Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), - !E->getType()->isVoidType()); - if (!RetAlloca.isValid()) - return nullptr; - return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), - E->getExprLoc()); -} - -Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { - CodeGenFunction::RunCleanupsScope Scope(CGF); - Value *V = Visit(E->getSubExpr()); - // Defend against dominance problems caused by jumps out of expression - // evaluation through the shared cleanup block. - Scope.ForceCleanup({&V}); - return V; -} - -//===----------------------------------------------------------------------===// -// Unary Operators -//===----------------------------------------------------------------------===// - -static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, - llvm::Value *InVal, bool IsInc, - FPOptions FPFeatures) { - BinOpInfo BinOp; - BinOp.LHS = InVal; - BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); - BinOp.Ty = E->getType(); - BinOp.Opcode = IsInc ? BO_Add : BO_Sub; - BinOp.FPFeatures = FPFeatures; - BinOp.E = E; - return BinOp; -} - -llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( - const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { - llvm::Value *Amount = - llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); - StringRef Name = IsInc ? "inc" : "dec"; - switch (CGF.getLangOpts().getSignedOverflowBehavior()) { - case LangOptions::SOB_Defined: - return Builder.CreateAdd(InVal, Amount, Name); - case LangOptions::SOB_Undefined: - if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) - return Builder.CreateNSWAdd(InVal, Amount, Name); - LLVM_FALLTHROUGH; - case LangOptions::SOB_Trapping: - if (!E->canOverflow()) - return Builder.CreateNSWAdd(InVal, Amount, Name); - return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( - E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); - } - llvm_unreachable("Unknown SignedOverflowBehaviorTy"); -} - -namespace { -/// Handles check and update for lastprivate conditional variables. -class OMPLastprivateConditionalUpdateRAII { -private: - CodeGenFunction &CGF; - const UnaryOperator *E; - -public: - OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF, - const UnaryOperator *E) - : CGF(CGF), E(E) {} - ~OMPLastprivateConditionalUpdateRAII() { - if (CGF.getLangOpts().OpenMP) - CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional( - CGF, E->getSubExpr()); - } -}; -} // namespace - -llvm::Value * -ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, - bool isInc, bool isPre) { - OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E); - QualType type = E->getSubExpr()->getType(); - llvm::PHINode *atomicPHI = nullptr; - llvm::Value *value; - llvm::Value *input; - - int amount = (isInc ? 1 : -1); - bool isSubtraction = !isInc; - - if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { - type = atomicTy->getValueType(); - if (isInc && type->isBooleanType()) { - llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); - if (isPre) { - Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified()) - ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); - return Builder.getTrue(); - } - // For atomic bool increment, we just store true and return it for - // preincrement, do an atomic swap with true for postincrement - return Builder.CreateAtomicRMW( - llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True, - llvm::AtomicOrdering::SequentiallyConsistent); - } - // Special case for atomic increment / decrement on integers, emit - // atomicrmw instructions. We skip this if we want to be doing overflow - // checking, and fall into the slow path with the atomic cmpxchg loop. - if (!type->isBooleanType() && type->isIntegerType() && - !(type->isUnsignedIntegerType() && - CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && - CGF.getLangOpts().getSignedOverflowBehavior() != - LangOptions::SOB_Trapping) { - llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : - llvm::AtomicRMWInst::Sub; - llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : - llvm::Instruction::Sub; - llvm::Value *amt = CGF.EmitToMemory( - llvm::ConstantInt::get(ConvertType(type), 1, true), type); - llvm::Value *old = - Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt, - llvm::AtomicOrdering::SequentiallyConsistent); - return isPre ? Builder.CreateBinOp(op, old, amt) : old; - } - value = EmitLoadOfLValue(LV, E->getExprLoc()); - input = value; - // For every other atomic operation, we need to emit a load-op-cmpxchg loop - llvm::BasicBlock *startBB = Builder.GetInsertBlock(); - llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); - value = CGF.EmitToMemory(value, type); - Builder.CreateBr(opBB); - Builder.SetInsertPoint(opBB); - atomicPHI = Builder.CreatePHI(value->getType(), 2); - atomicPHI->addIncoming(value, startBB); - value = atomicPHI; - } else { - value = EmitLoadOfLValue(LV, E->getExprLoc()); - input = value; - } - - // Special case of integer increment that we have to check first: bool++. - // Due to promotion rules, we get: - // bool++ -> bool = bool + 1 - // -> bool = (int)bool + 1 - // -> bool = ((int)bool + 1 != 0) - // An interesting aspect of this is that increment is always true. - // Decrement does not have this property. - if (isInc && type->isBooleanType()) { - value = Builder.getTrue(); - - // Most common case by far: integer increment. - } else if (type->isIntegerType()) { - QualType promotedType; - bool canPerformLossyDemotionCheck = false; - if (type->isPromotableIntegerType()) { - promotedType = CGF.getContext().getPromotedIntegerType(type); - assert(promotedType != type && "Shouldn't promote to the same type."); - canPerformLossyDemotionCheck = true; - canPerformLossyDemotionCheck &= - CGF.getContext().getCanonicalType(type) != - CGF.getContext().getCanonicalType(promotedType); - canPerformLossyDemotionCheck &= - PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( - type, promotedType); - assert((!canPerformLossyDemotionCheck || - type->isSignedIntegerOrEnumerationType() || - promotedType->isSignedIntegerOrEnumerationType() || - ConvertType(type)->getScalarSizeInBits() == - ConvertType(promotedType)->getScalarSizeInBits()) && - "The following check expects that if we do promotion to different " - "underlying canonical type, at least one of the types (either " - "base or promoted) will be signed, or the bitwidths will match."); - } - if (CGF.SanOpts.hasOneOf( - SanitizerKind::ImplicitIntegerArithmeticValueChange) && - canPerformLossyDemotionCheck) { - // While `x += 1` (for `x` with width less than int) is modeled as - // promotion+arithmetics+demotion, and we can catch lossy demotion with - // ease; inc/dec with width less than int can't overflow because of - // promotion rules, so we omit promotion+demotion, which means that we can - // not catch lossy "demotion". Because we still want to catch these cases - // when the sanitizer is enabled, we perform the promotion, then perform - // the increment/decrement in the wider type, and finally - // perform the demotion. This will catch lossy demotions. - - value = EmitScalarConversion(value, type, promotedType, E->getExprLoc()); - Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); - value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); - // Do pass non-default ScalarConversionOpts so that sanitizer check is - // emitted. - value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(), - ScalarConversionOpts(CGF.SanOpts)); - - // Note that signed integer inc/dec with width less than int can't - // overflow because of promotion rules; we're just eliding a few steps - // here. - } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { - value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); - } else if (E->canOverflow() && type->isUnsignedIntegerType() && - CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { - value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( - E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); - } else { - llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); - value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); - } - - // Next most common: pointer increment. - } else if (const PointerType *ptr = type->getAs<PointerType>()) { - QualType type = ptr->getPointeeType(); - - // VLA types don't have constant size. - if (const VariableArrayType *vla - = CGF.getContext().getAsVariableArrayType(type)) { - llvm::Value *numElts = CGF.getVLASize(vla).NumElts; - if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); - llvm::Type *elemTy = value->getType()->getPointerElementType(); - if (CGF.getLangOpts().isSignedOverflowDefined()) - value = Builder.CreateGEP(elemTy, value, numElts, "vla.inc"); - else - value = CGF.EmitCheckedInBoundsGEP( - elemTy, value, numElts, /*SignedIndices=*/false, isSubtraction, - E->getExprLoc(), "vla.inc"); - - // Arithmetic on function pointers (!) is just +-1. - } else if (type->isFunctionType()) { - llvm::Value *amt = Builder.getInt32(amount); - - value = CGF.EmitCastToVoidPtr(value); - if (CGF.getLangOpts().isSignedOverflowDefined()) - value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr"); - else - value = CGF.EmitCheckedInBoundsGEP(CGF.Int8Ty, value, amt, - /*SignedIndices=*/false, - isSubtraction, E->getExprLoc(), - "incdec.funcptr"); - value = Builder.CreateBitCast(value, input->getType()); - - // For everything else, we can just do a simple increment. - } else { - llvm::Value *amt = Builder.getInt32(amount); - llvm::Type *elemTy = CGF.ConvertTypeForMem(type); - if (CGF.getLangOpts().isSignedOverflowDefined()) - value = Builder.CreateGEP(elemTy, value, amt, "incdec.ptr"); - else - value = CGF.EmitCheckedInBoundsGEP( - elemTy, value, amt, /*SignedIndices=*/false, isSubtraction, - E->getExprLoc(), "incdec.ptr"); - } - - // Vector increment/decrement. - } else if (type->isVectorType()) { - if (type->hasIntegerRepresentation()) { - llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); - - value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); - } else { - value = Builder.CreateFAdd( - value, - llvm::ConstantFP::get(value->getType(), amount), - isInc ? "inc" : "dec"); - } - - // Floating point. - } else if (type->isRealFloatingType()) { - // Add the inc/dec to the real part. - llvm::Value *amt; - CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); - - if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { - // Another special case: half FP increment should be done via float - if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { - value = Builder.CreateCall( - CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, - CGF.CGM.FloatTy), - input, "incdec.conv"); - } else { - value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); - } - } - - if (value->getType()->isFloatTy()) - amt = llvm::ConstantFP::get(VMContext, - llvm::APFloat(static_cast<float>(amount))); - else if (value->getType()->isDoubleTy()) - amt = llvm::ConstantFP::get(VMContext, - llvm::APFloat(static_cast<double>(amount))); - else { - // Remaining types are Half, LongDouble, __ibm128 or __float128. Convert - // from float. - llvm::APFloat F(static_cast<float>(amount)); - bool ignored; - const llvm::fltSemantics *FS; - // Don't use getFloatTypeSemantics because Half isn't - // necessarily represented using the "half" LLVM type. - if (value->getType()->isFP128Ty()) - FS = &CGF.getTarget().getFloat128Format(); - else if (value->getType()->isHalfTy()) - FS = &CGF.getTarget().getHalfFormat(); - else if (value->getType()->isPPC_FP128Ty()) - FS = &CGF.getTarget().getIbm128Format(); - else - FS = &CGF.getTarget().getLongDoubleFormat(); - F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); - amt = llvm::ConstantFP::get(VMContext, F); - } - value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); - - if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { - if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { - value = Builder.CreateCall( - CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, - CGF.CGM.FloatTy), - value, "incdec.conv"); - } else { - value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); - } - } - - // Fixed-point types. - } else if (type->isFixedPointType()) { - // Fixed-point types are tricky. In some cases, it isn't possible to - // represent a 1 or a -1 in the type at all. Piggyback off of - // EmitFixedPointBinOp to avoid having to reimplement saturation. - BinOpInfo Info; - Info.E = E; - Info.Ty = E->getType(); - Info.Opcode = isInc ? BO_Add : BO_Sub; - Info.LHS = value; - Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false); - // If the type is signed, it's better to represent this as +(-1) or -(-1), - // since -1 is guaranteed to be representable. - if (type->isSignedFixedPointType()) { - Info.Opcode = isInc ? BO_Sub : BO_Add; - Info.RHS = Builder.CreateNeg(Info.RHS); - } - // Now, convert from our invented integer literal to the type of the unary - // op. This will upscale and saturate if necessary. This value can become - // undef in some cases. - llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); - auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty); - Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema); - value = EmitFixedPointBinOp(Info); - - // Objective-C pointer types. - } else { - const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); - value = CGF.EmitCastToVoidPtr(value); - - CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); - if (!isInc) size = -size; - llvm::Value *sizeValue = - llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); - - if (CGF.getLangOpts().isSignedOverflowDefined()) - value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr"); - else - value = CGF.EmitCheckedInBoundsGEP( - CGF.Int8Ty, value, sizeValue, /*SignedIndices=*/false, isSubtraction, - E->getExprLoc(), "incdec.objptr"); - value = Builder.CreateBitCast(value, input->getType()); - } - - if (atomicPHI) { - llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); - llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); - auto Pair = CGF.EmitAtomicCompareExchange( - LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); - llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); - llvm::Value *success = Pair.second; - atomicPHI->addIncoming(old, curBlock); - Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); - Builder.SetInsertPoint(contBB); - return isPre ? value : input; - } - - // Store the updated result through the lvalue. - if (LV.isBitField()) - CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); - else - CGF.EmitStoreThroughLValue(RValue::get(value), LV); - - // If this is a postinc, return the value read from memory, otherwise use the - // updated value. - return isPre ? value : input; -} - - - -Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { - TestAndClearIgnoreResultAssign(); - Value *Op = Visit(E->getSubExpr()); - - // Generate a unary FNeg for FP ops. - if (Op->getType()->isFPOrFPVectorTy()) - return Builder.CreateFNeg(Op, "fneg"); - - // Emit unary minus with EmitSub so we handle overflow cases etc. - BinOpInfo BinOp; - BinOp.RHS = Op; - BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); - BinOp.Ty = E->getType(); - BinOp.Opcode = BO_Sub; - BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); - BinOp.E = E; - return EmitSub(BinOp); -} - -Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { - TestAndClearIgnoreResultAssign(); - Value *Op = Visit(E->getSubExpr()); - return Builder.CreateNot(Op, "neg"); -} - -Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { - // Perform vector logical not on comparison with zero vector. - if (E->getType()->isVectorType() && - E->getType()->castAs<VectorType>()->getVectorKind() == - VectorType::GenericVector) { - Value *Oper = Visit(E->getSubExpr()); - Value *Zero = llvm::Constant::getNullValue(Oper->getType()); - Value *Result; - if (Oper->getType()->isFPOrFPVectorTy()) { - CodeGenFunction::CGFPOptionsRAII FPOptsRAII( - CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); - Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); - } else - Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); - return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); - } - - // Compare operand to zero. - Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); - - // Invert value. - // TODO: Could dynamically modify easy computations here. For example, if - // the operand is an icmp ne, turn into icmp eq. - BoolVal = Builder.CreateNot(BoolVal, "lnot"); - - // ZExt result to the expr type. - return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); -} - -Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { - // Try folding the offsetof to a constant. - Expr::EvalResult EVResult; - if (E->EvaluateAsInt(EVResult, CGF.getContext())) { - llvm::APSInt Value = EVResult.Val.getInt(); - return Builder.getInt(Value); - } - - // Loop over the components of the offsetof to compute the value. - unsigned n = E->getNumComponents(); - llvm::Type* ResultType = ConvertType(E->getType()); - llvm::Value* Result = llvm::Constant::getNullValue(ResultType); - QualType CurrentType = E->getTypeSourceInfo()->getType(); - for (unsigned i = 0; i != n; ++i) { - OffsetOfNode ON = E->getComponent(i); - llvm::Value *Offset = nullptr; - switch (ON.getKind()) { - case OffsetOfNode::Array: { - // Compute the index - Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); - llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); - bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); - Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); - - // Save the element type - CurrentType = - CGF.getContext().getAsArrayType(CurrentType)->getElementType(); - - // Compute the element size - llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, - CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); - - // Multiply out to compute the result - Offset = Builder.CreateMul(Idx, ElemSize); - break; - } - - case OffsetOfNode::Field: { - FieldDecl *MemberDecl = ON.getField(); - RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); - const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); - - // Compute the index of the field in its parent. - unsigned i = 0; - // FIXME: It would be nice if we didn't have to loop here! - for (RecordDecl::field_iterator Field = RD->field_begin(), - FieldEnd = RD->field_end(); - Field != FieldEnd; ++Field, ++i) { - if (*Field == MemberDecl) - break; - } - assert(i < RL.getFieldCount() && "offsetof field in wrong type"); - - // Compute the offset to the field - int64_t OffsetInt = RL.getFieldOffset(i) / - CGF.getContext().getCharWidth(); - Offset = llvm::ConstantInt::get(ResultType, OffsetInt); - - // Save the element type. - CurrentType = MemberDecl->getType(); - break; - } - - case OffsetOfNode::Identifier: - llvm_unreachable("dependent __builtin_offsetof"); - - case OffsetOfNode::Base: { - if (ON.getBase()->isVirtual()) { - CGF.ErrorUnsupported(E, "virtual base in offsetof"); - continue; - } - - RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); - const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); - - // Save the element type. - CurrentType = ON.getBase()->getType(); - - // Compute the offset to the base. - const RecordType *BaseRT = CurrentType->getAs<RecordType>(); - CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); - CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); - Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); - break; - } - } - Result = Builder.CreateAdd(Result, Offset); - } - return Result; -} - -/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of -/// argument of the sizeof expression as an integer. -Value * -ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( - const UnaryExprOrTypeTraitExpr *E) { - QualType TypeToSize = E->getTypeOfArgument(); - if (E->getKind() == UETT_SizeOf) { - if (const VariableArrayType *VAT = - CGF.getContext().getAsVariableArrayType(TypeToSize)) { - if (E->isArgumentType()) { - // sizeof(type) - make sure to emit the VLA size. - CGF.EmitVariablyModifiedType(TypeToSize); - } else { - // C99 6.5.3.4p2: If the argument is an expression of type - // VLA, it is evaluated. - CGF.EmitIgnoredExpr(E->getArgumentExpr()); - } - - auto VlaSize = CGF.getVLASize(VAT); - llvm::Value *size = VlaSize.NumElts; - - // Scale the number of non-VLA elements by the non-VLA element size. - CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); - if (!eltSize.isOne()) - size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); - - return size; - } - } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { - auto Alignment = - CGF.getContext() - .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( - E->getTypeOfArgument()->getPointeeType())) - .getQuantity(); - return llvm::ConstantInt::get(CGF.SizeTy, Alignment); - } - - // If this isn't sizeof(vla), the result must be constant; use the constant - // folding logic so we don't have to duplicate it here. - return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); -} - -Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { - Expr *Op = E->getSubExpr(); - if (Op->getType()->isAnyComplexType()) { - // If it's an l-value, load through the appropriate subobject l-value. - // Note that we have to ask E because Op might be an l-value that - // this won't work for, e.g. an Obj-C property. - if (E->isGLValue()) - return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), - E->getExprLoc()).getScalarVal(); - - // Otherwise, calculate and project. - return CGF.EmitComplexExpr(Op, false, true).first; - } - - return Visit(Op); -} - -Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { - Expr *Op = E->getSubExpr(); - if (Op->getType()->isAnyComplexType()) { - // If it's an l-value, load through the appropriate subobject l-value. - // Note that we have to ask E because Op might be an l-value that - // this won't work for, e.g. an Obj-C property. - if (Op->isGLValue()) - return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), - E->getExprLoc()).getScalarVal(); - - // Otherwise, calculate and project. - return CGF.EmitComplexExpr(Op, true, false).second; - } - - // __imag on a scalar returns zero. Emit the subexpr to ensure side - // effects are evaluated, but not the actual value. - if (Op->isGLValue()) - CGF.EmitLValue(Op); - else - CGF.EmitScalarExpr(Op, true); - return llvm::Constant::getNullValue(ConvertType(E->getType())); -} - -//===----------------------------------------------------------------------===// -// Binary Operators -//===----------------------------------------------------------------------===// - -BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { - TestAndClearIgnoreResultAssign(); - BinOpInfo Result; - Result.LHS = Visit(E->getLHS()); - Result.RHS = Visit(E->getRHS()); - Result.Ty = E->getType(); - Result.Opcode = E->getOpcode(); - Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); - Result.E = E; - return Result; -} - -LValue ScalarExprEmitter::EmitCompoundAssignLValue( - const CompoundAssignOperator *E, - Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), - Value *&Result) { - QualType LHSTy = E->getLHS()->getType(); - BinOpInfo OpInfo; - - if (E->getComputationResultType()->isAnyComplexType()) - return CGF.EmitScalarCompoundAssignWithComplex(E, Result); - - // Emit the RHS first. __block variables need to have the rhs evaluated - // first, plus this should improve codegen a little. - OpInfo.RHS = Visit(E->getRHS()); - OpInfo.Ty = E->getComputationResultType(); - OpInfo.Opcode = E->getOpcode(); - OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); - OpInfo.E = E; - // Load/convert the LHS. - LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); - - llvm::PHINode *atomicPHI = nullptr; - if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { - QualType type = atomicTy->getValueType(); - if (!type->isBooleanType() && type->isIntegerType() && - !