aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/cblas/ctpsv.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/cblas/ctpsv.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/cblas/ctpsv.c')
-rw-r--r--contrib/libs/cblas/ctpsv.c539
1 files changed, 539 insertions, 0 deletions
diff --git a/contrib/libs/cblas/ctpsv.c b/contrib/libs/cblas/ctpsv.c
new file mode 100644
index 0000000000..2e810f674c
--- /dev/null
+++ b/contrib/libs/cblas/ctpsv.c
@@ -0,0 +1,539 @@
+/* ctpsv.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Subroutine */ int ctpsv_(char *uplo, char *trans, char *diag, integer *n,
+ complex *ap, complex *x, integer *incx)
+{
+ /* System generated locals */
+ integer i__1, i__2, i__3, i__4, i__5;
+ complex q__1, q__2, q__3;
+
+ /* Builtin functions */
+ void c_div(complex *, complex *, complex *), r_cnjg(complex *, complex *);
+
+ /* Local variables */
+ integer i__, j, k, kk, ix, jx, kx, info;
+ complex temp;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ logical noconj, nounit;
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CTPSV solves one of the systems of equations */
+
+/* A*x = b, or A'*x = b, or conjg( A' )*x = b, */
+
+/* where b and x are n element vectors and A is an n by n unit, or */
+/* non-unit, upper or lower triangular matrix, supplied in packed form. */
+
+/* No test for singularity or near-singularity is included in this */
+/* routine. Such tests must be performed before calling this routine. */
+
+/* Arguments */
+/* ========== */
+
+/* UPLO - CHARACTER*1. */
+/* On entry, UPLO specifies whether the matrix is an upper or */
+/* lower triangular matrix as follows: */
+
+/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
+
+/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
+
+/* Unchanged on exit. */
+
+/* TRANS - CHARACTER*1. */
+/* On entry, TRANS specifies the equations to be solved as */
+/* follows: */
+
+/* TRANS = 'N' or 'n' A*x = b. */
+
+/* TRANS = 'T' or 't' A'*x = b. */
+
+/* TRANS = 'C' or 'c' conjg( A' )*x = b. */
+
+/* Unchanged on exit. */
+
+/* DIAG - CHARACTER*1. */
+/* On entry, DIAG specifies whether or not A is unit */
+/* triangular as follows: */
+
+/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
+
+/* DIAG = 'N' or 'n' A is not assumed to be unit */
+/* triangular. */
+
+/* Unchanged on exit. */
+
+/* N - INTEGER. */
+/* On entry, N specifies the order of the matrix A. */
+/* N must be at least zero. */
+/* Unchanged on exit. */
+
+/* AP - COMPLEX array of DIMENSION at least */
+/* ( ( n*( n + 1 ) )/2 ). */
+/* Before entry with UPLO = 'U' or 'u', the array AP must */
+/* contain the upper triangular matrix packed sequentially, */
+/* column by column, so that AP( 1 ) contains a( 1, 1 ), */
+/* AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) */
+/* respectively, and so on. */
+/* Before entry with UPLO = 'L' or 'l', the array AP must */
+/* contain the lower triangular matrix packed sequentially, */
+/* column by column, so that AP( 1 ) contains a( 1, 1 ), */
+/* AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) */
+/* respectively, and so on. */
