diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/cblas/ctpsv.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/cblas/ctpsv.c')
-rw-r--r-- | contrib/libs/cblas/ctpsv.c | 539 |
1 files changed, 539 insertions, 0 deletions
diff --git a/contrib/libs/cblas/ctpsv.c b/contrib/libs/cblas/ctpsv.c new file mode 100644 index 0000000000..2e810f674c --- /dev/null +++ b/contrib/libs/cblas/ctpsv.c @@ -0,0 +1,539 @@ +/* ctpsv.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Subroutine */ int ctpsv_(char *uplo, char *trans, char *diag, integer *n, + complex *ap, complex *x, integer *incx) +{ + /* System generated locals */ + integer i__1, i__2, i__3, i__4, i__5; + complex q__1, q__2, q__3; + + /* Builtin functions */ + void c_div(complex *, complex *, complex *), r_cnjg(complex *, complex *); + + /* Local variables */ + integer i__, j, k, kk, ix, jx, kx, info; + complex temp; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + logical noconj, nounit; + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* CTPSV solves one of the systems of equations */ + +/* A*x = b, or A'*x = b, or conjg( A' )*x = b, */ + +/* where b and x are n element vectors and A is an n by n unit, or */ +/* non-unit, upper or lower triangular matrix, supplied in packed form. */ + +/* No test for singularity or near-singularity is included in this */ +/* routine. Such tests must be performed before calling this routine. */ + +/* Arguments */ +/* ========== */ + +/* UPLO - CHARACTER*1. */ +/* On entry, UPLO specifies whether the matrix is an upper or */ +/* lower triangular matrix as follows: */ + +/* UPLO = 'U' or 'u' A is an upper triangular matrix. */ + +/* UPLO = 'L' or 'l' A is a lower triangular matrix. */ + +/* Unchanged on exit. */ + +/* TRANS - CHARACTER*1. */ +/* On entry, TRANS specifies the equations to be solved as */ +/* follows: */ + +/* TRANS = 'N' or 'n' A*x = b. */ + +/* TRANS = 'T' or 't' A'*x = b. */ + +/* TRANS = 'C' or 'c' conjg( A' )*x = b. */ + +/* Unchanged on exit. */ + +/* DIAG - CHARACTER*1. */ +/* On entry, DIAG specifies whether or not A is unit */ +/* triangular as follows: */ + +/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */ + +/* DIAG = 'N' or 'n' A is not assumed to be unit */ +/* triangular. */ + +/* Unchanged on exit. */ + +/* N - INTEGER. */ +/* On entry, N specifies the order of the matrix A. */ +/* N must be at least zero. */ +/* Unchanged on exit. */ + +/* AP - COMPLEX array of DIMENSION at least */ +/* ( ( n*( n + 1 ) )/2 ). */ +/* Before entry with UPLO = 'U' or 'u', the array AP must */ +/* contain the upper triangular matrix packed sequentially, */ +/* column by column, so that AP( 1 ) contains a( 1, 1 ), */ +/* AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) */ +/* respectively, and so on. */ +/* Before entry with UPLO = 'L' or 'l', the array AP must */ +/* contain the lower triangular matrix packed sequentially, */ +/* column by column, so that AP( 1 ) contains a( 1, 1 ), */ +/* AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) */ +/* respectively, and so on. */ +/* Note that when