(type->isUnsignedIntegerType() && - CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && - CGF.getLangOpts().getSignedOverflowBehavior() != - LangOptions::SOB_Trapping) { - llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP; - llvm::Instruction::BinaryOps Op; - switch (OpInfo.Opcode) { - // We don't have atomicrmw operands for *, %, /, <<, >> - case BO_MulAssign: case BO_DivAssign: - case BO_RemAssign: - case BO_ShlAssign: - case BO_ShrAssign: - break; - case BO_AddAssign: - AtomicOp = llvm::AtomicRMWInst::Add; - Op = llvm::Instruction::Add; - break; - case BO_SubAssign: - AtomicOp = llvm::AtomicRMWInst::Sub; - Op = llvm::Instruction::Sub; - break; - case BO_AndAssign: - AtomicOp = llvm::AtomicRMWInst::And; - Op = llvm::Instruction::And; - break; - case BO_XorAssign: - AtomicOp = llvm::AtomicRMWInst::Xor; - Op = llvm::Instruction::Xor; - break; - case BO_OrAssign: - AtomicOp = llvm::AtomicRMWInst::Or; - Op = llvm::Instruction::Or; - break; - default: - llvm_unreachable("Invalid compound assignment type"); - } - if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) { - llvm::Value *Amt = CGF.EmitToMemory( - EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, - E->getExprLoc()), - LHSTy); - Value *OldVal = Builder.CreateAtomicRMW( - AtomicOp, LHSLV.getPointer(CGF), Amt, - llvm::AtomicOrdering::SequentiallyConsistent); - - // Since operation is atomic, the result type is guaranteed to be the - // same as the input in LLVM terms. - Result = Builder.CreateBinOp(Op, OldVal, Amt); - return LHSLV; - } - } - // FIXME: For floating point types, we should be saving and restoring the - // floating point environment in the loop. - llvm::BasicBlock *startBB = Builder.GetInsertBlock(); - llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); - OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); - OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); - Builder.CreateBr(opBB); - Builder.SetInsertPoint(opBB); - atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); - atomicPHI->addIncoming(OpInfo.LHS, startBB); - OpInfo.LHS = atomicPHI; - } - else - OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); - - CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures); - SourceLocation Loc = E->getExprLoc(); - OpInfo.LHS = - EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); - - // Expand the binary operator. - Result = (this->*Func)(OpInfo); - - // Convert the result back to the LHS type, - // potentially with Implicit Conversion sanitizer check. - Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, - Loc, ScalarConversionOpts(CGF.SanOpts)); - - if (atomicPHI) { - llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); - llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); - auto Pair = CGF.EmitAtomicCompareExchange( - LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); - llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); - llvm::Value *success = Pair.second; - atomicPHI->addIncoming(old, curBlock); - Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); - Builder.SetInsertPoint(contBB); - return LHSLV; - } - - // Store the result value into the LHS lvalue. Bit-fields are handled - // specially because the result is altered by the store, i.e., [C99 6.5.16p1] - // 'An assignment expression has the value of the left operand after the - // assignment...'. - if (LHSLV.isBitField()) - CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); - else - CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); - - if (CGF.getLangOpts().OpenMP) - CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, - E->getLHS()); - return LHSLV; -} - -Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, - Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { - bool Ignore = TestAndClearIgnoreResultAssign(); - Value *RHS = nullptr; - LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); - - // If the result is clearly ignored, return now. - if (Ignore) - return nullptr; - - // The result of an assignment in C is the assigned r-value. - if (!CGF.getLangOpts().CPlusPlus) - return RHS; - - // If the lvalue is non-volatile, return the computed value of the assignment. - if (!LHS.isVolatileQualified()) - return RHS; - - // Otherwise, reload the value. - return EmitLoadOfLValue(LHS, E->getExprLoc()); -} - -void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( - const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { - SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; - - if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { - Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), - SanitizerKind::IntegerDivideByZero)); - } - - const auto *BO = cast<BinaryOperator>(Ops.E); - if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && - Ops.Ty->hasSignedIntegerRepresentation() && - !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && - Ops.mayHaveIntegerOverflow()) { - llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); - - llvm::Value *IntMin = - Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); - llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty); - - llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); - llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); - llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); - Checks.push_back( - std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); - } - - if (Checks.size() > 0) - EmitBinOpCheck(Checks, Ops); -} - -Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { - { - CodeGenFunction::SanitizerScope SanScope(&CGF); - if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || - CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && - Ops.Ty->isIntegerType() && - (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { - llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); - EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); - } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && - Ops.Ty->isRealFloatingType() && - Ops.mayHaveFloatDivisionByZero()) { - llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); - llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); - EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), - Ops); - } - } - - if (Ops.Ty->isConstantMatrixType()) { - llvm::MatrixBuilder<CGBuilderTy> MB(Builder); - // We need to check the types of the operands of the operator to get the - // correct matrix dimensions. - auto *BO = cast<BinaryOperator>(Ops.E); - (void)BO; - assert( - isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) && - "first operand must be a matrix"); - assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() && - "second operand must be an arithmetic type"); - CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); - return MB.CreateScalarDiv(Ops.LHS, Ops.RHS, - Ops.Ty->hasUnsignedIntegerRepresentation()); - } - - if (Ops.LHS->getType()->isFPOrFPVectorTy()) { - llvm::Value *Val; - CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); - Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); - if ((CGF.getLangOpts().OpenCL && - !CGF.CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) || - (CGF.getLangOpts().HIP && CGF.getLangOpts().CUDAIsDevice && - !CGF.CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) { - // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp - // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt - // build option allows an application to specify that single precision - // floating-point divide (x/y and 1/x) and sqrt used in the program - // source are correctly rounded. - llvm::Type *ValTy = Val->getType(); - if (ValTy->isFloatTy() || - (isa<llvm::VectorType>(ValTy) && - cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) - CGF.SetFPAccuracy(Val, 2.5); - } - return Val; - } - else if (Ops.isFixedPointOp()) - return EmitFixedPointBinOp(Ops); - else if (Ops.Ty->hasUnsignedIntegerRepresentation()) - return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); - else - return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); -} - -Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { - // Rem in C can't be a floating point type: C99 6.5.5p2. - if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || - CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && - Ops.Ty->isIntegerType() && - (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { - CodeGenFunction::SanitizerScope SanScope(&CGF); - llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); - EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); - } - - if (Ops.Ty->hasUnsignedIntegerRepresentation()) - return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); - else - return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); -} - -Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { - unsigned IID; - unsigned OpID = 0; - SanitizerHandler OverflowKind; - - bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); - switch (Ops.Opcode) { - case BO_Add: - case BO_AddAssign: - OpID = 1; - IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : - llvm::Intrinsic::uadd_with_overflow; - OverflowKind = SanitizerHandler::AddOverflow; - break; - case BO_Sub: - case BO_SubAssign: - OpID = 2; - IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : - llvm::Intrinsic::usub_with_overflow; - OverflowKind = SanitizerHandler::SubOverflow; - break; - case BO_Mul: - case BO_MulAssign: - OpID = 3; - IID = isSigned ? llvm::Intrinsic::smul_with_overflow : - llvm::Intrinsic::umul_with_overflow; - OverflowKind = SanitizerHandler::MulOverflow; - break; - default: - llvm_unreachable("Unsupported operation for overflow detection"); - } - OpID <<= 1; - if (isSigned) - OpID |= 1; - - CodeGenFunction::SanitizerScope SanScope(&CGF); - llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); - - llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); - - Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); - Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); - Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); - - // Handle overflow with llvm.trap if no custom handler has been specified. - const std::string *handlerName = - &CGF.getLangOpts().OverflowHandler; - if (handlerName->empty()) { - // If the signed-integer-overflow sanitizer is enabled, emit a call to its - // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. - if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { - llvm::Value *NotOverflow = Builder.CreateNot(overflow); - SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow - : SanitizerKind::UnsignedIntegerOverflow; - EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); - } else - CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind); - return result; - } - - // Branch in case of overflow. - llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); - llvm::BasicBlock *continueBB = - CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); - llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); - - Builder.CreateCondBr(overflow, overflowBB, continueBB); - - // If an overflow handler is set, then we want to call it and then use its - // result, if it returns. - Builder.SetInsertPoint(overflowBB); - - // Get the overflow handler. - llvm::Type *Int8Ty = CGF.Int8Ty; - llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; - llvm::FunctionType *handlerTy = - llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); - llvm::FunctionCallee handler = - CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); - - // Sign extend the args to 64-bit, so that we can use the same handler for - // all types of overflow. - llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); - llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); - - // Call the handler with the two arguments, the operation, and the size of - // the result. - llvm::Value *handlerArgs[] = { - lhs, - rhs, - Builder.getInt8(OpID), - Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) - }; - llvm::Value *handlerResult = - CGF.EmitNounwindRuntimeCall(handler, handlerArgs); - - // Truncate the result back to the desired size. - handlerResult = Builder.CreateTrunc(handlerResult, opTy); - Builder.CreateBr(continueBB); - - Builder.SetInsertPoint(continueBB); - llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); - phi->addIncoming(result, initialBB); - phi->addIncoming(handlerResult, overflowBB); - - return phi; -} - -/// Emit pointer + index arithmetic. -static Value *emitPointerArithmetic(CodeGenFunction &CGF, - const BinOpInfo &op, - bool isSubtraction) { - // Must have binary (not unary) expr here. Unary pointer - // increment/decrement doesn't use this path. - const BinaryOperator *expr = cast<BinaryOperator>(op.E); - - Value *pointer = op.LHS; - Expr *pointerOperand = expr->getLHS(); - Value *index = op.RHS; - Expr *indexOperand = expr->getRHS(); - - // In a subtraction, the LHS is always the pointer. - if (!isSubtraction && !pointer->getType()->isPointerTy()) { - std::swap(pointer, index); - std::swap(pointerOperand, indexOperand); - } - - bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); - - unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); - auto &DL = CGF.CGM.getDataLayout(); - auto PtrTy = cast<llvm::PointerType>(pointer->getType()); - - // Some versions of glibc and gcc use idioms (particularly in their malloc - // routines) that add a pointer-sized integer (known to be a pointer value) - // to a null pointer in order to cast the value back to an integer or as - // part of a pointer alignment algorithm. This is undefined behavior, but - // we'd like to be able to compile programs that use it. - // - // Normally, we'd generate a GEP with a null-pointer base here in response - // to that code, but it's