diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/cblas/ztrsm.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/cblas/ztrsm.c')
-rw-r--r-- | contrib/libs/cblas/ztrsm.c | 699 |
1 files changed, 699 insertions, 0 deletions
diff --git a/contrib/libs/cblas/ztrsm.c b/contrib/libs/cblas/ztrsm.c new file mode 100644 index 0000000000..068744c20a --- /dev/null +++ b/contrib/libs/cblas/ztrsm.c @@ -0,0 +1,699 @@ +/* ztrsm.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static doublecomplex c_b1 = {1.,0.}; + +/* Subroutine */ int ztrsm_(char *side, char *uplo, char *transa, char *diag, + integer *m, integer *n, doublecomplex *alpha, doublecomplex *a, + integer *lda, doublecomplex *b, integer *ldb) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5, + i__6, i__7; + doublecomplex z__1, z__2, z__3; + + /* Builtin functions */ + void z_div(doublecomplex *, doublecomplex *, doublecomplex *), d_cnjg( + doublecomplex *, doublecomplex *); + + /* Local variables */ + integer i__, j, k, info; + doublecomplex temp; + logical lside; + extern logical lsame_(char *, char *); + integer nrowa; + logical upper; + extern /* Subroutine */ int xerbla_(char *, integer *); + logical noconj, nounit; + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* ZTRSM solves one of the matrix equations */ + +/* op( A )*X = alpha*B, or X*op( A ) = alpha*B, */ + +/* where alpha is a scalar, X and B are m by n matrices, A is a unit, or */ +/* non-unit, upper or lower triangular matrix and op( A ) is one of */ + +/* op( A ) = A or op( A ) = A' or op( A ) = conjg( A' ). */ + +/* The matrix X is overwritten on B. */ + +/* Arguments */ +/* ========== */ + +/* SIDE - CHARACTER*1. */ +/* On entry, SIDE specifies whether op( A ) appears on the left */ +/* or right of X as follows: */ + +/* SIDE = 'L' or 'l' op( A )*X = alpha*B. */ + +/* SIDE = 'R' or 'r' X*op( A ) = alpha*B. */ + +/* Unchanged on exit. */ + +/* UPLO - CHARACTER*1. */ +/* On entry, UPLO specifies whether the matrix A is an upper or */ +/* lower triangular matrix as follows: */ + +/* UPLO = 'U' or 'u' A is an upper triangular matrix. */ + +/* UPLO = 'L' or 'l' A is a lower triangular matrix. */ + +/* Unchanged on exit. */ + +/* TRANSA - CHARACTER*1. */ +/* On entry, TRANSA specifies the form of op( A ) to be used in */ +/* the matrix multiplication as follows: */ + +/* TRANSA = 'N' or 'n' op( A ) = A. */ + +/* TRANSA = 'T' or 't' op( A ) = A'. */ + +/* TRANSA = 'C' or 'c' op( A ) = conjg( A' ). */ + +/* Unchanged on exit. */ + +/* DIAG - CHARACTER*1. */ +/* On entry, DIAG specifies whether or not A is unit triangular */ +/* as follows: */ + +/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */ + +/* DIAG = 'N' or 'n' A is not assumed to be unit */ +/* triangular. */ + +/* Unchanged on exit. */ + +/* M - INTEGER. */ +/* On entry, M specifies the number of rows of B. M must be at */ +/* least zero. */ +/* Unchanged on exit. */ + +/* N - INTEGER. */ +/* On entry, N specifies the number of columns of B. N must be */ +/* at least zero. */ +/* Unchanged on exit. */ + +/* ALPHA - COMPLEX*16 . */ +/* On entry, ALPHA specifies the scalar alpha. When alpha is */ +/* zero then A is not referenced and B need not be set before */ +/* entry. */ +/* Unchanged on exit. */ + +/* A - COMPLEX*16 array of DIMENSION ( LDA, k ), where