aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/cblas/ztbsv.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/cblas/ztbsv.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/cblas/ztbsv.c')
-rw-r--r--contrib/libs/cblas/ztbsv.c611
1 files changed, 611 insertions, 0 deletions
diff --git a/contrib/libs/cblas/ztbsv.c b/contrib/libs/cblas/ztbsv.c
new file mode 100644
index 0000000000..c09ac40d41
--- /dev/null
+++ b/contrib/libs/cblas/ztbsv.c
@@ -0,0 +1,611 @@
+/* ztbsv.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Subroutine */ int ztbsv_(char *uplo, char *trans, char *diag, integer *n,
+ integer *k, doublecomplex *a, integer *lda, doublecomplex *x, integer
+ *incx)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
+ doublecomplex z__1, z__2, z__3;
+
+ /* Builtin functions */
+ void z_div(doublecomplex *, doublecomplex *, doublecomplex *), d_cnjg(
+ doublecomplex *, doublecomplex *);
+
+ /* Local variables */
+ integer i__, j, l, ix, jx, kx, info;
+ doublecomplex temp;
+ extern logical lsame_(char *, char *);
+ integer kplus1;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ logical noconj, nounit;
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* ZTBSV solves one of the systems of equations */
+
+/* A*x = b, or A'*x = b, or conjg( A' )*x = b, */
+
+/* where b and x are n element vectors and A is an n by n unit, or */
+/* non-unit, upper or lower triangular band matrix, with ( k + 1 ) */
+/* diagonals. */
+
+/* No test for singularity or near-singularity is included in this */
+/* routine. Such tests must be performed before calling this routine. */
+
+/* Arguments */
+/* ========== */
+
+/* UPLO - CHARACTER*1. */
+/* On entry, UPLO specifies whether the matrix is an upper or */
+/* lower triangular matrix as follows: */
+
+/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
+
+/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
+
+/* Unchanged on exit. */
+
+/* TRANS - CHARACTER*1. */
+/* On entry, TRANS specifies the equations to be solved as */
+/* follows: */
+
+/* TRANS = 'N' or 'n' A*x = b. */
+
+/* TRANS = 'T' or 't' A'*x = b. */
+
+/* TRANS = 'C' or 'c' conjg( A' )*x = b. */
+
+/* Unchanged on exit. */
+
+/* DIAG - CHARACTER*1. */
+/* On entry, DIAG specifies whether or not A is unit */
+/* triangular as follows: */
+
+/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
+
+/* DIAG = 'N' or 'n' A is not assumed to be unit */
+/* triangular. */
+
+/* Unchanged on exit. */
+
+/* N - INTEGER. */
+/* On entry, N specifies the order of the matrix A. */
+/* N must be at least zero. */
+/* Unchanged on exit. */
+
+/* K - INTEGER. */
+/* On entry with UPLO = 'U' or 'u', K specifies the number of */
+/* super-diagonals of the matrix A. */
+/* On entry with UPLO = 'L' or 'l', K specifies the number of */
+/* sub-diagonals of the matrix A. */
+/* K must satisfy 0 .le. K. */
+/* Unchanged on exit. */
+
+/* A - COMPLEX*16 array of DIMENSION ( LDA, n ). */
+/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
+/* by n part of the array A must contain the upper triangular */