also UB to dereference a pointer created that - // way. Instead (as an acknowledged hack to tolerate the idiom) we will - // generate a direct cast of the integer value to a pointer. - // - // The idiom (p = nullptr + N) is not met if any of the following are true: - // - // The operation is subtraction. - // The index is not pointer-sized. - // The pointer type is not byte-sized. - // - if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), - op.Opcode, - expr->getLHS(), - expr->getRHS())) - return CGF.Builder.CreateIntToPtr(index, pointer->getType()); - - if (width != DL.getIndexTypeSizeInBits(PtrTy)) { - // Zero-extend or sign-extend the pointer value according to - // whether the index is signed or not. - index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned, - "idx.ext"); - } - - // If this is subtraction, negate the index. - if (isSubtraction) - index = CGF.Builder.CreateNeg(index, "idx.neg"); - - if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) - CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), - /*Accessed*/ false); - - const PointerType *pointerType - = pointerOperand->getType()->getAs<PointerType>(); - if (!pointerType) { - QualType objectType = pointerOperand->getType() - ->castAs<ObjCObjectPointerType>() - ->getPointeeType(); - llvm::Value *objectSize - = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); - - index = CGF.Builder.CreateMul(index, objectSize); - - Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); - result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr"); - return CGF.Builder.CreateBitCast(result, pointer->getType()); - } - - QualType elementType = pointerType->getPointeeType(); - if (const VariableArrayType *vla - = CGF.getContext().getAsVariableArrayType(elementType)) { - // The element count here is the total number of non-VLA elements. - llvm::Value *numElements = CGF.getVLASize(vla).NumElts; - - // Effectively, the multiply by the VLA size is part of the GEP. - // GEP indexes are signed, and scaling an index isn't permitted to - // signed-overflow, so we use the same semantics for our explicit - // multiply. We suppress this if overflow is not undefined behavior. - llvm::Type *elemTy = pointer->getType()->getPointerElementType(); - if (CGF.getLangOpts().isSignedOverflowDefined()) { - index = CGF.Builder.CreateMul(index, numElements, "vla.index"); - pointer = CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr"); - } else { - index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); - pointer = CGF.EmitCheckedInBoundsGEP( - elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(), - "add.ptr"); - } - return pointer; - } - - // Explicitly handle GNU void* and function pointer arithmetic extensions. The - // GNU void* casts amount to no-ops since our void* type is i8*, but this is - // future proof. - if (elementType->isVoidType() || elementType->isFunctionType()) { - Value *result = CGF.EmitCastToVoidPtr(pointer); - result = CGF.Builder.CreateGEP(CGF.Int8Ty, result, index, "add.ptr"); - return CGF.Builder.CreateBitCast(result, pointer->getType()); - } - - llvm::Type *elemTy = CGF.ConvertTypeForMem(elementType); - if (CGF.getLangOpts().isSignedOverflowDefined()) - return CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr"); - - return CGF.EmitCheckedInBoundsGEP( - elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(), - "add.ptr"); -} - -// Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and -// Addend. Use negMul and negAdd to negate the first operand of the Mul or -// the add operand respectively. This allows fmuladd to represent a*b-c, or -// c-a*b. Patterns in LLVM should catch the negated forms and translate them to -// efficient operations. -static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend, - const CodeGenFunction &CGF, CGBuilderTy &Builder, - bool negMul, bool negAdd) { - assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); - - Value *MulOp0 = MulOp->getOperand(0); - Value *MulOp1 = MulOp->getOperand(1); - if (negMul) - MulOp0 = Builder.CreateFNeg(MulOp0, "neg"); - if (negAdd) - Addend = Builder.CreateFNeg(Addend, "neg"); - - Value *FMulAdd = nullptr; - if (Builder.getIsFPConstrained()) { - assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) && - "Only constrained operation should be created when Builder is in FP " - "constrained mode"); - FMulAdd = Builder.CreateConstrainedFPCall( - CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd, - Addend->getType()), - {MulOp0, MulOp1, Addend}); - } else { - FMulAdd = Builder.CreateCall( - CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), - {MulOp0, MulOp1, Addend}); - } - MulOp->eraseFromParent(); - - return FMulAdd; -} - -// Check whether it would be legal to emit an fmuladd intrinsic call to -// represent op and if so, build the fmuladd. -// -// Checks that (a) the operation is fusable, and (b) -ffp-contract=on. -// Does NOT check the type of the operation - it's assumed that this function -// will be called from contexts where it's known that the type is contractable. -static Value* tryEmitFMulAdd(const BinOpInfo &op, - const CodeGenFunction &CGF, CGBuilderTy &Builder, - bool isSub=false) { - - assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || - op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && - "Only fadd/fsub can be the root of an fmuladd."); - - // Check whether this op is marked as fusable. - if (!op.FPFeatures.allowFPContractWithinStatement()) - return nullptr; - - // We have a potentially fusable op. Look for a mul on one of the operands. - // Also, make sure that the mul result isn't used directly. In that case, - // there's no point creating a muladd operation. - if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { - if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && - LHSBinOp->use_empty()) - return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); - } - if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { - if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && - RHSBinOp->use_empty()) - return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); - } - - if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) { - if (LHSBinOp->getIntrinsicID() == - llvm::Intrinsic::experimental_constrained_fmul && - LHSBinOp->use_empty()) - return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); - } - if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) { - if (RHSBinOp->getIntrinsicID() == - llvm::Intrinsic::experimental_constrained_fmul && - RHSBinOp->use_empty()) - return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); - } - - return nullptr; -} - -Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { - if (op.LHS->getType()->isPointerTy() || - op.RHS->getType()->isPointerTy()) - return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); - - if (op.Ty->isSignedIntegerOrEnumerationType()) { - switch (CGF.getLangOpts().getSignedOverflowBehavior()) { - case LangOptions::SOB_Defined: - return Builder.CreateAdd(op.LHS, op.RHS, "add"); - case LangOptions::SOB_Undefined: - if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) - return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); - LLVM_FALLTHROUGH; - case LangOptions::SOB_Trapping: - if (CanElideOverflowCheck(CGF.getContext(), op)) - return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); - return EmitOverflowCheckedBinOp(op); - } - } - - if (op.Ty->isConstantMatrixType()) { - llvm::MatrixBuilder<CGBuilderTy> MB(Builder); - CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); - return MB.CreateAdd(op.LHS, op.RHS); - } - - if (op.Ty->isUnsignedIntegerType() && - CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && - !CanElideOverflowCheck(CGF.getContext(), op)) - return EmitOverflowCheckedBinOp(op); - - if (op.LHS->getType()->isFPOrFPVectorTy()) { - CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); - // Try to form an fmuladd. - if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) - return FMulAdd; - - return Builder.CreateFAdd(op.LHS, op.RHS, "add"); - } - - if (op.isFixedPointOp()) - return EmitFixedPointBinOp(op); - - return Builder.CreateAdd(op.LHS, op.RHS, "add"); -} - -/// The resulting value must be calculated with exact precision, so the operands -/// may not be the same type. -Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { - using llvm::APSInt; - using llvm::ConstantInt; - - // This is either a binary operation where at least one of the operands is - // a fixed-point type, or a unary operation where the operand is a fixed-point - // type. The result type of a binary operation is determined by - // Sema::handleFixedPointConversions(). - QualType ResultTy = op.Ty; - QualType LHSTy, RHSTy; - if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) { - RHSTy = BinOp->getRHS()->getType(); - if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) { - // For compound assignment, the effective type of the LHS at this point - // is the computation LHS type, not the actual LHS type, and the final - // result type is not the type of the expression but rather the - // computation result type. - LHSTy = CAO->getComputationLHSType(); - ResultTy = CAO->getComputationResultType(); - } else - LHSTy = BinOp->getLHS()->getType(); - } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) { - LHSTy = UnOp->getSubExpr()->getType(); - RHSTy = UnOp->getSubExpr()->getType(); - } - ASTContext &Ctx = CGF.getContext(); - Value *LHS = op.LHS; - Value *RHS = op.RHS; - - auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy); - auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy); - auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy); - auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema); - - // Perform the actual operation. - Value *Result; - llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); - switch (op.Opcode) { - case BO_AddAssign: - case BO_Add: - Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema); - break; - case BO_SubAssign: - case BO_Sub: - Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema); - break; - case BO_MulAssign: - case BO_Mul: - Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema); - break; - case BO_DivAssign: - case BO_Div: - Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema); - break; - case BO_ShlAssign: - case BO_Shl: - Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS); - break; - case BO_ShrAssign: - case BO_Shr: - Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS); - break; - case BO_LT: - return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema); - case BO_GT: - return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema); - case BO_LE: - return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema); - case BO_GE: - return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema); - case BO_EQ: - // For equality operations, we assume any padding bits on unsigned types are - // zero'd out. They could be overwritten through non-saturating operations - // that cause overflow, but this leads to undefined behavior. - return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema); - case BO_NE: - return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema); - case BO_Cmp: - case BO_LAnd: - case BO_LOr: - llvm_unreachable("Found unimplemented fixed point binary operation"); - case BO_PtrMemD: - case BO_PtrMemI: - case BO_Rem: - case BO_Xor: - case BO_And: - case BO_Or: - case BO_Assign: - case BO_RemAssign: - case BO_AndAssign: - case BO_XorAssign: - case BO_OrAssign: - case BO_Comma: - llvm_unreachable("Found unsupported binary operation for fixed point types."); - } - - bool IsShift = BinaryOperator::isShiftOp(op.Opcode) || - BinaryOperator::isShiftAssignOp(op.Opcode); - // Convert to the result type. - return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema - : CommonFixedSema, - ResultFixedSema); -} - -Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { - // The LHS is always a pointer if either side is. - if (!op.LHS->getType()->isPointerTy()) { - if (op.Ty->isSignedIntegerOrEnumerationType()) { - switch (CGF.getLangOpts().getSignedOverflowBehavior()) { - case LangOptions::SOB_Defined: - return Builder.CreateSub(op.LHS, op.RHS, "sub"); - case LangOptions::SOB_Undefined: - if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) - return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); - LLVM_FALLTHROUGH; - case LangOptions::SOB_Trapping: - if (CanElideOverflowCheck(CGF.getContext(), op)) - return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); - return