diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/cblas/dgemm.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/cblas/dgemm.c')
-rw-r--r-- | contrib/libs/cblas/dgemm.c | 389 |
1 files changed, 389 insertions, 0 deletions
diff --git a/contrib/libs/cblas/dgemm.c b/contrib/libs/cblas/dgemm.c new file mode 100644 index 0000000000..b802cb0fbd --- /dev/null +++ b/contrib/libs/cblas/dgemm.c @@ -0,0 +1,389 @@ +/* dgemm.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Subroutine */ int dgemm_(char *transa, char *transb, integer *m, integer * + n, integer *k, doublereal *alpha, doublereal *a, integer *lda, + doublereal *b, integer *ldb, doublereal *beta, doublereal *c__, + integer *ldc) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, + i__3; + + /* Local variables */ + integer i__, j, l, info; + logical nota, notb; + doublereal temp; + integer ncola; + extern logical lsame_(char *, char *); + integer nrowa, nrowb; + extern /* Subroutine */ int xerbla_(char *, integer *); + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* DGEMM performs one of the matrix-matrix operations */ + +/* C := alpha*op( A )*op( B ) + beta*C, */ + +/* where op( X ) is one of */ + +/* op( X ) = X or op( X ) = X', */ + +/* alpha and beta are scalars, and A, B and C are matrices, with op( A ) */ +/* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. */ + +/* Arguments */ +/* ========== */ + +/* TRANSA - CHARACTER*1. */ +/* On entry, TRANSA specifies the form of op( A ) to be used in */ +/* the matrix multiplication as follows: */ + +/* TRANSA = 'N' or 'n', op( A ) = A. */ + +/* TRANSA = 'T' or 't', op( A ) = A'. */ + +/* TRANSA = 'C' or 'c', op( A ) = A'. */ + +/* Unchanged on exit. */ + +/* TRANSB - CHARACTER*1. */ +/* On entry, TRANSB specifies the form of op( B ) to be used in */ +/* the matrix multiplication as follows: */ + +/* TRANSB = 'N' or 'n', op( B ) = B. */ + +/* TRANSB = 'T' or 't', op( B ) = B'. */ + +/* TRANSB = 'C' or 'c', op( B ) = B'. */ + +/* Unchanged on exit. */ + +/* M - INTEGER. */ +/* On entry, M specifies the number of rows of the matrix */ +/* op( A ) and of the matrix C. M must be at least zero. */ +/* Unchanged on exit. */ + +/* N - INTEGER. */ +/* On entry, N specifies the number of columns of the matrix */ +/* op( B ) and the number of columns of the matrix C. N must be */ +/* at least zero. */ +/* Unchanged on exit. */ + +/* K - INTEGER. */ +/* On entry, K specifies the number of columns of the matrix */ +/* op( A ) and the number of rows of the matrix op( B ). K must */ +/* be at least zero. */ +/* Unchanged on exit. */ + +/* ALPHA - DOUBLE PRECISION. */ +/* On entry, ALPHA specifies the scalar alpha. */ +/* Unchanged on exit. */ + +/* A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is */ +/* k when TRANSA = 'N' or 'n', and is m otherwise. */ +/* Before entry with TRANSA = 'N' or 'n', the leading m by k */ +/* part of the array A must contain the matrix A, otherwise */ +/* the leading k by m part of the array A must contain the */ +/* matrix A. */ +/* Unchanged on exit. */ + +/* LDA - INTEGER. */ +/* On entry, LDA specifies the first dimension of A as declared */ +/* in the calling (sub) program. When TRANSA = 'N' or 'n' then */ +/* LDA must be at least max( 1, m ), otherwise LDA must be at */ +/* least max( 1, k ). */ +/* Unchanged on exit. */ + +/* B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is */ +/* n when TRANSB = 'N' or 'n', and is k otherwise. */ +/* Before entry with TRANSB = 'N' or 'n', the leading k by n */ +/* part of the array B must contain the matrix B, otherwise */ +/* the leading n by k part of the array B must contain the */ +/* matrix B. */ +/* Unchanged on exit. */ + +/* LDB - INTEGER. */ +/* On entry, LDB specifies the first dimension of B as declared */ +/* in the calling (sub) program. When TRANSB = 'N' or 'n' then */ +/* LDB must be at least max( 1, k ), otherwise LDB must be at */ +/* least max( 1, n ). */ +/* Unchanged on exit. */ + +/* BETA - DOUBLE PRECISION. */ +/* On entry, BETA specifies the scalar beta. When BETA is */ +/* supplied as zero then C need not be set on input. */ +/* Unchanged on exit. */ + +/* C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). */ +/* Before entry, the leading m by n part of the