+/* band part of the matrix of coefficients, supplied column by */
+/* column, with the leading diagonal of the matrix in row */
+/* ( k + 1 ) of the array, the first super-diagonal starting at */
+/* position 2 in row k, and so on. The top left k by k triangle */
+/* of the array A is not referenced. */
+/* The following program segment will transfer an upper */
+/* triangular band matrix from conventional full matrix storage */
+/* to band storage: */
+
+/* DO 20, J = 1, N */
+/* M = K + 1 - J */
+/* DO 10, I = MAX( 1, J - K ), J */
+/* A( M + I, J ) = matrix( I, J ) */
+/* 10 CONTINUE */
+/* 20 CONTINUE */
+
+/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
+/* by n part of the array A must contain the lower triangular */
+/* band part of the matrix of coefficients, supplied column by */
+/* column, with the leading diagonal of the matrix in row 1 of */
+/* the array, the first sub-diagonal starting at position 1 in */
+/* row 2, and so on. The bottom right k by k triangle of the */
+/* array A is not referenced. */
+/* The following program segment will transfer a lower */
+/* triangular band matrix from conventional full matrix storage */
+/* to band storage: */
+
+/* DO 20, J = 1, N */
+/* M = 1 - J */
+/* DO 10, I = J, MIN( N, J + K ) */
+/* A( M + I, J ) = matrix( I, J ) */
+/* 10 CONTINUE */
+/* 20 CONTINUE */
+
+/* Note that when DIAG = 'U' or 'u' the elements of the array A */
+/* corresponding to the diagonal elements of the matrix are not */
+/* referenced, but are assumed to be unity. */
+/* Unchanged on exit. */
+
+/* LDA - INTEGER. */
+/* On entry, LDA specifies the first dimension of A as declared */
+/* in the calling (sub) program. LDA must be at least */
+/* ( k + 1 ). */
+/* Unchanged on exit. */
+
+/* X - COMPLEX*16 array of dimension at least */
+/* ( 1 + ( n - 1 )*abs( INCX ) ). */
+/* Before entry, the incremented array X must contain the n */
+/* element right-hand side vector b. On exit, X is overwritten */
+/* with the solution vector x. */
+
+/* INCX - INTEGER. */
+/* On entry, INCX specifies the increment for the elements of */
+/* X. INCX must not be zero. */
+/* Unchanged on exit. */
+
+
+/* Level 2 Blas routine. */
+
+/* -- Written on 22-October-1986. */
+/* Jack Dongarra, Argonne National Lab. */
+/* Jeremy Du Croz, Nag Central Office. */
+/* Sven Hammarling, Nag Central Office. */
+/* Richard Hanson, Sandia National Labs. */
+
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --x;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
+ info = 1;
+ } else if (! lsame_(trans, "N") && ! lsame_(trans,
+ "T") && ! lsame_(trans, "C")) {
+ info = 2;
+ } else if (! lsame_(diag, "U") && ! lsame_(diag,
+ "N")) {
+ info = 3;
+ } else if (*n < 0) {
+ info = 4;
+ } else if (*k < 0) {
+ info = 5;
+ } else if (*lda < *k + 1) {
+ info = 7;
+ } else if (*incx == 0) {
+ info = 9;
+ }
+ if (info != 0) {
+ xerbla_("ZTBSV ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ noconj = lsame_(trans, "T");
+ nounit = lsame_(diag, "N");
+