EmitOverflowCheckedBinOp(op); - } - } - - if (op.Ty->isConstantMatrixType()) { - llvm::MatrixBuilder<CGBuilderTy> MB(Builder); - CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); - return MB.CreateSub(op.LHS, op.RHS); - } - - if (op.Ty->isUnsignedIntegerType() && - CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && - !CanElideOverflowCheck(CGF.getContext(), op)) - return EmitOverflowCheckedBinOp(op); - - if (op.LHS->getType()->isFPOrFPVectorTy()) { - CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); - // Try to form an fmuladd. - if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) - return FMulAdd; - return Builder.CreateFSub(op.LHS, op.RHS, "sub"); - } - - if (op.isFixedPointOp()) - return EmitFixedPointBinOp(op); - - return Builder.CreateSub(op.LHS, op.RHS, "sub"); - } - - // If the RHS is not a pointer, then we have normal pointer - // arithmetic. - if (!op.RHS->getType()->isPointerTy()) - return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); - - // Otherwise, this is a pointer subtraction. - - // Do the raw subtraction part. - llvm::Value *LHS - = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); - llvm::Value *RHS - = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); - Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); - - // Okay, figure out the element size. - const BinaryOperator *expr = cast<BinaryOperator>(op.E); - QualType elementType = expr->getLHS()->getType()->getPointeeType(); - - llvm::Value *divisor = nullptr; - - // For a variable-length array, this is going to be non-constant. - if (const VariableArrayType *vla - = CGF.getContext().getAsVariableArrayType(elementType)) { - auto VlaSize = CGF.getVLASize(vla); - elementType = VlaSize.Type; - divisor = VlaSize.NumElts; - - // Scale the number of non-VLA elements by the non-VLA element size. - CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); - if (!eltSize.isOne()) - divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); - - // For everything elese, we can just compute it, safe in the - // assumption that Sema won't let anything through that we can't - // safely compute the size of. - } else { - CharUnits elementSize; - // Handle GCC extension for pointer arithmetic on void* and - // function pointer types. - if (elementType->isVoidType() || elementType->isFunctionType()) - elementSize = CharUnits::One(); - else - elementSize = CGF.getContext().getTypeSizeInChars(elementType); - - // Don't even emit the divide for element size of 1. - if (elementSize.isOne()) - return diffInChars; - - divisor = CGF.CGM.getSize(elementSize); - } - - // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since - // pointer difference in C is only defined in the case where both operands - // are pointing to elements of an array. - return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); -} - -Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { - llvm::IntegerType *Ty; - if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) - Ty = cast<llvm::IntegerType>(VT->getElementType()); - else - Ty = cast<llvm::IntegerType>(LHS->getType()); - return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); -} - -Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS, - const Twine &Name) { - llvm::IntegerType *Ty; - if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType())) - Ty = cast<llvm::IntegerType>(VT->getElementType()); - else - Ty = cast<llvm::IntegerType>(LHS->getType()); - - if (llvm::isPowerOf2_64(Ty->getBitWidth())) - return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name); - - return Builder.CreateURem( - RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name); -} - -Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { - // TODO: This misses out on the sanitizer check below. - if (Ops.isFixedPointOp()) - return EmitFixedPointBinOp(Ops); - - // LLVM requires the LHS and RHS to be the same type: promote or truncate the - // RHS to the same size as the LHS. - Value *RHS = Ops.RHS; - if (Ops.LHS->getType() != RHS->getType()) - RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); - - bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && - Ops.Ty->hasSignedIntegerRepresentation() && - !CGF.getLangOpts().isSignedOverflowDefined() && - !CGF.getLangOpts().CPlusPlus20; - bool SanitizeUnsignedBase = - CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) && - Ops.Ty->hasUnsignedIntegerRepresentation(); - bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase; - bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); - // OpenCL 6.3j: shift values are effectively % word size of LHS. - if (CGF.getLangOpts().OpenCL) - RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask"); - else if ((SanitizeBase || SanitizeExponent) && - isa<llvm::IntegerType>(Ops.LHS->getType())) { - CodeGenFunction::SanitizerScope SanScope(&CGF); - SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; - llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); - llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); - - if (SanitizeExponent) { - Checks.push_back( - std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); - } - - if (SanitizeBase) { - // Check whether we are shifting any non-zero bits off the top of the - // integer. We only emit this check if exponent is valid - otherwise - // instructions below will have undefined behavior themselves. - llvm::BasicBlock *Orig = Builder.GetInsertBlock(); - llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); - llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); - Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); - llvm::Value *PromotedWidthMinusOne = - (RHS == Ops.RHS) ? WidthMinusOne - : GetWidthMinusOneValue(Ops.LHS, RHS); - CGF.EmitBlock(CheckShiftBase); - llvm::Value *BitsShiftedOff = Builder.CreateLShr( - Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", - /*NUW*/ true, /*NSW*/ true), - "shl.check"); - if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) { - // In C99, we are not permitted to shift a 1 bit into the sign bit. - // Under C++11's rules, shifting a 1 bit into the sign bit is - // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't - // define signed left shifts, so we use the C99 and C++11 rules there). - // Unsigned shifts can always shift into the top bit. - llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); - BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); - } - llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); - llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); - CGF.EmitBlock(Cont); - llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); - BaseCheck->addIncoming(Builder.getTrue(), Orig); - BaseCheck->addIncoming(ValidBase, CheckShiftBase); - Checks.push_back(std::make_pair( - BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase - : SanitizerKind::UnsignedShiftBase)); - } - - assert(!Checks.empty()); - EmitBinOpCheck(Checks, Ops); - } - - return Builder.CreateShl(Ops.LHS, RHS, "shl"); -} - -Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { - // TODO: This misses out on the sanitizer check below. - if (Ops.isFixedPointOp()) - return EmitFixedPointBinOp(Ops); - - // LLVM requires the LHS and RHS to be the same type: promote or truncate the - // RHS to the same size as the LHS. - Value *RHS = Ops.RHS; - if (Ops.LHS->getType() != RHS->getType()) - RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); - - // OpenCL 6.3j: shift values are effectively % word size of LHS. - if (CGF.getLangOpts().OpenCL) - RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask"); - else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && - isa<llvm::IntegerType>(Ops.LHS->getType())) { - CodeGenFunction::SanitizerScope SanScope(&CGF); - llvm::Value *Valid = - Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); - EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); - } - - if (Ops.Ty->hasUnsignedIntegerRepresentation()) - return Builder.CreateLShr(Ops.LHS, RHS, "shr"); - return Builder.CreateAShr(Ops.LHS, RHS, "shr"); -} - -enum IntrinsicType { VCMPEQ, VCMPGT }; -// return corresponding comparison intrinsic for given vector type -static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, - BuiltinType::Kind ElemKind) { - switch (ElemKind) { - default: llvm_unreachable("unexpected element type"); - case BuiltinType::Char_U: - case BuiltinType::UChar: - return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : - llvm::Intrinsic::ppc_altivec_vcmpgtub_p; - case BuiltinType::Char_S: - case BuiltinType::SChar: - return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : - llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; - case BuiltinType::UShort: - return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : - llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; - case BuiltinType::Short: - return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : - llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; - case BuiltinType::UInt: - return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : - llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; - case BuiltinType::Int: - return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : - llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; - case BuiltinType::ULong: - case BuiltinType::ULongLong: - return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : - llvm::Intrinsic::ppc_altivec_vcmpgtud_p; - case BuiltinType::Long: - case BuiltinType::LongLong: - return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : - llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; - case BuiltinType::Float: - return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : - llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; - case BuiltinType::Double: - return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : - llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; - case BuiltinType::UInt128: - return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p - : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p; - case BuiltinType::Int128: - return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p - : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p; - } -} - -Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, - llvm::CmpInst::Predicate UICmpOpc, - llvm::CmpInst::Predicate SICmpOpc, - llvm::CmpInst::Predicate FCmpOpc, - bool IsSignaling) { - TestAndClearIgnoreResultAssign(); - Value *Result; - QualType LHSTy = E->getLHS()->getType(); - QualType RHSTy = E->getRHS()->getType(); - if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { - assert(E->getOpcode() == BO_EQ || - E->getOpcode() == BO_NE); - Value *LHS = CGF.EmitScalarExpr(E->getLHS()); - Value *RHS = CGF.EmitScalarExpr(E->getRHS()); - Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( - CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); - } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { - BinOpInfo BOInfo = EmitBinOps(E); - Value *LHS = BOInfo.LHS; - Value *RHS = BOInfo.RHS; - - // If AltiVec, the comparison results in a numeric type, so we use - // intrinsics comparing vectors and giving 0 or 1 as a result - if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { - // constants for mapping CR6 register bits to predicate result - enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; - - llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; - - // in several cases vector arguments order will be reversed - Value *FirstVecArg = LHS, - *SecondVecArg = RHS; - - QualType ElTy = LHSTy->castAs<VectorType>()->getElementType(); - BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind(); - - switch(E->getOpcode()) { - default: llvm_unreachable("is not a comparison operation"); - case BO_EQ: - CR6 = CR6_LT; - ID = GetIntrinsic(VCMPEQ, ElementKind); - break; - case BO_NE: - CR6 = CR6_EQ; - ID = GetIntrinsic(VCMPEQ, ElementKind); - break; - case BO_LT: - CR6 = CR6_LT; - ID = GetIntrinsic(VCMPGT, ElementKind); - std::swap(FirstVecArg, SecondVecArg); - break; - case BO_GT: - CR6 = CR6_LT; - ID = GetIntrinsic(VCMPGT, ElementKind); - break; - case BO_LE: - if (ElementKind == BuiltinType::Float) { - CR6 = CR6_LT; - ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; - std::swap(FirstVecArg, SecondVecArg); - } - else { - CR6 = CR6_EQ; - ID = GetIntrinsic(VCMPGT, ElementKind); - } - break; - case BO_GE: - if (ElementKind == BuiltinType::Float) { - CR6 = CR6_LT; - ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; - } - else { - CR6 = CR6_EQ; - ID = GetIntrinsic(VCMPGT, ElementKind); - std::swap(FirstVecArg, SecondVecArg); - } - break; - } - - Value *CR6Param = Builder.getInt32(CR6); - llvm::Function *F = CGF.CGM.getIntrinsic(ID); - Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); - - // The result type of intrinsic may not be same as E->getType(). - // If E->getType() is not BoolTy, EmitScalarConversion will do the - // conversion work. If E->getType() is BoolTy, EmitScalarConversion will - // do nothing, if ResultTy is not i1 at the same time, it will cause - // crash later. - llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); - if (ResultTy->getBitWidth() > 1 && - E->getType() == CGF.getContext().BoolTy) - Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); - return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), - E->getExprLoc()); - } - - if (BOInfo.isFixedPointOp()) { - Result = EmitFixedPointBinOp(BOInfo); - } else if (LHS->getType()->isFPOrFPVectorTy()) { - CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures); - if (!IsSignaling) - Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); - else - Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp"); - } else if (LHSTy->hasSignedIntegerRepresentation()) { - Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); - } else { - // Unsigned integers and pointers. - - if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && - !isa<llvm::ConstantPointerNull>(LHS) && - !isa<llvm::ConstantPointerNull>(RHS)) { - - // Dynamic information is required to be stripped for comparisons, - // because it could leak the dynamic information. Based on comparisons - // of pointers to dynamic objects, the optimizer can replace one pointer - // with another, which might be incorrect in presence of invariant - // groups. Comparison with null is safe because null does not carry any - // dynamic information. - if (LHSTy.mayBeDynamicClass()) - LHS = Builder.CreateStripInvariantGroup(LHS); - if (RHSTy.mayBeDynamicClass()) - RHS = Builder.CreateStripInvariantGroup(RHS); - } - - Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); - } - - // If this is a vector comparison, sign extend the result to the appropriate - // vector integer type and return it (don't convert to bool). - if (LHSTy->isVectorType()) - return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); - - } else { - // Complex Comparison: can only be an equality comparison. - CodeGenFunction::ComplexPairTy LHS, RHS; - QualType CETy; - if (auto *CTy = LHSTy->getAs<ComplexType>()) { - LHS = CGF.EmitComplexExpr(E->getLHS()); - CETy = CTy->getElementType(); - } else { - LHS.first = Visit(E->getLHS()); - LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); - CETy = LHSTy; - } - if (auto *CTy = RHSTy->getAs<ComplexType>()) { - RHS = CGF.EmitComplexExpr(E->getRHS()); - assert(CGF.getContext().hasSameUnqualifiedType(CETy, - CTy->getElementType()) && - "The element types must always match."); - (void)CTy; - } else { - RHS.first = Visit(E->getRHS()); - RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); - assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && - "The element types must always match."); - } - - Value *ResultR, *ResultI; - if (CETy->isRealFloatingType()) { - // As complex comparisons can only be equality comparisons, they - // are never signaling comparisons. - ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); - ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); - } else { - // Complex comparisons can only be equality comparisons. As such, signed - // and unsigned opcodes are the same. - ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); - ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); - } - - if (E->getOpcode() == BO_EQ) { - Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); - } else { - assert(E->getOpcode() == BO_NE && - "Complex comparison other than == or != ?"); - Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); - } - } - - return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), - E->getExprLoc()); -} - -Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { - bool Ignore = TestAndClearIgnoreResultAssign(); - - Value *RHS; - LValue LHS; - - switch (E->getLHS()->getType().getObjCLifetime()) { - case Qualifiers::OCL_Strong: - std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); - break; - - case Qualifiers::OCL_Autoreleasing: - std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); - break; - - case Qualifiers::OCL_ExplicitNone: - std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); - break; - - case Qualifiers::OCL_Weak: - RHS = Visit(E->getRHS()); - LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); - RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore); - break; - - case Qualifiers::OCL_None: - // __block variables need to have the rhs evaluated first, plus - // this should improve codegen just a little. - RHS = Visit(E->getRHS()); - LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); - - // Store the value into the LHS. Bit-fields are handled specially - // because the result is altered by the store, i.e., [C99 6.5.16p1] - // 'An assignment expression has the value of the left operand after - // the assignment...'. - if (LHS.isBitField()) { - CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); - } else { - CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); - CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); - } - } - - // If the result is clearly ignored, return now. - if (Ignore) - return nullptr; - - // The result of an assignment in C is the assigned r-value. - if (!CGF.getLangOpts().CPlusPlus) - return RHS; - - // If the lvalue is non-volatile, return the computed value of the assignment. - if (!LHS.isVolatileQualified()) - return RHS; - - // Otherwise, reload the value. - return EmitLoadOfLValue(LHS, E->getExprLoc()); -} - -Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { - // Perform vector logical and on comparisons with zero vectors. - if (E->getType()->isVectorType()) { - CGF.incrementProfileCounter(E); - - Value *LHS = Visit(E->getLHS()); - Value *RHS = Visit(E->getRHS()); - Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); - if (LHS->getType()->isFPOrFPVectorTy()) { - CodeGenFunction::CGFPOptionsRAII FPOptsRAII( - CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); - LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); - RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); - } else { - LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); - RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); - } - Value *And = Builder.CreateAnd(LHS, RHS); - return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); - } - - bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr(); - llvm::Type *ResTy = ConvertType(E->getType()); - - // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. - // If we have 1 && X, just emit X without inserting the control flow. - bool LHSCondVal; - if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { - if (LHSCondVal) { // If we have 1 && X, just emit X. - CGF.incrementProfileCounter(E); - - Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); - - // If we're generating for profiling or coverage, generate a branch to a - // block that increments the RHS counter needed to track branch condition - // coverage. In this case, use "FBlock" as both the final "TrueBlock" and - // "FalseBlock" after the increment is done. - if (InstrumentRegions && - CodeGenFunction::isInstrumentedCondition(E->getRHS())) { - llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end"); - llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt"); - Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock); - CGF.EmitBlock(RHSBlockCnt); - CGF.incrementProfileCounter(E->getRHS()); - CGF.EmitBranch(FBlock); - CGF.EmitBlock(FBlock); - } - - // ZExt result to int or bool. - return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); - } - - // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. - if (!CGF.ContainsLabel(E->getRHS())) - return llvm::Constant::getNullValue(ResTy); - } - - llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); - llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); - - CodeGenFunction::ConditionalEvaluation eval(CGF); - - // Branch on the LHS first. If it is false, go to the failure (cont) block. - CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, - CGF.getProfileCount(E->getRHS())); - - // Any edges into the ContBlock are now from an (indeterminate number of) - // edges from this first condition. All of these values will be false. Start - // setting up the PHI node in the Cont Block for this. - llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, - "", ContBlock); - for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); - PI != PE; ++PI) - PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); - - eval.begin(CGF); - CGF.EmitBlock(RHSBlock); - CGF.incrementProfileCounter(E); - Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); - eval.end(CGF); - - // Reaquire the RHS block, as there may be subblocks inserted. - RHSBlock = Builder.GetInsertBlock(); - - // If we're generating for profiling or coverage, generate a branch on the - // RHS to a block that increments the RHS true counter needed to track branch - // condition coverage. - if (InstrumentRegions && - CodeGenFunction::isInstrumentedCondition(E->getRHS())) { - llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt"); - Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock); - CGF.EmitBlock(RHSBlockCnt); - CGF.incrementProfileCounter(E->getRHS()); - CGF.EmitBranch(ContBlock); - PN->addIncoming(RHSCond, RHSBlockCnt); - } - - // Emit an unconditional branch from this block to ContBlock. - { - // There is no need to emit line number for unconditional branch. - auto NL = ApplyDebugLocation::CreateEmpty(CGF); - CGF.EmitBlock(ContBlock); - } - // Insert an entry into the phi node for the edge with the value of RHSCond. - PN->addIncoming(RHSCond, RHSBlock); - - // Artificial location to preserve the scope information - { - auto NL = ApplyDebugLocation::CreateArtificial(CGF); - PN->setDebugLoc(Builder.getCurrentDebugLocation()); - } - - // ZExt result to int. - return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); -} - -Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { - // Perform vector logical or on comparisons with zero vectors. - if (E->getType()->isVectorType()) { - CGF.incrementProfileCounter(E); - - Value *LHS = Visit(E->getLHS()); - Value *RHS = Visit(E->getRHS()); - Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); - if (LHS->getType()->isFPOrFPVectorTy()) { - CodeGenFunction::CGFPOptionsRAII FPOptsRAII( - CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); - LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); - RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); - } else { - LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); - RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); - } - Value *Or = Builder.CreateOr(LHS, RHS); - return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); - } - - bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr(); - llvm::Type *ResTy = ConvertType(E->getType()); - - // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. - // If we have 0 || X, just emit X without inserting the control flow. - bool LHSCondVal; - if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { - if (!LHSCondVal) { // If we have 0 || X, just emit X. - CGF.incrementProfileCounter(E); - - Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); - - // If we're generating for profiling or coverage, generate a branch to a - // block that increments the RHS counter need to track branch condition - // coverage. In this case, use "FBlock" as both the final "TrueBlock" and - // "FalseBlock" after the increment is done. - if (InstrumentRegions && - CodeGenFunction::isInstrumentedCondition(E->getRHS())) { - llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end"); - llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt"); - Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt); - CGF.EmitBlock(RHSBlockCnt); - CGF.incrementProfileCounter(E->getRHS()); - CGF.EmitBranch(FBlock); - CGF.EmitBlock(FBlock); - } - - // ZExt result to int or bool. - return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); - } - - // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. - if (!CGF.ContainsLabel(E->getRHS())) - return llvm::ConstantInt::get(ResTy, 1); - } - - llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); - llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); - - CodeGenFunction::ConditionalEvaluation eval(CGF); - - // Branch on the LHS first. If it is true, go to the success (cont) block. - CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, - CGF.getCurrentProfileCount() - - CGF.getProfileCount(E->getRHS())); - - // Any edges into the ContBlock are now from an (indeterminate number of) - // edges from this first condition. All of these values will be true. Start - // setting up the PHI node in the Cont Block for this. - llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, - "", ContBlock); - for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); - PI != PE; ++PI) - PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); - - eval.begin(CGF); - - // Emit the RHS condition as a bool value. - CGF.EmitBlock(RHSBlock); - CGF.incrementProfileCounter(E); - Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); - - eval.end(CGF); - - // Reaquire the RHS block, as there may be subblocks inserted. - RHSBlock = Builder.GetInsertBlock(); - - // If we're generating for profiling or coverage, generate a branch on the - // RHS to a block that increments the RHS true counter needed to track branch - // condition coverage. - if (InstrumentRegions && - CodeGenFunction::isInstrumentedCondition(E->getRHS())) { - llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt"); - Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt); - CGF.EmitBlock(RHSBlockCnt); - CGF.incrementProfileCounter(E->getRHS()); - CGF.EmitBranch(ContBlock); - PN->addIncoming(RHSCond, RHSBlockCnt); - } - - // Emit an unconditional branch from this block to ContBlock. Insert an entry - // into the phi node for the edge with the value of RHSCond. - CGF.EmitBlock(ContBlock); - PN->addIncoming(RHSCond, RHSBlock); - - // ZExt result to int. - return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); -} - -Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { - CGF.EmitIgnoredExpr(E->getLHS()); - CGF.EnsureInsertPoint(); - return Visit(E->getRHS()); -} - -//===----------------------------------------------------------------------===// -// Other Operators -//===----------------------------------------------------------------------===// - -/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified -/// expression is cheap enough and side-effect-free enough to evaluate -/// unconditionally instead of conditionally. This is used to convert control -/// flow into selects in some cases. -static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, - CodeGenFunction &CGF) { - // Anything that is an integer or floating point constant is fine. - return E->IgnoreParens()->isEvaluatable(CGF.getContext()); - - // Even non-volatile automatic variables can't be evaluated unconditionally. - // Referencing a thread_local may cause non-trivial initialization work to - // occur. If we're inside a lambda and one of the variables is from the scope - // outside the lambda, that function may have returned already. Reading its - // locals is a bad idea. Also, these reads may introduce races there didn't - // exist in the source-level program. -} - - -Value *ScalarExprEmitter:: -VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { - TestAndClearIgnoreResultAssign(); - - // Bind the common expression if necessary. - CodeGenFunction::OpaqueValueMapping binding(CGF, E); - - Expr *condExpr = E->getCond(); - Expr *lhsExpr = E->getTrueExpr(); - Expr *rhsExpr = E->getFalseExpr(); - - // If the condition constant folds and can be elided, try to avoid emitting - // the condition and the dead arm. - bool CondExprBool; - if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { - Expr *live = lhsExpr, *dead = rhsExpr; - if (!CondExprBool) std::swap(live, dead); - - // If the dead side doesn't have labels we need, just emit the Live part. - if (!CGF.ContainsLabel(dead)) { - if (CondExprBool) - CGF.incrementProfileCounter(E); - Value *Result = Visit(live); - - // If the live part is a throw expression, it acts like it has a void - // type, so evaluating it returns a null Value*. However, a conditional - // with non-void type must return a non-null Value*. - if (!Result && !E->getType()->isVoidType()) - Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); - - return Result; - } - } - - // OpenCL: If the condition is a vector, we can treat this condition like - // the select function. - if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) || - condExpr->getType()->isExtVectorType()) { - CGF.incrementProfileCounter(E); - - llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); - llvm::Value *LHS = Visit(lhsExpr); - llvm::Value *RHS = Visit(rhsExpr); - - llvm::Type *condType = ConvertType(condExpr->getType()); - auto *vecTy = cast<llvm::FixedVectorType>(condType); - - unsigned numElem = vecTy->getNumElements(); - llvm::Type *elemType = vecTy->getElementType(); - - llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); - llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); - llvm::Value *tmp = Builder.CreateSExt( - TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext"); - llvm::Value *tmp2 = Builder.CreateNot(tmp); - - // Cast float to int to perform ANDs if necessary. - llvm::Value *RHSTmp = RHS; - llvm::Value *LHSTmp = LHS; - bool wasCast = false; - llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); - if (rhsVTy->getElementType()->isFloatingPointTy()) { - RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); - LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); - wasCast = true; - } - - llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); - llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); - llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); - if (wasCast) - tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); - - return tmp5; - } - - if (condExpr->getType()->isVectorType()) { - CGF.incrementProfileCounter(E); - - llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); - llvm::Value *LHS = Visit(lhsExpr); - llvm::Value *RHS = Visit(rhsExpr); - - llvm::Type *CondType = ConvertType(condExpr->getType()); - auto *VecTy = cast<llvm::VectorType>(CondType); - llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy); - - CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond"); - return Builder.CreateSelect(CondV, LHS, RHS, "vector_select"); - } - - // If this is a really simple expression (like x ? 4 : 5), emit this as a - // select instead of as control flow. We can only do this if it is cheap and - // safe to evaluate the LHS and RHS unconditionally. - if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && - isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { - llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); - llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); - - CGF.incrementProfileCounter(E, StepV); - - llvm::Value *LHS = Visit(lhsExpr); - llvm::Value *RHS = Visit(rhsExpr); - if (!LHS) { - // If the conditional has void type, make sure we return a null Value*. - assert(!RHS && "LHS and RHS types must match"); - return nullptr; - } - return Builder.CreateSelect(CondV, LHS, RHS, "cond"); - } - - llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); - llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); - llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); - - CodeGenFunction::ConditionalEvaluation eval(CGF); - CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, - CGF.getProfileCount(lhsExpr)); - - CGF.EmitBlock(LHSBlock); - CGF.incrementProfileCounter(E); - eval.begin(CGF); - Value *LHS = Visit(lhsExpr); - eval.end(CGF); - - LHSBlock = Builder.GetInsertBlock(); - Builder.CreateBr(ContBlock); - - CGF.EmitBlock(RHSBlock); - eval.begin(CGF); - Value *RHS = Visit(rhsExpr); - eval.end(CGF); - - RHSBlock = Builder.GetInsertBlock(); - CGF.EmitBlock(ContBlock); - - // If the LHS or RHS is a throw expression, it will be legitimately null. - if (!LHS) - return RHS; - if (!RHS) - return LHS; - - // Create a PHI node for the real part. - llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); - PN->addIncoming(LHS, LHSBlock); - PN->addIncoming(RHS, RHSBlock); - return PN; -} - -Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { - return Visit(E->getChosenSubExpr()); -} - -Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { - QualType Ty = VE->getType(); - - if (Ty->isVariablyModifiedType()) - CGF.EmitVariablyModifiedType(Ty); - - Address ArgValue = Address::invalid(); - Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); - - llvm::Type *ArgTy = ConvertType(VE->getType()); - - // If EmitVAArg fails, emit an error. - if (!ArgPtr.isValid()) { - CGF.ErrorUnsupported(VE, "va_arg expression"); - return llvm::UndefValue::get(ArgTy); - } - - // FIXME Volatility. - llvm::Value *Val = Builder.CreateLoad(ArgPtr); - - // If EmitVAArg promoted the type, we must truncate it. - if (ArgTy != Val->getType()) { - if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) - Val = Builder.CreateIntToPtr(Val, ArgTy); - else - Val = Builder.CreateTrunc(Val, ArgTy); - } - - return Val; -} - -Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { - return CGF.EmitBlockLiteral(block); -} - -// Convert a vec3 to vec4, or vice versa. -static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, - Value *Src, unsigned NumElementsDst) { - static constexpr int Mask[] = {0, 1, 2, -1}; - return Builder.CreateShuffleVector(Src, - llvm::makeArrayRef(Mask, NumElementsDst)); -} - -// Create cast instructions for converting LLVM value \p Src to LLVM type \p -// DstTy. \p Src has the same size as \p DstTy. Both are single value types -// but could be scalar or vectors of different lengths, and either can be -// pointer. -// There are 4 cases: -// 1. non-pointer -> non-pointer : needs 1 bitcast -// 2. pointer -> pointer : needs 1 bitcast or addrspacecast -// 3. pointer -> non-pointer -// a) pointer -> intptr_t : needs 1 ptrtoint -// b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast -// 4. non-pointer -> pointer -// a) intptr_t -> pointer : needs 1 inttoptr -// b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr -// Note: for cases 3b and 4b two casts are required since LLVM casts do not -// allow casting directly between pointer types and non-integer non-pointer -// types. -static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, - const llvm::DataLayout &DL, - Value *Src, llvm::Type *DstTy, - StringRef Name = "") { - auto SrcTy = Src->getType(); - - // Case 1. - if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) - return Builder.CreateBitCast(Src, DstTy, Name); - - // Case 2. - if (SrcTy->isPointerTy() && DstTy->isPointerTy()) - return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); - - // Case 3. - if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { - // Case 3b. - if (!DstTy->isIntegerTy()) - Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); - // Cases 3a and 3b. - return Builder.CreateBitOrPointerCast(Src, DstTy, Name); - } - - // Case 4b. - if (!SrcTy->isIntegerTy()) - Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); - // Cases 4a and 4b. - return Builder.CreateIntToPtr(Src, DstTy, Name); -} - -Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { - Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); - llvm::Type *DstTy = ConvertType(E->getType()); - - llvm::Type *SrcTy = Src->getType(); - unsigned NumElementsSrc = - isa<llvm::VectorType>(SrcTy) - ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements() - : 0; - unsigned NumElementsDst = - isa<llvm::VectorType>(DstTy) - ? cast<llvm::FixedVectorType>(DstTy)->getNumElements() - : 0; - - // Going from vec3 to non-vec3 is a special case and requires a shuffle - // vector to get a vec4, then a bitcast if the target type is different. - if (NumElementsSrc == 3 && NumElementsDst != 3) { - Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); - Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, - DstTy); - - Src->setName("astype"); - return Src; - } - - // Going from non-vec3 to vec3 is a special case and requires a bitcast - // to vec4 if the original type is not vec4, then a shuffle vector to - // get a vec3. - if (NumElementsSrc != 3 && NumElementsDst == 3) { - auto *Vec4Ty = llvm::FixedVectorType::get( - cast<llvm::VectorType>(DstTy)->getElementType(), 4); - Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, - Vec4Ty); - - Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); - Src->setName("astype"); - return Src; - } - - return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), - Src, DstTy, "astype"); -} - -Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { - return CGF.EmitAtomicExpr(E).getScalarVal(); -} - -//===----------------------------------------------------------------------===// -// Entry Point into this File -//===----------------------------------------------------------------------===// - -/// Emit the computation of the specified expression of scalar type, ignoring -/// the result. -Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { - assert(E && hasScalarEvaluationKind(E->getType()) && - "Invalid scalar expression to emit"); - - return ScalarExprEmitter(*this, IgnoreResultAssign) - .Visit(const_cast<Expr *>(E)); -} - -/// Emit a conversion from the specified type to the specified destination type, -/// both of which are LLVM scalar types. -Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, - QualType DstTy, - SourceLocation Loc) { - assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && - "Invalid scalar expression to emit"); - return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); -} - -/// Emit a conversion from the specified complex type to the specified -/// destination type, where the destination type is an LLVM scalar type. -Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, - QualType SrcTy, - QualType DstTy, - SourceLocation Loc) { - assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && - "Invalid complex -> scalar conversion"); - return ScalarExprEmitter(*this) - .