+/* Note that when DIAG = 'U' or 'u', the diagonal elements of */
+/* A are not referenced, but are assumed to be unity. */
+/* Unchanged on exit. */
+
+/* X - COMPLEX array of dimension at least */
+/* ( 1 + ( n - 1 )*abs( INCX ) ). */
+/* Before entry, the incremented array X must contain the n */
+/* element right-hand side vector b. On exit, X is overwritten */
+/* with the solution vector x. */
+
+/* INCX - INTEGER. */
+/* On entry, INCX specifies the increment for the elements of */
+/* X. INCX must not be zero. */
+/* Unchanged on exit. */
+
+
+/* Level 2 Blas routine. */
+
+/* -- Written on 22-October-1986. */
+/* Jack Dongarra, Argonne National Lab. */
+/* Jeremy Du Croz, Nag Central Office. */
+/* Sven Hammarling, Nag Central Office. */
+/* Richard Hanson, Sandia National Labs. */
+
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ --x;
+ --ap;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
+ info = 1;
+ } else if (! lsame_(trans, "N") && ! lsame_(trans,
+ "T") && ! lsame_(trans, "C")) {
+ info = 2;
+ } else if (! lsame_(diag, "U") && ! lsame_(diag,
+ "N")) {
+ info = 3;
+ } else if (*n < 0) {
+ info = 4;
+ } else if (*incx == 0) {
+ info = 7;
+ }
+ if (info != 0) {
+ xerbla_("CTPSV ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ noconj = lsame_(trans, "T");
+ nounit = lsame_(diag, "N");
+
+/* Set up the start point in X if the increment is not unity. This */
+/* will be ( N - 1 )*INCX too small for descending loops. */
+
+ if (*incx <= 0) {
+ kx = 1 - (*n - 1) * *incx;
+ } else if (*incx != 1) {
+ kx = 1;
+ }
+
+/* Start the operations. In this version the elements of AP are */
+/* accessed sequentially with one pass through AP. */
+
+ if (lsame_(trans, "N")) {
+
+/* Form x := inv( A )*x. */
+
+ if (lsame_(uplo, "U")) {
+ kk = *n * (*n + 1) / 2;
+ if (*incx == 1) {
+ for (j = *n; j >= 1; --j) {
+ i__1 = j;
+ if (x[i__1].r != 0.f || x[i__1].i != 0.f) {
+ if (nounit) {
+ i__1 = j;
+ c_div(&q__1, &x[j], &ap[kk]);
+ x[i__1].r = q__1.r, x[i__1].i = q__1.i;
+ }
+ i__1 = j;
+ temp.r = x[i__1].r, temp.i = x[i__1].i;
+ k = kk - 1;
+ for (i__ = j - 1; i__ >= 1; --i__) {
+ i__1 = i__;
+ i__2 = i__;
+ i__3 = k;
+ q__2.r = temp.r * ap[i__3].r - temp.i * ap[i__3]
+ .i, q__2.i = temp.r * ap[i__3].i + temp.i
+ * ap[i__3].r;
+ q__1.r = x[i__2].r - q__2.r, q__1.i = x[i__2].i -
+ q__2.i;
+ x[i__1].r = q__1.r, x[i__1].i = q__1.i;
+ --k;
+/* L10: */
+ }
+ }
+ kk -= j;
+/* L20: */
+ }
+ } else {
+ jx = kx + (*n - 1) * *incx;
+ for (j = *n; j >= 1; --j) {
+ i__1 = jx;
+ if (x[i__1].r != 0.f || x[i__1].i != 0.f) {
+ if (nounit) {
+ i__1 = jx;
+ c_div(&q__1, &x[jx], &ap[kk]);
+ x[i__1].r = q__1.r, x[i__1].i = q__1.i;
+ }
+ i__1 = jx;
+ temp.r = x[i__1].r, temp.i = x[i__1].i;
+ ix = jx;
+ i__1 = kk - j + 1;
+ for (k = kk - 1; k >= i__1; --k) {
+ ix -= *incx;
+ i__2 = ix;
+ i__3 = ix;
+ i__4 = k;
+ q__2.r = temp.r * ap[i__4].r - temp.i * ap[i__4]
+ .i, q__2.i = temp.r * ap[i__4].i + temp.i
+ * ap[i__4].r;
+ q__1.r = x[i__3].r - q__2.r, q__1.i = x[i__3].i -
+ q__2.i;
+ x[i__2].r = q__1.r, x[i__2].i = q__1.i;
+/* L30: */
+ }
+ }
+ jx -= *incx;
+ kk -= j;