+/* Set up the start point in X if the increment is not unity. This */
+/* will be ( N - 1 )*INCX too small for descending loops. */
+
+ if (*incx <= 0) {
+ kx = 1 - (*n - 1) * *incx;
+ } else if (*incx != 1) {
+ kx = 1;
+ }
+
+/* Start the operations. In this version the elements of A are */
+/* accessed by sequentially with one pass through A. */
+
+ if (lsame_(trans, "N")) {
+
+/* Form x := inv( A )*x. */
+
+ if (lsame_(uplo, "U")) {
+ kplus1 = *k + 1;
+ if (*incx == 1) {
+ for (j = *n; j >= 1; --j) {
+ i__1 = j;
+ if (x[i__1].r != 0. || x[i__1].i != 0.) {
+ l = kplus1 - j;
+ if (nounit) {
+ i__1 = j;
+ z_div(&z__1, &x[j], &a[kplus1 + j * a_dim1]);
+ x[i__1].r = z__1.r, x[i__1].i = z__1.i;
+ }
+ i__1 = j;
+ temp.r = x[i__1].r, temp.i = x[i__1].i;
+/* Computing MAX */
+ i__2 = 1, i__3 = j - *k;
+ i__1 = max(i__2,i__3);
+ for (i__ = j - 1; i__ >= i__1; --i__) {
+ i__2 = i__;
+ i__3 = i__;
+ i__4 = l + i__ + j * a_dim1;
+ z__2.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
+ z__2.i = temp.r * a[i__4].i + temp.i * a[
+ i__4].r;
+ z__1.r = x[i__3].r - z__2.r, z__1.i = x[i__3].i -
+ z__2.i;
+ x[i__2].r = z__1.r, x[i__2].i = z__1.i;
+/* L10: */
+ }
+ }
+/* L20: */
+ }
+ } else {
+ kx += (*n - 1) * *incx;
+ jx = kx;
+ for (j = *n; j >= 1; --j) {
+ kx -= *incx;
+ i__1 = jx;
+ if (x[i__1].r != 0. || x[i__1].i != 0.) {
+ ix = kx;
+ l = kplus1 - j;
+ if (nounit) {
+ i__1 = jx;
+ z_div(&z__1, &x[jx], &a[kplus1 + j * a_dim1]);
+ x[i__1].r = z__1.r, x[i__1].i = z__1.i;
+ }
+ i__1 = jx;
+ temp.r = x[i__1].r, temp.i = x[i__1].i;
+/* Computing MAX */
+ i__2 = 1, i__3 = j - *k;
+ i__1 = max(i__2,i__3);
+ for (i__ = j - 1; i__ >= i__1; --i__) {
+ i__2 = ix;
+ i__3 = ix;
+ i__4 = l + i__ + j * a_dim1;
+ z__2.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
+ z__2.i = temp.r * a[i__4].i + temp.i * a[
+ i__4].r;
+ z__1.r = x[i__3].r - z__2.r, z__1.i = x[i__3].i -
+ z__2.i;
+ x[i__2].r = z__1.r, x[i__2].i = z__1.i;
+ ix -= *incx;
+/* L30: */
+ }
+ }
+ jx -= *incx;
+/* L40: */
+ }
+ }
+ } else {
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ if (x[i__2].r != 0. || x[i__2].i != 0.) {
+ l = 1 - j;
+ if (nounit) {
+ i__2 = j;
+ z_div(&z__1, &x[j], &a[j * a_dim1 + 1]);
+ x[i__2].r = z__1.r, x[i__2].i = z__1.i;
+ }
+ i__2 = j;
+ temp.r = x[i__2].r, temp.i = x[i__2].i;
+/* Computing MIN */
+ i__3 = *n, i__4 = j + *k;
+ i__2 = min(i__3,i__4);
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ i__3 = i__;
+ i__4 = i__;
+ i__5 = l + i__ + j * a_dim1;
+ z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
+ z__2.i = temp.r * a[i__5].i + temp.i * a[
+ i__5].r;
+ z__1.r = x[i__4].r - z__2.r, z__1.i = x[i__4].i -
+ z__2.i;
+ x[i__3].r = z__1.r, x[i__3].i = z__1.i;
+/* L50: */
+ }
+ }
+/* L60: */
+ }
+ } else {
+ jx = kx;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ kx += *incx;
+ i__2 = jx;
+ if (x[i__2].r != 0. || x[i__2].i != 0.) {
+ ix = kx;
+ l = 1 - j;
+ if (nounit) {
+ i__2 = jx;
+ z_div(&z__1, &x[jx], &a[j * a_dim1 + 1]);
+ x[i__2].r = z__1.r, x[i__2].i = z__1.i;
+ }
+ i__2 = jx;
