aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang14-rt/lib/sanitizer_common/sanitizer_allocator_primary64.h
diff options
context:
space:
mode:
authornkozlovskiy <nmk@ydb.tech>2023-10-11 19:11:46 +0300
committernkozlovskiy <nmk@ydb.tech>2023-10-11 19:33:28 +0300
commit61b3971447e473726d6cdb23fc298e457b4d973c (patch)
treee2a2a864bb7717f7ae6138f6a3194a254dd2c7bb /contrib/libs/clang14-rt/lib/sanitizer_common/sanitizer_allocator_primary64.h
parenta674dc57d88d43c2e8e90a6084d5d2c988e0402c (diff)
downloadydb-61b3971447e473726d6cdb23fc298e457b4d973c.tar.gz
add sanitizers dependencies
Diffstat (limited to 'contrib/libs/clang14-rt/lib/sanitizer_common/sanitizer_allocator_primary64.h')
-rw-r--r--contrib/libs/clang14-rt/lib/sanitizer_common/sanitizer_allocator_primary64.h898
1 files changed, 898 insertions, 0 deletions
diff --git a/contrib/libs/clang14-rt/lib/sanitizer_common/sanitizer_allocator_primary64.h b/contrib/libs/clang14-rt/lib/sanitizer_common/sanitizer_allocator_primary64.h
new file mode 100644
index 0000000000..66ba71d325
--- /dev/null
+++ b/contrib/libs/clang14-rt/lib/sanitizer_common/sanitizer_allocator_primary64.h
@@ -0,0 +1,898 @@
+//===-- sanitizer_allocator_primary64.h -------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Part of the Sanitizer Allocator.
+//
+//===----------------------------------------------------------------------===//
+#ifndef SANITIZER_ALLOCATOR_H
+#error This file must be included inside sanitizer_allocator.h
+#endif
+
+template<class SizeClassAllocator> struct SizeClassAllocator64LocalCache;
+
+// SizeClassAllocator64 -- allocator for 64-bit address space.
+// The template parameter Params is a class containing the actual parameters.
+//
+// Space: a portion of address space of kSpaceSize bytes starting at SpaceBeg.
+// If kSpaceBeg is ~0 then SpaceBeg is chosen dynamically by mmap.
+// Otherwise SpaceBeg=kSpaceBeg (fixed address).
+// kSpaceSize is a power of two.
+// At the beginning the entire space is mprotect-ed, then small parts of it
+// are mapped on demand.
+//
+// Region: a part of Space dedicated to a single size class.
+// There are kNumClasses Regions of equal size.
+//
+// UserChunk: a piece of memory returned to user.
+// MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
+
+// FreeArray is an array free-d chunks (stored as 4-byte offsets)
+//
+// A Region looks like this:
+// UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1 FreeArray
+
+struct SizeClassAllocator64FlagMasks { // Bit masks.
+ enum {
+ kRandomShuffleChunks = 1,
+ };
+};
+
+template <typename Allocator>
+class MemoryMapper {
+ public:
+ typedef typename Allocator::CompactPtrT CompactPtrT;
+
+ explicit MemoryMapper(const Allocator &allocator) : allocator_(allocator) {}
+
+ bool GetAndResetStats(uptr &ranges, uptr &bytes) {
+ ranges = released_ranges_count_;
+ released_ranges_count_ = 0;
+ bytes = released_bytes_;
+ released_bytes_ = 0;
+ return ranges != 0;
+ }
+
+ u64 *MapPackedCounterArrayBuffer(uptr count) {
+ buffer_.clear();
+ buffer_.resize(count);
+ return buffer_.data();
+ }
+
+ // Releases [from, to) range of pages back to OS.
+ void ReleasePageRangeToOS(uptr class_id, CompactPtrT from, CompactPtrT to) {
+ const uptr region_base = allocator_.GetRegionBeginBySizeClass(class_id);
+ const uptr from_page = allocator_.CompactPtrToPointer(region_base, from);
+ const uptr to_page = allocator_.CompactPtrToPointer(region_base, to);
+ ReleaseMemoryPagesToOS(from_page, to_page);
+ released_ranges_count_++;
+ released_bytes_ += to_page - from_page;
+ }
+
+ private:
+ const Allocator &allocator_;
+ uptr released_ranges_count_ = 0;
+ uptr released_bytes_ = 0;
+ InternalMmapVector<u64> buffer_;
+};
+
+template <class Params>
+class SizeClassAllocator64 {
+ public:
+ using AddressSpaceView = typename Params::AddressSpaceView;
+ static const uptr kSpaceBeg = Params::kSpaceBeg;
+ static const uptr kSpaceSize = Params::kSpaceSize;
+ static const uptr kMetadataSize = Params::kMetadataSize;
+ typedef typename Params::SizeClassMap SizeClassMap;
+ typedef typename Params::MapUnmapCallback MapUnmapCallback;
+
+ static const bool kRandomShuffleChunks =
+ Params::kFlags & SizeClassAllocator64FlagMasks::kRandomShuffleChunks;
+
+ typedef SizeClassAllocator64<Params> ThisT;
+ typedef SizeClassAllocator64LocalCache<ThisT> AllocatorCache;
+ typedef MemoryMapper<ThisT> MemoryMapperT;
+
+ // When we know the size class (the region base) we can represent a pointer
+ // as a 4-byte integer (offset from the region start shifted right by 4).