k is m */ +/* when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. */ +/* Before entry with UPLO = 'U' or 'u', the leading k by k */ +/* upper triangular part of the array A must contain the upper */ +/* triangular matrix and the strictly lower triangular part of */ +/* A is not referenced. */ +/* Before entry with UPLO = 'L' or 'l', the leading k by k */ +/* lower triangular part of the array A must contain the lower */ +/* triangular matrix and the strictly upper triangular part of */ +/* A is not referenced. */ +/* Note that when DIAG = 'U' or 'u', the diagonal elements of */ +/* A are not referenced either, but are assumed to be unity. */ +/* Unchanged on exit. */ + +/* LDA - INTEGER. */ +/* On entry, LDA specifies the first dimension of A as declared */ +/* in the calling (sub) program. When SIDE = 'L' or 'l' then */ +/* LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' */ +/* then LDA must be at least max( 1, n ). */ +/* Unchanged on exit. */ + +/* B - COMPLEX*16 array of DIMENSION ( LDB, n ). */ +/* Before entry, the leading m by n part of the array B must */ +/* contain the right-hand side matrix B, and on exit is */ +/* overwritten by the solution matrix X. */ + +/* LDB - INTEGER. */ +/* On entry, LDB specifies the first dimension of B as declared */ +/* in the calling (sub) program. LDB must be at least */ +/* max( 1, m ). */ +/* Unchanged on exit. */ + + +/* Level 3 Blas routine. */ + +/* -- Written on 8-February-1989. */ +/* Jack Dongarra, Argonne National Laboratory. */ +/* Iain Duff, AERE Harwell. */ +/* Jeremy Du Croz, Numerical Algorithms Group Ltd. */ +/* Sven Hammarling, Numerical Algorithms Group Ltd. */ + + +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. Parameters .. */ +/* .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Function Body */ + lside = lsame_(side, "L"); + if (lside) { + nrowa = *m; + } else { + nrowa = *n; + } + noconj = lsame_(transa, "T"); + nounit = lsame_(diag, "N"); + upper = lsame_(uplo, "U"); + + info = 0; + if (! lside && ! lsame_(side, "R")) { + info = 1; + } else if (! upper && ! lsame_(uplo, "L")) { + info = 2; + } else if (! lsame_(transa, "N") && ! lsame_(transa, + "T") && ! lsame_(transa, "C")) { + info = 3; + } else if (! lsame_(diag, "U") && ! lsame_(diag, + "N")) { + info = 4; + } else if (*m < 0) { + info = 5; + } else if (*n < 0) { + info = 6; + } else if (*lda < max(1,nrowa)) { + info = 9; + } else if (*ldb < max(1,*m)) { + info = 11; + } + if (info != 0) { + xerbla_("ZTRSM ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (*m == 0 || *n == 0) { + return 0; + } + +/* And when alpha.eq.zero. */ + + if (alpha->r == 0. && alpha->i == 0.) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + b[i__3].r = 0., b[i__3].i = 0.; +/* L10: */ + } +/* L20: */ + } + return 0; + } + +/* Start the operations. */ + + if (lside) { + if (lsame_(transa, "N")) { + +/* Form B := alpha*inv( A )*B. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (alpha->r != 1. || alpha->i != 0.) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + z__1.r = alpha->r * b[i__4].r - alpha->i * b[i__4] + .i, z__1.i = alpha->r * b[i__4].i + + alpha->i * b[i__4].r; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L30: */ + } + } + for (k = *m; k >= 1; --k) { + i__2 = k + j * b_dim1; + if (b[i__2].r != 0. || b[i__2].i != 0.) { + if (nounit) { + i__2 = k + j * b_dim1; + z_div(&z__1, &b[k + j * b_dim1], &a[k + k * + a_dim1]); + b[i__2].r = z__1.r, b[i__2].i = z__1.i; + } + i__2 = k - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + i__5 = k + j * b_dim1; + i__6 = i__ + k * a_dim1; + z__2.r = b[i__5].r * a[i__6].r - b[i__5].i * + a[i__6].i, z__2.i = b[i__5].r * a[ + i__6].i + b[i__5].i * a[i__6].r; + z__1.r = b[i__4].r - z__2.r, z__1.i = b[i__4] + .i - z__2.i; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L40: */ + } + } +/* L50: */ + } +/* L60: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (alpha->r != 1. || alpha->i != 0.) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + z__1.r = alpha->r * b[i__4].r - alpha->i * b[i__4] + .i, z__1.i = alpha->r * b[i__4].i + + alpha->i * b[i__4].r; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L70: */ + } + } + i__2 = *m; + for (k = 1; k <= i__2; ++k) { + i__3 = k + j * b_dim1; + if (b[i__3].r != 0. || b[i__3].i != 0.) { + if (nounit) { + i__3 = k + j * b_dim1; + z_div(&z__1, &b[k + j * b_dim1], &a[k + k * + a_dim1]); + b[i__3].r = z__1.r, b[i__3].i = z__1.i; + } + i__3 = *m; + for (i__ = k + 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * b_dim1; + i__5 = i__ + j * b_dim1; + i__6 = k + j * b_dim1; + i__7 = i__ + k * a_dim1; + z__2.r = b[i__6].r * a[i__7].r - b[i__6].i * + a[i__7].i, z__2.i = b[i__6].r * a[ + i__7].i + b[i__6].i * a[i__7].r; + z__1.r = b[i__5].r - z__2.r, z__1.i = b[i__5] + .i - z__2.i; + b[i__4].r = z__1.r, b[i__4].i = z__1.i; +/* L80: */ + } + } +/* L90: */ + } +/* L100: */ + } + } + } else { + +/* Form B := alpha*inv( A' )*B */ +/* or B := alpha*inv( conjg( A' ) )*B. */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i, + z__1.i = alpha->r * b[i__3].i + alpha->i * b[ + i__3].r; + temp.r = z__1.r, temp.i = z__1.i; + if (noconj) { + i__3 = i__ - 1; + for (k = 1; k <= i__3; ++k) { + i__4 = k + i__ * a_dim1; + i__5 = k + j * b_dim1; + z__2.r = a[i__4].r * b[i__5].r - a[i__4].i * + b[i__5].i, z__2.i = a[i__4].r * b[ + i__5].i + a[i__4].i * b[i__5].r; + z__1.r = temp.r - z__2.r, z__1.i = temp.i - + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L110: */ + } + if (nounit) { + z_div(&z__1, &temp, &a[i__ + i__ * a_dim1]); + temp.r = z__1.r, temp.i = z__1.i; + } + } else { + i__3 = i__ - 1; + for (k = 1; k <= i__3; ++k) { + d_cnjg(&z__3, &a[k + i__ * a_dim1]); + i__4 = k + j * b_dim1; + z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4] + .i, z__2.i = z__3.r * b[i__4].i + + z__3.i * b[i__4].r; + z__1.r = temp.r - z__2.r, z__1.i = temp.i - + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L120: */ + } + if (nounit) { + d_cnjg(&z__2, &a[i__ + i__ * a_dim1]); + z_div(&z__1, &temp, &z__2); + temp.r = z__1.r, temp.i = z__1.i; + } + } + i__3 = i__ + j * b_dim1; + b[i__3].r = temp.r, b[i__3].i = temp.i; +/* L130: */ + } +/* L140: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + for (i__ = *m; i__ >= 1; --i__) { + i__2 = i__ + j * b_dim1; + z__1.r = alpha->r * b[i__2].r - alpha->i * b[i__2].i, + z__1.i = alpha->r * b[i__2].i + alpha->i * b[ + i__2].r; + temp.r = z__1.r, temp.i = z__1.i; + if (noconj) { + i__2 = *m; + for (k = i__ + 1; k <= i__2; ++k) { + i__3 = k + i__ * a_dim1; + i__4 = k + j * b_dim1; + z__2.r = a[i__3].r * b[i__4].r - a[i__3].i * + b[i__4].i, z__2.i = a[i__3].r * b[ + i__4].i + a[i__3].i * b[i__4].r; + z__1.r = temp.r - z__2.r, z__1.i = temp.i - + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L150: */ + } + if (nounit) { + z_div(&z__1, &temp, &a[i__ + i__ * a_dim1]); + temp.r = z__1.r, temp.i = z__1.i; + } + } else { + i__2 = *m; + for (k = i__ + 1; k <= i__2; ++k) { + d_cnjg(&z__3, &a[k + i__ * a_dim1]); + i__3 = k + j * b_dim1; + z__2.r = z__3.r * b[i__3].r - z__3.i * b[i__3] + .i, z__2.i = z__3.r * b[i__3].i + + z__3.i * b[i__3].r; + z__1.r = temp.r - z__2.r, z__1.i = temp.i - + z__2.i; + temp.r = z__1.r, temp.i = z__1.i; +/* L160: */ + } + if (nounit) { + d_cnjg(&z__2, &a[i__ + i__ * a_dim1]); + z_div(&z__1, &temp, &z__2); + temp.r = z__1.r, temp.i = z__1.i; + } + } + i__2 = i__ + j * b_dim1; + b[i__2].r = temp.r, b[i__2].i = temp.i; +/* L170: */ + } +/* L180: */ + } + } + } + } else { + if (lsame_(transa, "N")) { + +/* Form B := alpha*B*inv( A ). */ + + if (upper) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (alpha->r != 1. || alpha->i != 0.) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + z__1.r = alpha->r * b[i__4].r - alpha->i * b[i__4] + .i, z__1.i = alpha->r * b[i__4].i + + alpha->i * b[i__4].r; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L190: */ + } + } + i__2 = j - 1; + for (k = 1; k <= i__2; ++k) { + i__3 = k + j * a_dim1; + if (a[i__3].r != 0. || a[i__3].i != 0.) { + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * b_dim1; + i__5 = i__ + j * b_dim1; + i__6 = k + j * a_dim1; + i__7 = i__ + k * b_dim1; + z__2.r = a[i__6].r * b[i__7].r - a[i__6].i * + b[i__7].i, z__2.i = a[i__6].r * b[ + i__7].i + a[i__6].i * b[i__7].r; + z__1.r = b[i__5].r - z__2.r, z__1.i = b[i__5] + .i - z__2.i; + b[i__4].r = z__1.r, b[i__4].i = z__1.i; +/* L200: */ + } + } +/* L210: */ + } + if (nounit) { + z_div(&z__1, &c_b1, &a[j + j * a_dim1]); + temp.r = z__1.r, temp.i = z__1.i; + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + z__1.r = temp.r * b[i__4].r - temp.i * b[i__4].i, + z__1.i = temp.r * b[i__4].i + temp.i * b[ + i__4].r; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L220: */ + } + } +/* L230: */ + } + } else { + for (j = *n; j >= 1; --j) { + if (alpha->r != 1. || alpha->i != 0.) { + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + j * b_dim1; + i__3 = i__ + j * b_dim1; + z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3] + .i, z__1.i = alpha->r * b[i__3].i + + alpha->i * b[i__3].r; + b[i__2].r = z__1.r, b[i__2].i = z__1.i; +/* L240: */ + } + } + i__1 = *n; + for (k = j + 1; k <= i__1; ++k) { + i__2 = k + j * a_dim1; + if (a[i__2].r != 0. || a[i__2].i != 0.) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + i__5 = k + j * a_dim1; + i__6 = i__ + k * b_dim1; + z__2.r = a[i__5].r * b[i__6].r - a[i__5].i * + b[i__6].i, z__2.i = a[i__5].r * b[ + i__6].i + a[i__5].i * b[i__6].r; + z__1.r = b[i__4].r - z__2.r, z__1.i = b[i__4] + .i - z__2.i; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L250: */ + } + } +/* L260: */ + } + if (nounit) { + z_div(&z__1, &c_b1, &a[j + j * a_dim1]); + temp.r = z__1.r, temp.i = z__1.i; + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + j * b_dim1; + i__3 = i__ + j * b_dim1; + z__1.r = temp.r * b[i__3].r - temp.i * b[i__3].i, + z__1.i = temp.r * b[i__3].i + temp.i * b[ + i__3].r; + b[i__2].r = z__1.r, b[i__2].i = z__1.i; +/* L270: */ + } + } +/* L280: */ + } + } + } else { + +/* Form B := alpha*B*inv( A' ) */ +/* or B := alpha*B*inv( conjg( A' ) ). */ + + if (upper) { + for (k = *n; k >= 1; --k) { + if (nounit) { + if (noconj) { + z_div(&z__1, &c_b1, &a[k + k * a_dim1]); + temp.r = z__1.r, temp.i = z__1.i; + } else { + d_cnjg(&z__2, &a[k + k * a_dim1]); + z_div(&z__1, &c_b1, &z__2); + temp.r = z__1.r, temp.i = z__1.i; + } + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + k * b_dim1; + i__3 = i__ + k * b_dim1; + z__1.r = temp.r * b[i__3].r - temp.i * b[i__3].i, + z__1.i = temp.r * b[i__3].i + temp.i * b[ + i__3].r; + b[i__2].r = z__1.r, b[i__2].i = z__1.i; +/* L290: */ + } + } + i__1 = k - 1; + for (j = 1; j <= i__1; ++j) { + i__2 = j + k * a_dim1; + if (a[i__2].r != 0. || a[i__2].i != 0.) { + if (noconj) { + i__2 = j + k * a_dim1; + temp.r = a[i__2].r, temp.i = a[i__2].i; + } else { + d_cnjg(&z__1, &a[j + k * a_dim1]); + temp.r = z__1.r, temp.i = z__1.i; + } + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + i__5 = i__ + k * b_dim1; + z__2.r = temp.r * b[i__5].r - temp.i * b[i__5] + .i, z__2.i = temp.r * b[i__5].i + + temp.i * b[i__5].r; + z__1.r = b[i__4].r - z__2.r, z__1.i = b[i__4] + .i - z__2.i; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L300: */ + } + } +/* L310: */ + } + if (alpha->r != 1. || alpha->i != 0.) { + i__1 = *m; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + k * b_dim1; + i__3 = i__ + k * b_dim1; + z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3] + .i, z__1.i = alpha->r * b[i__3].i + + alpha->i * b[i__3].r; + b[i__2].r = z__1.r, b[i__2].i = z__1.i; +/* L320: */ + } + } +/* L330: */ + } + } else { + i__1 = *n; + for (k = 1; k <= i__1; ++k) { + if (nounit) { + if (noconj) { + z_div(&z__1, &c_b1, &a[k + k * a_dim1]); + temp.r = z__1.r, temp.i = z__1.i; + } else { + d_cnjg(&z__2, &a[k + k * a_dim1]); + z_div(&z__1, &c_b1, &z__2); + temp.r = z__1.r, temp.i = z__1.i; + } + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + k * b_dim1; + i__4 = i__ + k * b_dim1; + z__1.r = temp.r * b[i__4].r - temp.i * b[i__4].i, + z__1.i = temp.r * b[i__4].i + temp.i * b[ + i__4].r; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L340: */ + } + } + i__2 = *n; + for (j = k + 1; j <= i__2; ++j) { + i__3 = j + k * a_dim1; + if (a[i__3].r != 0. || a[i__3].i != 0.) { + if (noconj) { + i__3 = j + k * a_dim1; + temp.r = a[i__3].r, temp.i = a[i__3].i; + } else { + d_cnjg(&z__1, &a[j + k * a_dim1]); + temp.r = z__1.r, temp.i = z__1.i; + } + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + i__4 = i__ + j * b_dim1; + i__5 = i__ + j * b_dim1; + i__6 = i__ + k * b_dim1; + z__2.r = temp.r * b[i__6].r - temp.i * b[i__6] + .i, z__2.i = temp.r * b[i__6].i + + temp.i * b[i__6].r; + z__1.r = b[i__5].r - z__2.r, z__1.i = b[i__5] + .i - z__2.i; + b[i__4].r = z__1.r, b[i__4].i = z__1.i; +/* L350: */ + } + } +/* L360: */ + } + if (alpha->r != 1. || alpha->i != 0.) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + k * b_dim1; + i__4 = i__ + k * b_dim1; + z__1.r = alpha->r * b[i__4].r - alpha->i * b[i__4] + .i, z__1.i = alpha->r * b[i__4].i + + alpha->i * b[i__4].r; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L370: */ + } + } +/* L380: */ + } + } + } + } + + return 0; + +/* End of ZTRSM . */ + +} /* ztrsm_ */ |