+ temp.r = x[i__2].r, temp.i = x[i__2].i;
+/* Computing MIN */
+ i__3 = *n, i__4 = j + *k;
+ i__2 = min(i__3,i__4);
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ i__3 = ix;
+ i__4 = ix;
+ i__5 = l + i__ + j * a_dim1;
+ z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
+ z__2.i = temp.r * a[i__5].i + temp.i * a[
+ i__5].r;
+ z__1.r = x[i__4].r - z__2.r, z__1.i = x[i__4].i -
+ z__2.i;
+ x[i__3].r = z__1.r, x[i__3].i = z__1.i;
+ ix += *incx;
+/* L70: */
+ }
+ }
+ jx += *incx;
+/* L80: */
+ }
+ }
+ }
+ } else {
+
+/* Form x := inv( A' )*x or x := inv( conjg( A') )*x. */
+
+ if (lsame_(uplo, "U")) {
+ kplus1 = *k + 1;
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ temp.r = x[i__2].r, temp.i = x[i__2].i;
+ l = kplus1 - j;
+ if (noconj) {
+/* Computing MAX */
+ i__2 = 1, i__3 = j - *k;
+ i__4 = j - 1;
+ for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
+ i__2 = l + i__ + j * a_dim1;
+ i__3 = i__;
+ z__2.r = a[i__2].r * x[i__3].r - a[i__2].i * x[
+ i__3].i, z__2.i = a[i__2].r * x[i__3].i +
+ a[i__2].i * x[i__3].r;
+ z__1.r = temp.r - z__2.r, z__1.i = temp.i -
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L90: */
+ }
+ if (nounit) {
+ z_div(&z__1, &temp, &a[kplus1 + j * a_dim1]);
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ } else {
+/* Computing MAX */
+ i__4 = 1, i__2 = j - *k;
+ i__3 = j - 1;
+ for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
+ d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
+ i__4 = i__;
+ z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i,
+ z__2.i = z__3.r * x[i__4].i + z__3.i * x[
+ i__4].r;
+ z__1.r = temp.r - z__2.r, z__1.i = temp.i -
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L100: */
+ }
+ if (nounit) {
+ d_cnjg(&z__2, &a[kplus1 + j * a_dim1]);
+ z_div(&z__1, &temp, &z__2);
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ }
+ i__3 = j;
+ x[i__3].r = temp.r, x[i__3].i = temp.i;
+/* L110: */
+ }
+ } else {
+ jx = kx;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__3 = jx;
+ temp.r = x[i__3].r, temp.i = x[i__3].i;
+ ix = kx;
+ l = kplus1 - j;
+ if (noconj) {
+/* Computing MAX */
+ i__3 = 1, i__4 = j - *k;
+ i__2 = j - 1;
+ for (i__ = max(i__3,i__4); i__ <= i__2; ++i__) {
+ i__3 = l + i__ + j * a_dim1;
+ i__4 = ix;
+ z__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[
+ i__4].i, z__2.i = a[i__3].r * x[i__4].i +
+ a[i__3].i * x[i__4].r;
+ z__1.r = temp.r - z__2.r, z__1.i = temp.i -
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+ ix += *incx;
+/* L120: */
+ }
+ if (nounit) {
+ z_div(&z__1, &temp, &a[kplus1 + j * a_dim1]);
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ } else {
+/* Computing MAX */
+ i__2 = 1, i__3 = j - *k;
+ i__4 = j - 1;
+ for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
+ d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
+ i__2 = ix;
+ z__2.r = z__3.r * x[i__2].r - z__3.i * x[i__2].i,
+ z__2.i = z__3.r * x[i__2].i + z__3.i * x[
+ i__2].r;
+ z__1.r = temp.r - z__2.r, z__1.i = temp.i -
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+ ix += *incx;