+ typedef u32 CompactPtrT;
+ static const uptr kCompactPtrScale = 4;
+ CompactPtrT PointerToCompactPtr(uptr base, uptr ptr) const {
+ return static_cast<CompactPtrT>((ptr - base) >> kCompactPtrScale);
+ }
+ uptr CompactPtrToPointer(uptr base, CompactPtrT ptr32) const {
+ return base + (static_cast<uptr>(ptr32) << kCompactPtrScale);
+ }
+
+ // If heap_start is nonzero, assumes kSpaceSize bytes are already mapped R/W
+ // at heap_start and places the heap there. This mode requires kSpaceBeg ==
+ // ~(uptr)0.
+ void Init(s32 release_to_os_interval_ms, uptr heap_start = 0) {
+ uptr TotalSpaceSize = kSpaceSize + AdditionalSize();
+ PremappedHeap = heap_start != 0;
+ if (PremappedHeap) {
+ CHECK(!kUsingConstantSpaceBeg);
+ NonConstSpaceBeg = heap_start;
+ uptr RegionInfoSize = AdditionalSize();
+ RegionInfoSpace =
+ address_range.Init(RegionInfoSize, PrimaryAllocatorName);
+ CHECK_NE(RegionInfoSpace, ~(uptr)0);
+ CHECK_EQ(RegionInfoSpace,
+ address_range.MapOrDie(RegionInfoSpace, RegionInfoSize,
+ "SizeClassAllocator: region info"));
+ MapUnmapCallback().OnMap(RegionInfoSpace, RegionInfoSize);
+ } else {
+ if (kUsingConstantSpaceBeg) {
+ CHECK(IsAligned(kSpaceBeg, SizeClassMap::kMaxSize));
+ CHECK_EQ(kSpaceBeg,
+ address_range.Init(TotalSpaceSize, PrimaryAllocatorName,
+ kSpaceBeg));
+ } else {
+ // Combined allocator expects that an 2^N allocation is always aligned
+ // to 2^N. For this to work, the start of the space needs to be aligned
+ // as high as the largest size class (which also needs to be a power of
+ // 2).
+ NonConstSpaceBeg = address_range.InitAligned(
+ TotalSpaceSize, SizeClassMap::kMaxSize, PrimaryAllocatorName);
+ CHECK_NE(NonConstSpaceBeg, ~(uptr)0);
+ }
+ RegionInfoSpace = SpaceEnd();
+ MapWithCallbackOrDie(RegionInfoSpace, AdditionalSize(),
+ "SizeClassAllocator: region info");
+ }
+ SetReleaseToOSIntervalMs(release_to_os_interval_ms);
+ // Check that the RegionInfo array is aligned on the CacheLine size.
+ DCHECK_EQ(RegionInfoSpace % kCacheLineSize, 0);
+ }
+
+ s32 ReleaseToOSIntervalMs() const {
+ return atomic_load(&release_to_os_interval_ms_, memory_order_relaxed);
+ }
+
+ void SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms) {
+ atomic_store(&release_to_os_interval_ms_, release_to_os_interval_ms,
+ memory_order_relaxed);
+ }
+
+ void ForceReleaseToOS() {
+ MemoryMapperT memory_mapper(*this);
+ for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
+ Lock l(&GetRegionInfo(class_id)->mutex);
+ MaybeReleaseToOS(&memory_mapper, class_id, true /*force*/);
+ }
+ }
+
+ static bool CanAllocate(uptr size, uptr alignment) {
+ return size <= SizeClassMap::kMaxSize &&
+ alignment <= SizeClassMap::kMaxSize;
+ }
+
+ NOINLINE void ReturnToAllocator(MemoryMapperT *memory_mapper,
+ AllocatorStats *stat, uptr class_id,
+ const CompactPtrT *chunks, uptr n_chunks) {
+ RegionInfo *region = GetRegionInfo(class_id);
+ uptr region_beg = GetRegionBeginBySizeClass(class_id);
+ CompactPtrT *free_array = GetFreeArray(region_beg);
+
+ Lock l(&region->mutex);
+ uptr old_num_chunks = region->num_freed_chunks;
+ uptr new_num_freed_chunks = old_num_chunks + n_chunks;
+ // Failure to allocate free array space while releasing memory is non
+ // recoverable.