array C must */ +/* contain the matrix C, except when beta is zero, in which */ +/* case C need not be set on entry. */ +/* On exit, the array C is overwritten by the m by n matrix */ +/* ( alpha*op( A )*op( B ) + beta*C ). */ + +/* LDC - INTEGER. */ +/* On entry, LDC specifies the first dimension of C as declared */ +/* in the calling (sub) program. LDC must be at least */ +/* max( 1, m ). */ +/* Unchanged on exit. */ + + +/* Level 3 Blas routine. */ + +/* -- Written on 8-February-1989. */ +/* Jack Dongarra, Argonne National Laboratory. */ +/* Iain Duff, AERE Harwell. */ +/* Jeremy Du Croz, Numerical Algorithms Group Ltd. */ +/* Sven Hammarling, Numerical Algorithms Group Ltd. */ + + +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. Parameters .. */ +/* .. */ + +/* Set NOTA and NOTB as true if A and B respectively are not */ +/* transposed and set NROWA, NCOLA and NROWB as the number of rows */ +/* and columns of A and the number of rows of B respectively. */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + + /* Function Body */ + nota = lsame_(transa, "N"); + notb = lsame_(transb, "N"); + if (nota) { + nrowa = *m; + ncola = *k; + } else { + nrowa = *k; + ncola = *m; + } + if (notb) { + nrowb = *k; + } else { + nrowb = *n; + } + +/* Test the input parameters. */ + + info = 0; + if (! nota && ! lsame_(transa, "C") && ! lsame_( + transa, "T")) { + info = 1; + } else if (! notb && ! lsame_(transb, "C") && ! + lsame_(transb, "T")) { + info = 2; + } else if (*m < 0) { + info = 3; + } else if (*n < 0) { + info = 4; + } else if (*k < 0) { + info = 5; + } else if (*lda < max(1,nrowa)) { + info = 8; + } else if (*ldb < max(1,nrowb)) { + info = 10; + } else if (*ldc < max(1,*m)) { + info = 13; + } + if (info != 0) { + xerbla_("DGEMM ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (*m == 0 || *n == 0 || (*alpha == 0. || *k == 0) && *beta == 1.) { + return 0; + } + +/* And if alpha.eq.zero. */ + + if (*alpha == 0.) { + if (*beta == 0.) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.; +/* L10: */ + } +/* L20: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L30: */ + } +/* L40: */ + } + } + return 0; + } + +/* Start the operations. */ + + if (notb) { + if (nota) { + +/* Form C := alpha*A*B + beta*C. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*beta == 0.) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.; +/* L50: */ + } + } else if (*beta != 1.) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L60: */ + } + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + if (b[l + j * b_dim1] != 0.) { + temp = *alpha * b[l + j * b_dim1]; + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + c__[i__ + j * c_dim1] += temp * a[i__ + l * + a_dim1]; +/* L70: */ + } + } +/* L80: */ + } +/* L90: */ + } + } else { + +/* Form C := alpha*A'*B + beta*C */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp = 0.; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + temp += a[l + i__ * a_dim1] * b[l + j * b_dim1]; +/* L100: */ + } + if (*beta == 0.) { + c__[i__ + j * c_dim1] = *alpha * temp; + } else { + c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[ + i__ + j * c_dim1]; + } +/* L110: */ + } +/* L120: */ + } + } + } else { + if (nota) { + +/* Form C := alpha*A*B' + beta*C */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (*beta == 0.) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = 0.; +/* L130: */ + } + } else if (*beta != 1.) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1]; +/* L140: */ + } + } + i__2 = *k; + for (l = 1; l <= i__2; ++l) { + if (b[j + l * b_dim1] != 0.) { + temp = *alpha * b[j + l * b_dim1]; + i__3 = *m; + for (i__ = 1; i__ <= i__3; ++i__) { + c__[i__ + j * c_dim1] += temp * a[i__ + l * + a_dim1]; +/* L150: */ + } + } +/* L160: */ + } +/* L170: */ + } + } else { + +/* Form C := alpha*A'*B' + beta*C */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + temp = 0.; + i__3 = *k; + for (l = 1; l <= i__3; ++l) { + temp += a[l + i__ * a_dim1] * b[j + l * b_dim1]; +/* L180: */ + } + if (*beta == 0.) { + c__[i__ + j * c_dim1] = *alpha * temp; + } else { + c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[ + i__ + j * c_dim1]; + } +/* L190: */ + } +/* L200: */ + } + } + } + + return 0; + +/* End of DGEMM . */ + +} /* dgemm_ */ |