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); -} - - -llvm::Value *CodeGenFunction:: -EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, - bool isInc, bool isPre) { - return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); -} - -LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { - // object->isa or (*object).isa - // Generate code as for: *(Class*)object - - Expr *BaseExpr = E->getBase(); - Address Addr = Address::invalid(); - if (BaseExpr->isPRValue()) { - Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); - } else { - Addr = EmitLValue(BaseExpr).getAddress(*this); - } - - // Cast the address to Class*. - Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); - return MakeAddrLValue(Addr, E->getType()); -} - - -LValue CodeGenFunction::EmitCompoundAssignmentLValue( - const CompoundAssignOperator *E) { - ScalarExprEmitter Scalar(*this); - Value *Result = nullptr; - switch (E->getOpcode()) { -#define COMPOUND_OP(Op) \ - case BO_##Op##Assign: \ - return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ - Result) - COMPOUND_OP(Mul); - COMPOUND_OP(Div); - COMPOUND_OP(Rem); - COMPOUND_OP(Add); - COMPOUND_OP(Sub); - COMPOUND_OP(Shl); - COMPOUND_OP(Shr); - COMPOUND_OP(And); - COMPOUND_OP(Xor); - COMPOUND_OP(Or); -#undef COMPOUND_OP - - case BO_PtrMemD: - case BO_PtrMemI: - case BO_Mul: - case BO_Div: - case BO_Rem: - case BO_Add: - case BO_Sub: - case BO_Shl: - case BO_Shr: - case BO_LT: - case BO_GT: - case BO_LE: - case BO_GE: - case BO_EQ: - case BO_NE: - case BO_Cmp: - case BO_And: - case BO_Xor: - case BO_Or: - case BO_LAnd: - case BO_LOr: - case BO_Assign: - case BO_Comma: - llvm_unreachable("Not valid compound assignment operators"); - } - - llvm_unreachable("Unhandled compound assignment operator"); -} - -struct GEPOffsetAndOverflow { - // The total (signed) byte offset for the GEP. - llvm::Value *TotalOffset; - // The offset overflow flag - true if the total offset overflows. - llvm::Value *OffsetOverflows; -}; - -/// Evaluate given GEPVal, which is either an inbounds GEP, or a constant, -/// and compute the total offset it applies from it's base pointer BasePtr. -/// Returns offset in bytes and a boolean flag whether an overflow happened -/// during evaluation. -static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal, - llvm::LLVMContext &VMContext, - CodeGenModule &CGM, - CGBuilderTy &Builder) { - const auto &DL = CGM.getDataLayout(); - - // The total (signed) byte offset for the GEP. - llvm::Value *TotalOffset = nullptr; - - // Was the GEP already reduced to a constant? - if (isa<llvm::Constant>(GEPVal)) { - // Compute the offset by casting both pointers to integers and subtracting: - // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr) - Value *BasePtr_int = - Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType())); - Value *GEPVal_int = - Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType())); - TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int); - return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()}; - } - - auto *GEP = cast<llvm::GEPOperator>(GEPVal); - assert(GEP->getPointerOperand() == BasePtr && - "BasePtr must be the base of the GEP."); - assert(GEP->isInBounds() && "Expected inbounds GEP"); - - auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); - - // Grab references to the signed add/mul overflow intrinsics for intptr_t. - auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); - auto *SAddIntrinsic = - CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); - auto *SMulIntrinsic = - CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); - - // The offset overflow flag - true if the total offset overflows. - llvm::Value *OffsetOverflows = Builder.getFalse(); - - /// Return the result of the given binary operation. - auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, - llvm::Value *RHS) -> llvm::Value * { - assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); - - // If the operands are constants, return a constant result. - if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { - if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { - llvm::APInt N; - bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, - /*Signed=*/true, N); - if (HasOverflow) - OffsetOverflows = Builder.getTrue(); - return llvm::ConstantInt::get(VMContext, N); - } - } - - // Otherwise, compute the result with checked arithmetic. - auto *ResultAndOverflow = Builder.CreateCall( - (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); - OffsetOverflows = Builder.CreateOr( - Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); - return Builder.CreateExtractValue(ResultAndOverflow, 0); - }; - - // Determine the total byte offset by looking at each GEP operand. - for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); - GTI != GTE; ++GTI) { - llvm::Value *LocalOffset; - auto *Index = GTI.getOperand(); - // Compute the local offset contributed by this indexing step: - if (auto *STy = GTI.getStructTypeOrNull()) { - // For struct indexing, the local offset is the byte position of the - // specified field. - unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); - LocalOffset = llvm::ConstantInt::get( - IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); - } else { - // Otherwise this is array-like indexing. The local offset is the index - // multiplied by the element size. - auto *ElementSize = llvm::ConstantInt::get( - IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); - auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); - LocalOffset = eval(BO_Mul, ElementSize, IndexS); - } - - // If this is the first offset, set it as the total offset. Otherwise, add - // the local offset into the running total. - if (!TotalOffset || TotalOffset == Zero) - TotalOffset = LocalOffset; - else - TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); - } - - return {TotalOffset, OffsetOverflows}; -} - -Value * -CodeGenFunction::EmitCheckedInBoundsGEP(llvm::Type *ElemTy, Value *Ptr, - ArrayRef<Value *> IdxList, - bool SignedIndices, bool IsSubtraction, - SourceLocation Loc, const Twine &Name) { - llvm::Type *PtrTy = Ptr->getType(); - Value *GEPVal = Builder.CreateInBoundsGEP(ElemTy, Ptr, IdxList, Name); - - // If the pointer overflow sanitizer isn't enabled, do nothing. - if (!SanOpts.has(SanitizerKind::PointerOverflow)) - return GEPVal; - - // Perform nullptr-and-offset check unless the nullptr is defined. - bool PerformNullCheck = !NullPointerIsDefined( - Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace()); - // Check for overflows unless the GEP got constant-folded, - // and only in the default address space - bool PerformOverflowCheck = - !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0; - - if (!(PerformNullCheck || PerformOverflowCheck)) - return GEPVal; - - const auto &DL = CGM.getDataLayout(); - - SanitizerScope SanScope(this); - llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy); - - GEPOffsetAndOverflow EvaluatedGEP = - EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder); - - assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || - EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && - "If the offset got constant-folded, we don't expect that there was an " - "overflow."); - - auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); - - // Common case: if the total offset is zero, and we are using C++ semantics, - // where nullptr+0 is defined, don't emit a check. - if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus) - return GEPVal; - - // Now that we've computed the total offset, add it to the base pointer (with - // wrapping semantics). - auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy); - auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset); - - llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; - - if (PerformNullCheck) { - // In C++, if the base pointer evaluates to a null pointer value, - // the only valid pointer this inbounds GEP can produce is also - // a null pointer, so the offset must also evaluate to zero. - // Likewise, if we have non-zero base pointer, we can not get null pointer - // as a result, so the offset can not be -intptr_t(BasePtr). - // In other words, both pointers are either null, or both are non-null, - // or the behaviour is undefined. - // - // C, however, is more strict in this regard, and gives more - // optimization opportunities: in C, additionally, nullptr+0 is undefined. - // So both the input to the 'gep inbounds' AND the output must not be null. - auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr); - auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP); - auto *Valid = - CGM.getLangOpts().CPlusPlus - ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr) - : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr); - Checks.emplace_back(Valid, SanitizerKind::PointerOverflow); - } - - if (PerformOverflowCheck) { - // The GEP is valid if: - // 1) The total offset doesn't overflow, and - // 2) The sign of the difference between the computed address and the base - // pointer matches the sign of the total offset. - llvm::Value *ValidGEP; - auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows); - if (SignedIndices) { - // GEP is computed as `unsigned base + signed offset`, therefore: - // * If offset was positive, then the computed pointer can not be - // [unsigned] less than the base pointer, unless it overflowed. - // * If offset was negative, then the computed pointer can not be - // [unsigned] greater than the bas pointere, unless it overflowed. - auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); - auto *PosOrZeroOffset = - Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero); - llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); - ValidGEP = - Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid); - } else if (!IsSubtraction) { - // GEP is computed as `unsigned base + unsigned offset`, therefore the - // computed pointer can not be [unsigned] less than base pointer, - // unless there was an overflow. - // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`. - ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr); - } else { - // GEP is computed as `unsigned base - unsigned offset`, therefore the - // computed pointer can not be [unsigned] greater than base pointer, - // unless there was an overflow. - // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`. - ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr); - } - ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow); - Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow); - } - - assert(!Checks.empty() && "Should have produced some checks."); - - llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; - // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. - llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; - EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); - - return GEPVal; -} |