+ if (UNLIKELY(!EnsureFreeArraySpace(region, region_beg,
+ new_num_freed_chunks))) {
+ Report("FATAL: Internal error: %s's allocator exhausted the free list "
+ "space for size class %zd (%zd bytes).\n", SanitizerToolName,
+ class_id, ClassIdToSize(class_id));
+ Die();
+ }
+ for (uptr i = 0; i < n_chunks; i++)
+ free_array[old_num_chunks + i] = chunks[i];
+ region->num_freed_chunks = new_num_freed_chunks;
+ region->stats.n_freed += n_chunks;
+
+ MaybeReleaseToOS(memory_mapper, class_id, false /*force*/);
+ }
+
+ NOINLINE bool GetFromAllocator(AllocatorStats *stat, uptr class_id,
+ CompactPtrT *chunks, uptr n_chunks) {
+ RegionInfo *region = GetRegionInfo(class_id);
+ uptr region_beg = GetRegionBeginBySizeClass(class_id);
+ CompactPtrT *free_array = GetFreeArray(region_beg);
+
+ Lock l(&region->mutex);
+#if SANITIZER_WINDOWS
+ /* On Windows unmapping of memory during __sanitizer_purge_allocator is
+ explicit and immediate, so unmapped regions must be explicitly mapped back
+ in when they are accessed again. */
+ if (region->rtoi.last_released_bytes > 0) {
+ MmapFixedOrDie(region_beg, region->mapped_user,
+ "SizeClassAllocator: region data");
+ region->rtoi.n_freed_at_last_release = 0;
+ region->rtoi.last_released_bytes = 0;
+ }
+#endif
+ if (UNLIKELY(region->num_freed_chunks < n_chunks)) {
+ if (UNLIKELY(!PopulateFreeArray(stat, class_id, region,
+ n_chunks - region->num_freed_chunks)))
+ return false;
+ CHECK_GE(region->num_freed_chunks, n_chunks);
+ }
+ region->num_freed_chunks -= n_chunks;
+ uptr base_idx = region->num_freed_chunks;
+ for (uptr i = 0; i < n_chunks; i++)
+ chunks[i] = free_array[base_idx + i];
+ region->stats.n_allocated += n_chunks;
+ return true;
+ }
+
+ bool PointerIsMine(const void *p) const {
+ uptr P = reinterpret_cast<uptr>(p);
+ if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
+ return P / kSpaceSize == kSpaceBeg / kSpaceSize;
+ return P >= SpaceBeg() && P < SpaceEnd();
+ }
+
+ uptr GetRegionBegin(const void *p) {
+ if (kUsingConstantSpaceBeg)
+ return reinterpret_cast<uptr>(p) & ~(kRegionSize - 1);
+ uptr space_beg = SpaceBeg();
+ return ((reinterpret_cast<uptr>(p) - space_beg) & ~(kRegionSize - 1)) +
+ space_beg;
+ }
+
+ uptr GetRegionBeginBySizeClass(uptr class_id) const {
+ return SpaceBeg() + kRegionSize * class_id;
+ }
+
+ uptr GetSizeClass(const void *p) {
+ if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
+ return ((reinterpret_cast<uptr>(p)) / kRegionSize) % kNumClassesRounded;
+ return ((reinterpret_cast<uptr>(p) - SpaceBeg()) / kRegionSize) %
+ kNumClassesRounded;
+ }
+
+ void *GetBlockBegin(const void *p) {
+ uptr class_id = GetSizeClass(p);
+ if (class_id >= kNumClasses) return nullptr;
+ uptr size = ClassIdToSize(class_id);
+ if (!size) return nullptr;
+ uptr chunk_idx = GetChunkIdx((uptr)p, size);
+ uptr reg_beg = GetRegionBegin(p);
+ uptr beg = chunk_idx * size;
+ uptr next_beg = beg + size;
+ const RegionInfo *region = AddressSpaceView::Load(GetRegionInfo(class_id));
+ if (region->mapped_user >= next_beg)
+ return reinterpret_cast<void*>(reg_beg + beg);
+ return nullptr;
+ }
+
+ uptr GetActuallyAllocatedSize(void *p) {
+ CHECK(PointerIsMine(p));
+ return ClassIdToSize(GetSizeClass(p));
+ }
+
+ static uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
+
+ void *GetMetaData(const void *p) {
+ CHECK(kMetadataSize);
+ uptr class_id = GetSizeClass(p);
+ uptr size = ClassIdToSize(class_id);
+ if (!size)
+ return nullptr;
+ uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
+ uptr region_beg = GetRegionBeginBySizeClass(class_id);
+ return reinterpret_cast<void *>(GetMetadataEnd(region_beg) -
+ (1 + chunk_idx) * kMetadataSize);
+ }
+
+ uptr TotalMemoryUsed() {
+ uptr res = 0;
+ for (uptr i = 0; i < kNumClasses; i++)
+ res += GetRegionInfo(i)->allocated_user;
+ return res;
+ }
+
+ // Test-only.