+/* L40: */
+ }
+ }
+ } else {
+ kk = 1;
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ if (x[i__2].r != 0.f || x[i__2].i != 0.f) {
+ if (nounit) {
+ i__2 = j;
+ c_div(&q__1, &x[j], &ap[kk]);
+ x[i__2].r = q__1.r, x[i__2].i = q__1.i;
+ }
+ i__2 = j;
+ temp.r = x[i__2].r, temp.i = x[i__2].i;
+ k = kk + 1;
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ i__3 = i__;
+ i__4 = i__;
+ i__5 = k;
+ q__2.r = temp.r * ap[i__5].r - temp.i * ap[i__5]
+ .i, q__2.i = temp.r * ap[i__5].i + temp.i
+ * ap[i__5].r;
+ q__1.r = x[i__4].r - q__2.r, q__1.i = x[i__4].i -
+ q__2.i;
+ x[i__3].r = q__1.r, x[i__3].i = q__1.i;
+ ++k;
+/* L50: */
+ }
+ }
+ kk += *n - j + 1;
+/* L60: */
+ }
+ } else {
+ jx = kx;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jx;
+ if (x[i__2].r != 0.f || x[i__2].i != 0.f) {
+ if (nounit) {
+ i__2 = jx;
+ c_div(&q__1, &x[jx], &ap[kk]);
+ x[i__2].r = q__1.r, x[i__2].i = q__1.i;
+ }
+ i__2 = jx;
+ temp.r = x[i__2].r, temp.i = x[i__2].i;
+ ix = jx;
+ i__2 = kk + *n - j;
+ for (k = kk + 1; k <= i__2; ++k) {
+ ix += *incx;
+ i__3 = ix;
+ i__4 = ix;
+ i__5 = k;
+ q__2.r = temp.r * ap[i__5].r - temp.i * ap[i__5]
+ .i, q__2.i = temp.r * ap[i__5].i + temp.i
+ * ap[i__5].r;
+ q__1.r = x[i__4].r - q__2.r, q__1.i = x[i__4].i -
+ q__2.i;
+ x[i__3].r = q__1.r, x[i__3].i = q__1.i;
+/* L70: */
+ }
+ }
+ jx += *incx;
+ kk += *n - j + 1;
+/* L80: */
+ }
+ }
+ }
+ } else {
+
+/* Form x := inv( A' )*x or x := inv( conjg( A' ) )*x. */
+
+ if (lsame_(uplo, "U")) {
+ kk = 1;
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ temp.r = x[i__2].r, temp.i = x[i__2].i;
+ k = kk;
+ if (noconj) {
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = k;
+ i__4 = i__;
+ q__2.r = ap[i__3].r * x[i__4].r - ap[i__3].i * x[
+ i__4].i, q__2.i = ap[i__3].r * x[i__4].i
+ + ap[i__3].i * x[i__4].r;
+ q__1.r = temp.r - q__2.r, q__1.i = temp.i -
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+ ++k;
+/* L90: */
+ }
+ if (nounit) {
+ c_div(&q__1, &temp, &ap[kk + j - 1]);
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ } else {
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ r_cnjg(&q__3, &ap[k]);
+ i__3 = i__;
+ q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i,
+ q__2.i = q__3.r * x[i__3].i + q__3.i * x[
+ i__3].r;
+ q__1.r = temp.r - q__2.r, q__1.i = temp.i -
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+ ++k;
+/* L100: */
+ }
+ if (nounit) {
+ r_cnjg(&q__2, &ap[kk + j - 1]);
+ c_div(&q__1, &temp, &q__2);
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ }
+ i__2 = j;
+ x[i__2].r = temp.r, x[i__2].i = temp.i;
+ kk += j;
+/* L110: */
+ }
+ } else {
+ jx = kx;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jx;
+ temp.r = x[i__2].r, temp.i = x[i__2].i;
+ ix = kx;
+ if (noconj) {
+ i__2 = kk + j - 2;
+ for (k = kk; k <= i__2; ++k) {
+ i__3 = k;
+ i__4 = ix;
+ q__2.r = ap[i__3].r * x[i__4].r - ap[i__3].i * x[
+ i__4].i, q__2.i = ap[i__3].r * x[i__4].i
+ + ap[i__3].i * x[i__4].r;
+ q__1.r = temp.r - q__2.r, q__1.i = temp.i -
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+ ix += *incx;
+/* L120: */
+ }
+ if (nounit) {