+/* L130: */
+ }
+ if (nounit) {
+ d_cnjg(&z__2, &a[kplus1 + j * a_dim1]);
+ z_div(&z__1, &temp, &z__2);
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ }
+ i__4 = jx;
+ x[i__4].r = temp.r, x[i__4].i = temp.i;
+ jx += *incx;
+ if (j > *k) {
+ kx += *incx;
+ }
+/* L140: */
+ }
+ }
+ } else {
+ if (*incx == 1) {
+ for (j = *n; j >= 1; --j) {
+ i__1 = j;
+ temp.r = x[i__1].r, temp.i = x[i__1].i;
+ l = 1 - j;
+ if (noconj) {
+/* Computing MIN */
+ i__1 = *n, i__4 = j + *k;
+ i__2 = j + 1;
+ for (i__ = min(i__1,i__4); i__ >= i__2; --i__) {
+ i__1 = l + i__ + j * a_dim1;
+ i__4 = i__;
+ z__2.r = a[i__1].r * x[i__4].r - a[i__1].i * x[
+ i__4].i, z__2.i = a[i__1].r * x[i__4].i +
+ a[i__1].i * x[i__4].r;
+ z__1.r = temp.r - z__2.r, z__1.i = temp.i -
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L150: */
+ }
+ if (nounit) {
+ z_div(&z__1, &temp, &a[j * a_dim1 + 1]);
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ } else {
+/* Computing MIN */
+ i__2 = *n, i__1 = j + *k;
+ i__4 = j + 1;
+ for (i__ = min(i__2,i__1); i__ >= i__4; --i__) {
+ d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
+ i__2 = i__;
+ z__2.r = z__3.r * x[i__2].r - z__3.i * x[i__2].i,
+ z__2.i = z__3.r * x[i__2].i + z__3.i * x[
+ i__2].r;
+ z__1.r = temp.r - z__2.r, z__1.i = temp.i -
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L160: */
+ }
+ if (nounit) {
+ d_cnjg(&z__2, &a[j * a_dim1 + 1]);
+ z_div(&z__1, &temp, &z__2);
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ }
+ i__4 = j;
+ x[i__4].r = temp.r, x[i__4].i = temp.i;
+/* L170: */
+ }
+ } else {
+ kx += (*n - 1) * *incx;
+ jx = kx;
+ for (j = *n; j >= 1; --j) {
+ i__4 = jx;
+ temp.r = x[i__4].r, temp.i = x[i__4].i;
+ ix = kx;
+ l = 1 - j;
+ if (noconj) {
+/* Computing MIN */
+ i__4 = *n, i__2 = j + *k;
+ i__1 = j + 1;
+ for (i__ = min(i__4,i__2); i__ >= i__1; --i__) {
+ i__4 = l + i__ + j * a_dim1;
+ i__2 = ix;
+ z__2.r = a[i__4].r * x[i__2].r - a[i__4].i * x[
+ i__2].i, z__2.i = a[i__4].r * x[i__2].i +
+ a[i__4].i * x[i__2].r;
+ z__1.r = temp.r - z__2.r, z__1.i = temp.i -
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+ ix -= *incx;
+/* L180: */
+ }
+ if (nounit) {
+ z_div(&z__1, &temp, &a[j * a_dim1 + 1]);
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ } else {
+/* Computing MIN */
+ i__1 = *n, i__4 = j + *k;
+ i__2 = j + 1;
+ for (i__ = min(i__1,i__4); i__ >= i__2; --i__) {
+ d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
+ i__1 = ix;
+ z__2.r = z__3.r * x[i__1].r - z__3.i * x[i__1].i,
+ z__2.i = z__3.r * x[i__1].i + z__3.i * x[
+ i__1].r;
+ z__1.r = temp.r - z__2.r, z__1.i = temp.i -
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+ ix -= *incx;
+/* L190: */
+ }
+ if (nounit) {
+ d_cnjg(&z__2, &a[j * a_dim1 + 1]);
+ z_div(&z__1, &temp, &z__2);
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+ }
+ i__2 = jx;
+ x[i__2].r = temp.r, x[i__2].i = temp.i;
+ jx -= *incx;
+ if (*n - j >= *k) {
+ kx -= *incx;
+ }
+/* L200: */
+ }
+ }
+ }
+ }
+
+ return 0;
+
+/* End of ZTBSV . */
+
+} /* ztbsv_ */