+ void TestOnlyUnmap() {
+ UnmapWithCallbackOrDie((uptr)address_range.base(), address_range.size());
+ }
+
+ static void FillMemoryProfile(uptr start, uptr rss, bool file, uptr *stats) {
+ for (uptr class_id = 0; class_id < kNumClasses; class_id++)
+ if (stats[class_id] == start)
+ stats[class_id] = rss;
+ }
+
+ void PrintStats(uptr class_id, uptr rss) {
+ RegionInfo *region = GetRegionInfo(class_id);
+ if (region->mapped_user == 0) return;
+ uptr in_use = region->stats.n_allocated - region->stats.n_freed;
+ uptr avail_chunks = region->allocated_user / ClassIdToSize(class_id);
+ Printf(
+ "%s %02zd (%6zd): mapped: %6zdK allocs: %7zd frees: %7zd inuse: %6zd "
+ "num_freed_chunks %7zd avail: %6zd rss: %6zdK releases: %6zd "
+ "last released: %6lldK region: 0x%zx\n",
+ region->exhausted ? "F" : " ", class_id, ClassIdToSize(class_id),
+ region->mapped_user >> 10, region->stats.n_allocated,
+ region->stats.n_freed, in_use, region->num_freed_chunks, avail_chunks,
+ rss >> 10, region->rtoi.num_releases,
+ region->rtoi.last_released_bytes >> 10,
+ SpaceBeg() + kRegionSize * class_id);
+ }
+
+ void PrintStats() {
+ uptr rss_stats[kNumClasses];
+ for (uptr class_id = 0; class_id < kNumClasses; class_id++)
+ rss_stats[class_id] = SpaceBeg() + kRegionSize * class_id;
+ GetMemoryProfile(FillMemoryProfile, rss_stats);
+
+ uptr total_mapped = 0;
+ uptr total_rss = 0;
+ uptr n_allocated = 0;
+ uptr n_freed = 0;
+ for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
+ RegionInfo *region = GetRegionInfo(class_id);
+ if (region->mapped_user != 0) {
+ total_mapped += region->mapped_user;
+ total_rss += rss_stats[class_id];
+ }
+ n_allocated += region->stats.n_allocated;
+ n_freed += region->stats.n_freed;
+ }
+
+ Printf("Stats: SizeClassAllocator64: %zdM mapped (%zdM rss) in "
+ "%zd allocations; remains %zd\n", total_mapped >> 20,
+ total_rss >> 20, n_allocated, n_allocated - n_freed);
+ for (uptr class_id = 1; class_id < kNumClasses; class_id++)
+ PrintStats(class_id, rss_stats[class_id]);
+ }
+
+ // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
+ // introspection API.
+ void ForceLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
+ for (uptr i = 0; i < kNumClasses; i++) {
+ GetRegionInfo(i)->mutex.Lock();
+ }
+ }
+
+ void ForceUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
+ for (int i = (int)kNumClasses - 1; i >= 0; i--) {
+ GetRegionInfo(i)->mutex.Unlock();
+ }
+ }
+
+ // Iterate over all existing chunks.
+ // The allocator must be locked when calling this function.
+ void ForEachChunk(ForEachChunkCallback callback, void *arg) {
+ for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
+ RegionInfo *region = GetRegionInfo(class_id);
+ uptr chunk_size = ClassIdToSize(class_id);
+ uptr region_beg = SpaceBeg() + class_id * kRegionSize;
+ uptr region_allocated_user_size =
+ AddressSpaceView::Load(region)->allocated_user;
+ for (uptr chunk = region_beg;
+ chunk < region_beg + region_allocated_user_size;
+ chunk += chunk_size) {
+ // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
+ callback(chunk, arg);
+ }
+ }
+ }
+
+ static uptr ClassIdToSize(uptr class_id) {
+ return SizeClassMap::Size(class_id);
+ }
+
+ static uptr AdditionalSize() {
+ return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded,
+ GetPageSizeCached());
+ }
+
+ typedef SizeClassMap SizeClassMapT;
+ static const uptr kNumClasses = SizeClassMap::kNumClasses;
+ static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded;
+
+ // A packed array of counters. Each counter occupies 2^n bits, enough to store
+ // counter's max_value. Ctor will try to allocate the required buffer via
+ // mapper->MapPackedCounterArrayBuffer and the caller is expected to check
+ // whether the initialization was successful by checking IsAllocated() result.
+ // For the performance sake, none of the accessors check the validity of the
+ // arguments, it is assumed that index is always in [0, n) range and the value
+ // is not incremented past max_value.
+ class PackedCounterArray {
+ public:
+ template <typename MemoryMapper>
+ PackedCounterArray(u64 num_counters, u64 max_value, MemoryMapper *mapper)
+ : n(num_counters) {
+ CHECK_GT(num_counters, 0);
+ CHECK_GT(max_value, 0);
+ constexpr u64 kMaxCounterBits = sizeof(*buffer) * 8ULL;
+ // Rounding counter storage size up to the power of two allows for using
+ // bit shifts calculating particular counter's index and offset.