+ c_div(&q__1, &temp, &ap[kk + j - 1]);
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ } else {
+ i__2 = kk + j - 2;
+ for (k = kk; k <= i__2; ++k) {
+ r_cnjg(&q__3, &ap[k]);
+ i__3 = ix;
+ q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i,
+ q__2.i = q__3.r * x[i__3].i + q__3.i * x[
+ i__3].r;
+ q__1.r = temp.r - q__2.r, q__1.i = temp.i -
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+ ix += *incx;
+/* L130: */
+ }
+ if (nounit) {
+ r_cnjg(&q__2, &ap[kk + j - 1]);
+ c_div(&q__1, &temp, &q__2);
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ }
+ i__2 = jx;
+ x[i__2].r = temp.r, x[i__2].i = temp.i;
+ jx += *incx;
+ kk += j;
+/* L140: */
+ }
+ }
+ } else {
+ kk = *n * (*n + 1) / 2;
+ if (*incx == 1) {
+ for (j = *n; j >= 1; --j) {
+ i__1 = j;
+ temp.r = x[i__1].r, temp.i = x[i__1].i;
+ k = kk;
+ if (noconj) {
+ i__1 = j + 1;
+ for (i__ = *n; i__ >= i__1; --i__) {
+ i__2 = k;
+ i__3 = i__;
+ q__2.r = ap[i__2].r * x[i__3].r - ap[i__2].i * x[
+ i__3].i, q__2.i = ap[i__2].r * x[i__3].i
+ + ap[i__2].i * x[i__3].r;
+ q__1.r = temp.r - q__2.r, q__1.i = temp.i -
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+ --k;
+/* L150: */
+ }
+ if (nounit) {
+ c_div(&q__1, &temp, &ap[kk - *n + j]);
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ } else {
+ i__1 = j + 1;
+ for (i__ = *n; i__ >= i__1; --i__) {
+ r_cnjg(&q__3, &ap[k]);
+ i__2 = i__;
+ q__2.r = q__3.r * x[i__2].r - q__3.i * x[i__2].i,
+ q__2.i = q__3.r * x[i__2].i + q__3.i * x[
+ i__2].r;
+ q__1.r = temp.r - q__2.r, q__1.i = temp.i -
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+ --k;
+/* L160: */
+ }
+ if (nounit) {
+ r_cnjg(&q__2, &ap[kk - *n + j]);
+ c_div(&q__1, &temp, &q__2);
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ }
+ i__1 = j;
+ x[i__1].r = temp.r, x[i__1].i = temp.i;
+ kk -= *n - j + 1;
+/* L170: */
+ }
+ } else {
+ kx += (*n - 1) * *incx;
+ jx = kx;
+ for (j = *n; j >= 1; --j) {
+ i__1 = jx;
+ temp.r = x[i__1].r, temp.i = x[i__1].i;
+ ix = kx;
+ if (noconj) {
+ i__1 = kk - (*n - (j + 1));
+ for (k = kk; k >= i__1; --k) {
+ i__2 = k;
+ i__3 = ix;
+ q__2.r = ap[i__2].r * x[i__3].r - ap[i__2].i * x[
+ i__3].i, q__2.i = ap[i__2].r * x[i__3].i
+ + ap[i__2].i * x[i__3].r;
+ q__1.r = temp.r - q__2.r, q__1.i = temp.i -
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+ ix -= *incx;
+/* L180: */
+ }
+ if (nounit) {
+ c_div(&q__1, &temp, &ap[kk - *n + j]);
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ } else {
+ i__1 = kk - (*n - (j + 1));
+ for (k = kk; k >= i__1; --k) {
+ r_cnjg(&q__3, &ap[k]);
+ i__2 = ix;
+ q__2.r = q__3.r * x[i__2].r - q__3.i * x[i__2].i,
+ q__2.i = q__3.r * x[i__2].i + q__3.i * x[
+ i__2].r;
+ q__1.r = temp.r - q__2.r, q__1.i = temp.i -
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+ ix -= *incx;
+/* L190: */
+ }
+ if (nounit) {
+ r_cnjg(&q__2, &ap[kk - *n + j]);
+ c_div(&q__1, &temp, &q__2);
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+ }
+ i__1 = jx;
+ x[i__1].r = temp.r, x[i__1].i = temp.i;
+ jx -= *incx;
+ kk -= *n - j + 1;
+/* L200: */
+ }
+ }
+ }
+ }
+
+ return 0;
+
+/* End of CTPSV . */
+
+} /* ctpsv_ */