+ uptr counter_size_bits =
+ RoundUpToPowerOfTwo(MostSignificantSetBitIndex(max_value) + 1);
+ CHECK_LE(counter_size_bits, kMaxCounterBits);
+ counter_size_bits_log = Log2(counter_size_bits);
+ counter_mask = ~0ULL >> (kMaxCounterBits - counter_size_bits);
+
+ uptr packing_ratio = kMaxCounterBits >> counter_size_bits_log;
+ CHECK_GT(packing_ratio, 0);
+ packing_ratio_log = Log2(packing_ratio);
+ bit_offset_mask = packing_ratio - 1;
+
+ buffer = mapper->MapPackedCounterArrayBuffer(
+ RoundUpTo(n, 1ULL << packing_ratio_log) >> packing_ratio_log);
+ }
+
+ bool IsAllocated() const {
+ return !!buffer;
+ }
+
+ u64 GetCount() const {
+ return n;
+ }
+
+ uptr Get(uptr i) const {
+ DCHECK_LT(i, n);
+ uptr index = i >> packing_ratio_log;
+ uptr bit_offset = (i & bit_offset_mask) << counter_size_bits_log;
+ return (buffer[index] >> bit_offset) & counter_mask;
+ }
+
+ void Inc(uptr i) const {
+ DCHECK_LT(Get(i), counter_mask);
+ uptr index = i >> packing_ratio_log;
+ uptr bit_offset = (i & bit_offset_mask) << counter_size_bits_log;
+ buffer[index] += 1ULL << bit_offset;
+ }
+
+ void IncRange(uptr from, uptr to) const {
+ DCHECK_LE(from, to);
+ for (uptr i = from; i <= to; i++)
+ Inc(i);
+ }
+
+ private:
+ const u64 n;
+ u64 counter_size_bits_log;
+ u64 counter_mask;
+ u64 packing_ratio_log;
+ u64 bit_offset_mask;
+ u64* buffer;
+ };
+
+ template <class MemoryMapperT>
+ class FreePagesRangeTracker {
+ public:
+ FreePagesRangeTracker(MemoryMapperT *mapper, uptr class_id)
+ : memory_mapper(mapper),
+ class_id(class_id),
+ page_size_scaled_log(Log2(GetPageSizeCached() >> kCompactPtrScale)) {}
+
+ void NextPage(bool freed) {
+ if (freed) {
+ if (!in_the_range) {
+ current_range_start_page = current_page;
+ in_the_range = true;
+ }
+ } else {
+ CloseOpenedRange();
+ }
+ current_page++;
+ }
+
+ void Done() {
+ CloseOpenedRange();
+ }
+
+ private:
+ void CloseOpenedRange() {
+ if (in_the_range) {
+ memory_mapper->ReleasePageRangeToOS(
+ class_id, current_range_start_page << page_size_scaled_log,
+ current_page << page_size_scaled_log);
+ in_the_range = false;
+ }
+ }
+
+ MemoryMapperT *const memory_mapper = nullptr;
+ const uptr class_id = 0;
+ const uptr page_size_scaled_log = 0;
+ bool in_the_range = false;
+ uptr current_page = 0;
+ uptr current_range_start_page = 0;
+ };
+
+ // Iterates over the free_array to identify memory pages containing freed
+ // chunks only and returns these pages back to OS.
+ // allocated_pages_count is the total number of pages allocated for the
+ // current bucket.
+ template <typename MemoryMapper>
+ static void ReleaseFreeMemoryToOS(CompactPtrT *free_array,
+ uptr free_array_count, uptr chunk_size,
+ uptr allocated_pages_count,
+ MemoryMapper *memory_mapper,
+ uptr class_id) {
+ const uptr page_size = GetPageSizeCached();
+
+ // Figure out the number of chunks per page and whether we can take a fast
+ // path (the number of chunks per page is the same for all pages).
+ uptr full_pages_chunk_count_max;
+ bool same_chunk_count_per_page;
+ if (chunk_size <= page_size && page_size % chunk_size == 0) {
+ // Same number of chunks per page, no cross overs.
+ full_pages_chunk_count_max = page_size / chunk_size;
+ same_chunk_count_per_page = true;
+ } else if (chunk_size <= page_size && page_size % chunk_size != 0 &&
+ chunk_size % (page_size % chunk_size) == 0) {
+ // Some chunks are crossing page boundaries, which means that the page
+ // contains one or two partial chunks, but all pages contain the same
+ // number of chunks.
+ full_pages_chunk_count_max = page_size / chunk_size + 1;
+ same_chunk_count_per_page = true;
+ } else if (chunk_size <= page_size) {
+ // Some chunks are crossing page boundaries, which means that the page
+ // contains one or two partial chunks.
+ full_pages_chunk_count_max = page_size / chunk_size + 2;
+ same_chunk_count_per_page = false;
+ } else if (chunk_size > page_size && chunk_size % page_size == 0) {
+ // One chunk covers multiple pages, no cross overs.
+ full_pages_chunk_count_max = 1;
+ same_chunk_count_per_page = true;
+ } else if (chunk_size > page_size) {
+ // One chunk covers multiple pages, Some chunks are crossing page
+ // boundaries. Some pages contain one chunk, some contain two.
+ full_pages_chunk_count_max = 2;
+ same_chunk_count_per_page = false;
+ } else {
+ UNREACHABLE("All chunk_size/page_size ratios must be handled.");
+ }
+
+ PackedCounterArray counters(allocated_pages_count,
+ full_pages_chunk_count_max, memory_mapper);
+ if (!counters.IsAllocated())
+ return;
+
+ const uptr chunk_size_scaled = chunk_size >> kCompactPtrScale;
+ const uptr page_size_scaled = page_size >> kCompactPtrScale;
+ const uptr page_size_scaled_log = Log2(page_size_scaled);
+
+ // Iterate over free chunks and count how many free chunks affect each
+ // allocated page.
+ if (chunk_size <= page_size && page_size % chunk_size == 0) {
+ // Each chunk affects one page only.
+ for (uptr i = 0; i < free_array_count; i++)
+ counters.Inc(free_array[i] >> page_size_scaled_log);
+ } else {
+ // In all other cases chunks might affect more than one page.
+ for (uptr i = 0; i < free_array_count; i++) {
+ counters.IncRange(
+ free_array[i] >> page_size_scaled_log,
+ (free_array[i] + chunk_size_scaled - 1) >> page_size_scaled_log);
+ }
+ }
+
+ // Iterate over pages detecting ranges of pages with chunk counters equal
+ // to the expected number of chunks for the particular page.
+ FreePagesRangeTracker<MemoryMapper> range_tracker(memory_mapper, class_id);
+ if (same_chunk_count_per_page) {
+ // Fast path, every page has the same number of chunks affecting it.
+ for (uptr i = 0; i < counters.GetCount(); i++)
+ range_tracker.NextPage(counters.Get(i) == full_pages_chunk_count_max);
+ } else {
+ // Show path, go through the pages keeping count how many chunks affect
+ // each page.
+ const uptr pn =
+ chunk_size < page_size ? page_size_scaled / chunk_size_scaled : 1;
+ const uptr pnc = pn * chunk_size_scaled;
+ // The idea is to increment the current page pointer by the first chunk
+ // size, middle portion size (the portion of the page covered by chunks
+ // except the first and the last one) and then the last chunk size, adding
+ // up the number of chunks on the current page and checking on every step
+ // whether the page boundary was crossed.
+ uptr prev_page_boundary = 0;
+ uptr current_boundary = 0;
+ for (uptr i = 0; i < counters.GetCount(); i++) {
+ uptr page_boundary = prev_page_boundary + page_size_scaled;
+ uptr chunks_per_page = pn;
+ if (current_boundary < page_boundary) {
+ if (current_boundary > prev_page_boundary)
+ chunks_per_page++;
+ current_boundary += pnc;
+ if (current_boundary < page_boundary) {
+ chunks_per_page++;
+ current_boundary += chunk_size_scaled;
+ }
+ }
+ prev_page_boundary = page_boundary;
+
+ range_tracker.NextPage(counters.Get(i) == chunks_per_page);
+ }
+ }
+ range_tracker.Done();
+ }
+
+ private:
+ friend class MemoryMapper<ThisT>;
+
+ ReservedAddressRange address_range;
+
+ static const uptr kRegionSize = kSpaceSize / kNumClassesRounded;
+ // FreeArray is the array of free-d chunks (stored as 4-byte offsets).
+ // In the worst case it may require kRegionSize/SizeClassMap::kMinSize
+ // elements, but in reality this will not happen. For simplicity we
+ // dedicate 1/8 of the region's virtual space to FreeArray.
+ static const uptr kFreeArraySize = kRegionSize / 8;
+
+ static const bool kUsingConstantSpaceBeg = kSpaceBeg != ~(uptr)0;
+ uptr NonConstSpaceBeg;
+ uptr SpaceBeg() const {
+ return kUsingConstantSpaceBeg ? kSpaceBeg : NonConstSpaceBeg;
+ }
+ uptr SpaceEnd() const { return SpaceBeg() + kSpaceSize; }
+ // kRegionSize must be >= 2^32.
+ COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2)));
+ // kRegionSize must be <= 2^36, see CompactPtrT.
+ COMPILER_CHECK((kRegionSize) <= (1ULL << (SANITIZER_WORDSIZE / 2 + 4)));
+ // Call mmap for user memory with at least this size.
+ static const uptr kUserMapSize = 1 << 16;
+ // Call mmap for metadata memory with at least this size.
+ static const uptr kMetaMapSize = 1 << 16;
+ // Call mmap for free array memory with at least this size.
+ static const uptr kFreeArrayMapSize = 1 << 16;
+
+ atomic_sint32_t release_to_os_interval_ms_;
+
+ uptr RegionInfoSpace;
+
+ // True if the user has already mapped the entire heap R/W.
+ bool PremappedHeap;
+
+ struct Stats {
+ uptr n_allocated;
+ uptr n_freed;
+ };
+
+ struct ReleaseToOsInfo {
+ uptr n_freed_at_last_release;
+ uptr num_releases;
+ u64 last_release_at_ns;
+ u64 last_released_bytes;
+ };
+
+ struct ALIGNED(SANITIZER_CACHE_LINE_SIZE) RegionInfo {
+ Mutex mutex;
+ uptr num_freed_chunks; // Number of elements in the freearray.
+ uptr mapped_free_array; // Bytes mapped for freearray.
+ uptr allocated_user; // Bytes allocated for user memory.
+ uptr allocated_meta; // Bytes allocated for metadata.
+ uptr mapped_user; // Bytes mapped for user memory.
+ uptr mapped_meta; // Bytes mapped for metadata.
+ u32 rand_state; // Seed for random shuffle, used if kRandomShuffleChunks.
+ bool exhausted; // Whether region is out of space for new chunks.
+ Stats stats;
+ ReleaseToOsInfo rtoi;
+ };
+ COMPILER_CHECK(sizeof(RegionInfo) % kCacheLineSize == 0);
+
+ RegionInfo *GetRegionInfo(uptr class_id) const {
+ DCHECK_LT(class_id, kNumClasses);
+ RegionInfo *regions = reinterpret_cast<RegionInfo *>(RegionInfoSpace);
+ return &regions[class_id];
+ }
+
+ uptr GetMetadataEnd(uptr region_beg) const {
+ return region_beg + kRegionSize - kFreeArraySize;
+ }
+
+ uptr GetChunkIdx(uptr chunk, uptr size) const {
+ if (!kUsingConstantSpaceBeg)
+ chunk -= SpaceBeg();
+
+ uptr offset = chunk % kRegionSize;
+ // Here we divide by a non-constant. This is costly.
+ // size always fits into 32-bits. If the offset fits too, use 32-bit div.
+ if (offset >> (SANITIZER_WORDSIZE / 2))
+ return offset / size;
+ return (u32)offset / (u32)size;
+ }
+
+ CompactPtrT *GetFreeArray(uptr region_beg) const {
+ return reinterpret_cast<CompactPtrT *>(GetMetadataEnd(region_beg));
+ }
+
+ bool MapWithCallback(uptr beg, uptr size, const char *name) {
+ if (PremappedHeap)
+ return beg >= NonConstSpaceBeg &&
+ beg + size <= NonConstSpaceBeg + kSpaceSize;
+ uptr mapped = address_range.Map(beg, size, name);
+ if (UNLIKELY(!mapped))
+ return false;
+ CHECK_EQ(beg, mapped);
+ MapUnmapCallback().OnMap(beg, size);
+ return true;
+ }
+
+ void MapWithCallbackOrDie(uptr beg, uptr size, const char *name) {
+ if (PremappedHeap) {
+ CHECK_GE(beg, NonConstSpaceBeg);
+ CHECK_LE(beg + size, NonConstSpaceBeg + kSpaceSize);
+ return;
+ }
+ CHECK_EQ(beg, address_range.MapOrDie(beg, size, name));
+ MapUnmapCallback().OnMap(beg, size);
+ }
+
+ void UnmapWithCallbackOrDie(uptr beg, uptr size) {
+ if (PremappedHeap)
+ return;
+ MapUnmapCallback().OnUnmap(beg, size);
+ address_range.Unmap(beg, size);
+ }
+
+ bool EnsureFreeArraySpace(RegionInfo *region, uptr region_beg,
+ uptr num_freed_chunks) {
+ uptr needed_space = num_freed_chunks * sizeof(CompactPtrT);
+ if (region->mapped_free_array < needed_space) {
+ uptr new_mapped_free_array = RoundUpTo(needed_space, kFreeArrayMapSize);
+ CHECK_LE(new_mapped_free_array, kFreeArraySize);
+ uptr current_map_end = reinterpret_cast<uptr>(GetFreeArray(region_beg)) +
+ region->mapped_free_array;
+ uptr new_map_size = new_mapped_free_array - region->mapped_free_array;
+ if (UNLIKELY(!MapWithCallback(current_map_end, new_map_size,
+ "SizeClassAllocator: freearray")))
+ return false;
+ region->mapped_free_array = new_mapped_free_array;
+ }
+ return true;
+ }
+
+ // Check whether this size class is exhausted.
+ bool IsRegionExhausted(RegionInfo *region, uptr class_id,
+ uptr additional_map_size) {
+ if (LIKELY(region->mapped_user + region->mapped_meta +
+ additional_map_size <= kRegionSize - kFreeArraySize))
+ return false;
+ if (!region->exhausted) {
+ region->exhausted = true;
+ Printf("%s: Out of memory. ", SanitizerToolName);
+ Printf("The process has exhausted %zuMB for size class %zu.\n",
+ kRegionSize >> 20, ClassIdToSize(class_id));
+ }
+ return true;
+ }
+
+ NOINLINE bool PopulateFreeArray(AllocatorStats *stat, uptr class_id,
+ RegionInfo *region, uptr requested_count) {
+ // region->mutex is held.
+ const uptr region_beg = GetRegionBeginBySizeClass(class_id);
+ const uptr size = ClassIdToSize(class_id);
+
+ const uptr total_user_bytes =
+ region->allocated_user + requested_count * size;
+ // Map more space for chunks, if necessary.
+ if (LIKELY(total_user_bytes > region->mapped_user)) {
+ if (UNLIKELY(region->mapped_user == 0)) {
+ if (!kUsingConstantSpaceBeg && kRandomShuffleChunks)
+ // The random state is initialized from ASLR.
+ region->rand_state = static_cast<u32>(region_beg >> 12);
+ // Postpone the first release to OS attempt for ReleaseToOSIntervalMs,
+ // preventing just allocated memory from being released sooner than
+ // necessary and also preventing extraneous ReleaseMemoryPagesToOS calls
+ // for short lived processes.
+ // Do it only when the feature is turned on, to avoid a potentially
+ // extraneous syscall.
+ if (ReleaseToOSIntervalMs() >= 0)
+ region->rtoi.last_release_at_ns = MonotonicNanoTime();
+ }
+ // Do the mmap for the user memory.
+ const uptr user_map_size =
+ RoundUpTo(total_user_bytes - region->mapped_user, kUserMapSize);
+ if (UNLIKELY(IsRegionExhausted(region, class_id, user_map_size)))
+ return false;
+ if (UNLIKELY(!MapWithCallback(region_beg + region->mapped_user,
+ user_map_size,
+ "SizeClassAllocator: region data")))
+ return false;
+ stat->Add(AllocatorStatMapped, user_map_size);
+ region->mapped_user += user_map_size;
+ }
+ const uptr new_chunks_count =
+ (region->mapped_user - region->allocated_user) / size;
+
+ if (kMetadataSize) {
+ // Calculate the required space for metadata.
+ const uptr total_meta_bytes =
+ region->allocated_meta + new_chunks_count * kMetadataSize;
+ const uptr meta_map_size = (total_meta_bytes > region->mapped_meta) ?
+ RoundUpTo(total_meta_bytes - region->mapped_meta, kMetaMapSize) : 0;
+ // Map more space for metadata, if necessary.
+ if (meta_map_size) {
+ if (UNLIKELY(IsRegionExhausted(region, class_id, meta_map_size)))
+ return false;
+ if (UNLIKELY(!MapWithCallback(
+ GetMetadataEnd(region_beg) - region->mapped_meta - meta_map_size,
+ meta_map_size, "SizeClassAllocator: region metadata")))
+ return false;
+ region->mapped_meta += meta_map_size;
+ }
+ }
+
+ // If necessary, allocate more space for the free array and populate it with
+ // newly allocated chunks.
+ const uptr total_freed_chunks = region->num_freed_chunks + new_chunks_count;
+ if (UNLIKELY(!EnsureFreeArraySpace(region, region_beg, total_freed_chunks)))
+ return false;
+ CompactPtrT *free_array = GetFreeArray(region_beg);
+ for (uptr i = 0, chunk = region->allocated_user; i < new_chunks_count;
+ i++, chunk += size)
+ free_array[total_freed_chunks - 1 - i] = PointerToCompactPtr(0, chunk);
+ if (kRandomShuffleChunks)
+ RandomShuffle(&free_array[region->num_freed_chunks], new_chunks_count,
+ &region->rand_state);
+
+ // All necessary memory is mapped and now it is safe to advance all
+ // 'allocated_*' counters.
+ region->num_freed_chunks += new_chunks_count;
+ region->allocated_user += new_chunks_count * size;
+ CHECK_LE(region->allocated_user, region->mapped_user);
+ region->allocated_meta += new_chunks_count * kMetadataSize;
+ CHECK_LE(region->allocated_meta, region->mapped_meta);
+ region->exhausted = false;
+
+ // TODO(alekseyshl): Consider bumping last_release_at_ns here to prevent
+ // MaybeReleaseToOS from releasing just allocated pages or protect these
+ // not yet used chunks some other way.
+
+ return true;
+ }
+
+ // Attempts to release RAM occupied by freed chunks back to OS. The region is
+ // expected to be locked.
+ //
+ // TODO(morehouse): Support a callback on memory release so HWASan can release
+ // aliases as well.
+ void MaybeReleaseToOS(MemoryMapperT *memory_mapper, uptr class_id,
+ bool force) {
+ RegionInfo *region = GetRegionInfo(class_id);
+ const uptr chunk_size = ClassIdToSize(class_id);
+ const uptr page_size = GetPageSizeCached();
+
+ uptr n = region->num_freed_chunks;
+ if (n * chunk_size < page_size)
+ return; // No chance to release anything.
+ if ((region->stats.n_freed -
+ region->rtoi.n_freed_at_last_release) * chunk_size < page_size) {
+ return; // Nothing new to release.
+ }
+
+ if (!force) {
+ s32 interval_ms = ReleaseToOSIntervalMs();
+ if (interval_ms < 0)
+ return;
+
+ if (region->rtoi.last_release_at_ns + interval_ms * 1000000ULL >
+ MonotonicNanoTime()) {
+ return; // Memory was returned recently.
+ }
+ }
+
+ ReleaseFreeMemoryToOS(
+ GetFreeArray(GetRegionBeginBySizeClass(class_id)), n, chunk_size,
+ RoundUpTo(region->allocated_user, page_size) / page_size, memory_mapper,
+ class_id);
+
+ uptr ranges, bytes;
+ if (memory_mapper->GetAndResetStats(ranges, bytes)) {
+ region->rtoi.n_freed_at_last_release = region->stats.n_freed;
+ region->rtoi.num_releases += ranges;
+ region->rtoi.last_released_bytes = bytes;
+ }
+ region->rtoi.last_release_at_ns = MonotonicNanoTime();
+ }
+};