DIAG = 'U' or 'u', the diagonal elements of */ +/* A are not referenced, but are assumed to be unity. */ +/* Unchanged on exit. */ + +/* X - COMPLEX array of dimension at least */ +/* ( 1 + ( n - 1 )*abs( INCX ) ). */ +/* Before entry, the incremented array X must contain the n */ +/* element right-hand side vector b. On exit, X is overwritten */ +/* with the solution vector x. */ + +/* INCX - INTEGER. */ +/* On entry, INCX specifies the increment for the elements of */ +/* X. INCX must not be zero. */ +/* Unchanged on exit. */ + + +/* Level 2 Blas routine. */ + +/* -- Written on 22-October-1986. */ +/* Jack Dongarra, Argonne National Lab. */ +/* Jeremy Du Croz, Nag Central Office. */ +/* Sven Hammarling, Nag Central Office. */ +/* Richard Hanson, Sandia National Labs. */ + + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + --x; + --ap; + + /* Function Body */ + info = 0; + if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { + info = 1; + } else if (! lsame_(trans, "N") && ! lsame_(trans, + "T") && ! lsame_(trans, "C")) { + info = 2; + } else if (! lsame_(diag, "U") && ! lsame_(diag, + "N")) { + info = 3; + } else if (*n < 0) { + info = 4; + } else if (*incx == 0) { + info = 7; + } + if (info != 0) { + xerbla_("CTPSV ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (*n == 0) { + return 0; + } + + noconj = lsame_(trans, "T"); + nounit = lsame_(diag, "N"); + +/* Set up the start point in X if the increment is not unity. This */ +/* will be ( N - 1 )*INCX too small for descending loops. */ + + if (*incx <= 0) { + kx = 1 - (*n - 1) * *incx; + } else if (*incx != 1) { + kx = 1; + } + +/* Start the operations. In this version the elements of AP are */ +/* accessed sequentially with one pass through AP. */ + + if (lsame_(trans, "N")) { + +/* Form x := inv( A )*x. */ + + if (lsame_(uplo, "U")) { + kk = *n * (*n + 1) / 2; + if (*incx == 1) { + for (j = *n; j >= 1; --j) { + i__1 = j; + if (x[i__1].r != 0.f || x[i__1].i != 0.f) { + if (nounit) { + i__1 = j; + c_div(&q__1, &x[j], &ap[kk]); + x[i__1].r = q__1.r, x[i__1].i = q__1.i; + } + i__1 = j; + temp.r = x[i__1].r, temp.i = x[i__1].i; + k = kk - 1; + for (i__ = j - 1; i__ >= 1; --i__) { + i__1 = i__; + i__2 = i__; + i__3 = k; + q__2.r = temp.r * ap[i__3].r - temp.i * ap[i__3] + .i, q__2.i = temp.r * ap[i__3].i + temp.i + * ap[i__3].r; + q__1.r = x[i__2].r - q__2.r, q__1.i = x[i__2].i - + q__2.i; + x[i__1].r = q__1.r, x[i__1].i = q__1.i; + --k; +/* L10: */ + } + } + kk -= j; +/* L20: */ + } + } else { + jx = kx + (*n - 1) * *incx; + for (j = *n; j >= 1; --j) { + i__1 = jx; + if (x[i__1].r != 0.f || x[i__1].i != 0.f) { + if (nounit) { + i__1 = jx; + c_div(&q__1, &x[jx], &ap[kk]); + x[i__1].r = q__1.r, x[i__1].i = q__1.i; + } + i__1 = jx; + temp.r = x[i__1].r, temp.i = x[i__1].i; + ix = jx; + i__1 = kk - j + 1; + for (k = kk - 1; k >= i__1; --k) { + ix -= *incx; + i__2 = ix; + i__3 = ix; + i__4 = k; + q__2.r = temp.r * ap[i__4].r - temp.i * ap[i__4] + .i, q__2.i = temp.r * ap[i__4].i + temp.i + * ap[i__4].r; + q__1.r = x[i__3].r - q__2.r, q__1.i = x[i__3].i - + q__2.i; + x[i__2].r = q__1.r, x[i__2].i = q__1.i; +/* L30: */ + } + } + jx -= *incx; + kk -= j; +/* L40: */ + } + } + } else { + kk = 1; + if (*incx == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + if (x[i__2].r != 0.f || x[i__2].i != 0.f) { + if (nounit) { + i__2 = j; + c_div(&q__1, &x[j], &ap[kk]); + x[i__2].r = q__1.r, x[i__2].i = q__1.i; + } + i__2 = j; + temp.r = x[i__2].r, temp.i = x[i__2].i; + k = kk + 1; + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + i__3 = i__; + i__4 = i__; + i__5 = k; + q__2.r = temp.r * ap[i__5].r - temp.i * ap[i__5] + .i, q__2.i = temp.r * ap[i__5].i + temp.i + * ap[i__5].r; + q__1.r = x[i__4].r - q__2.r, q__1.i = x[i__4].i - + q__2.i; + x[i__3].r = q__1.r, x[i__3].i = q__1.i; + ++k; +/* L50: */ + } + } + kk += *n - j + 1; +/* L60: */ + } + } else { + jx = kx; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jx; + if (x[i__2].r != 0.f || x[i__2].i != 0.f) { + if (nounit) { + i__2 = jx; + c_div(&q__1, &x[jx], &ap[kk]); + x[i__2].r = q__1.r, x[i__2].i = q__1.i; + } + i__2 = jx; + temp.r = x[i__2].r, temp.i = x[i__2].i; + ix = jx; + i__2 = kk + *n - j; + for (k = kk + 1; k <= i__2; ++k) { + ix += *incx; + i__3 = ix; + i__4 = ix; + i__5 = k; + q__2.r = temp.r * ap[i__5].r - temp.i * ap[i__5] + .i, q__2.i = temp.r * ap[i__5].i + temp.i + * ap[i__5].r; + q__1.r = x[i__4].r - q__2.r, q__1.i = x[i__4].i - + q__2.i; + x[i__3].r = q__1.r, x[i__3].i = q__1.i; +/* L70: */ + } + } + jx += *incx; + kk += *n - j + 1; +/* L80: */ + } + } + } + } else { + +/* Form x := inv( A' )*x or x := inv( conjg( A' ) )*x. */ + + if (lsame_(uplo, "U")) { + kk = 1; + if (*incx == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + temp.r = x[i__2].r, temp.i = x[i__2].i; + k = kk; + if (noconj) { + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = k; + i__4 = i__; + q__2.r = ap[i__3].r * x[i__4].r - ap[i__3].i * x[ + i__4].i, q__2.i = ap[i__3].r * x[i__4].i + + ap[i__3].i * x[i__4].r; + q__1.r = temp.r - q__2.r, q__1.i = temp.i - + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; + ++k; +/* L90: */ + } + if (nounit) { + c_div(&q__1, &temp, &ap[kk + j - 1]); + temp.r = q__1.r, temp.i = q__1.i; + } + } else { + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + r_cnjg(&q__3, &ap[k]); + i__3 = i__; + q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, + q__2.i = q__3.r * x[i__3].i + q__3.i * x[ + i__3].r; + q__1.r = temp.r - q__2.r, q__1.i = temp.i - + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; + ++k; +/* L100: */ + } + if (nounit) { + r_cnjg(&q__2, &ap[kk + j - 1]); + c_div(&q__1, &temp, &q__2); + temp.r = q__1.r, temp.i = q__1.i; + } + } + i__2 = j; + x[i__2].r = temp.r, x[i__2].i = temp.i; + kk += j; +/* L110: */ + } + } else { + jx = kx; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jx; + temp.r = x[i__2].r, temp.i = x[i__2].i; + ix = kx; + if (noconj) { + i__2 = kk + j - 2; + for (k = kk; k <= i__2; ++k) { + i__3 = k; + i__4 = ix; + q__2.r = ap[i__3].r * x[i__4].r - ap[i__3].i * x[ + i__4].i, q__2.i = ap[i__3].r * x[i__4].i + + ap[i__3].i * x[i__4].r; + q__1.r = temp.r - q__2.r, q__1.i = temp.i - + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; + ix += *incx; +/* L120: */ + } + if (nounit) { + c_div(&q__1, &temp, &ap[kk + j - 1]); + temp.r = q__1.r, temp.i = q__1.i; + } + } else { + i__2 = kk + j - 2; + for (k = kk; k <= i__2; ++k) { + r_cnjg(&q__3, &ap[k]); + i__3 = ix; + q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, + q__2.i = q__3.r * x[i__3].i + q__3.i * x[ + i__3].r; + q__1.r = temp.r - q__2.r, q__1.i = temp.i - + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; + ix += *incx; +/* L130: */ + } + if (nounit) { + r_cnjg(&q__2, &ap[kk + j - 1]); + c_div(&q__1, &temp, &q__2); + temp.r = q__1.r, temp.i = q__1.i; + } + } + i__2 = jx; + x[i__2].r = temp.r, x[i__2].i = temp.i; + jx += *incx; + kk += j; +/* L140: */ + } + } + } else { + kk = *n * (*n + 1) / 2; + if (*incx == 1) { + for (j = *n; j >= 1; --j) { + i__1 = j; + temp.r = x[i__1].r, temp.i = x[i__1].i; + k = kk; + if (noconj) { + i__1 = j + 1; + for (i__ = *n; i__ >= i__1; --i__) { + i__2 = k; + i__3 = i__; + q__2.r = ap[i__2].r * x[i__3].r - ap[i__2].i * x[ + i__3].i, q__2.i = ap[i__2].r * x[i__3].i + + ap[i__2].i * x[i__3].r; + q__1.r = temp.r - q__2.r, q__1.i = temp.i - + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; + --k; +/* L150: */ + } + if (nounit) { + c_div(&q__1, &temp, &ap[kk - *n + j]); + temp.r = q__1.r, temp.i = q__1.i; + } + } else { + i__1 = j + 1; + for (i__ = *n; i__ >= i__1; --i__) { + r_cnjg(&q__3, &ap[k]); + i__2 = i__; + q__2.r = q__3.r * x[i__2].r - q__3.i * x[i__2].i, + q__2.i = q__3.r * x[i__2].i + q__3.i * x[ + i__2].r; + q__1.r = temp.r - q__2.r, q__1.i = temp.i - + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; + --k; +/* L160: */ + } + if (nounit) { + r_cnjg(&q__2, &ap[kk - *n + j]); + c_div(&q__1, &temp, &q__2); + temp.r = q__1.r, temp.i = q__1.i; + } + } + i__1 = j; + x[i__1].r = temp.r, x[i__1].i = temp.i; + kk -= *n - j + 1; +/* L170: */ + } + } else { + kx += (*n - 1) * *incx; + jx = kx; + for (j = *n; j >= 1; --j) { + i__1 = jx; + temp.r = x[i__1].r, temp.i = x[i__1].i; + ix = kx; + if (noconj) { + i__1 = kk - (*n - (j + 1)); + for (k = kk; k >= i__1; --k) { + i__2 = k; + i__3 = ix; + q__2.r = ap[i__2].r * x[i__3].r - ap[i__2].i * x[ + i__3].i, q__2.i = ap[i__2].r * x[i__3].i + + ap[i__2].i * x[i__3].r; + q__1.r = temp.r - q__2.r, q__1.i = temp.i - + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; + ix -= *incx; +/* L180: */ + } + if (nounit) { + c_div(&q__1, &temp, &ap[kk - *n + j]); + temp.r = q__1.r, temp.i = q__1.i; + } + } else { + i__1 = kk - (*n - (j + 1)); + for (k = kk; k >= i__1; --k) { + r_cnjg(&q__3, &ap[k]); + i__2 = ix; + q__2.r = q__3.r * x[i__2].r - q__3.i * x[i__2].i, + q__2.i = q__3.r * x[i__2].i + q__3.i * x[ + i__2].r; + q__1.r = temp.r - q__2.r, q__1.i = temp.i - + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; + ix -= *incx; +/* L190: */ + } + if (nounit) { + r_cnjg(&q__2, &ap[kk - *n + j]); + c_div(&q__1, &temp, &q__2); + temp.r = q__1.r, temp.i = q__1.i; + } + } + i__1 = jx; + x[i__1].r = temp.r, x[i__1].i = temp.i; + jx -= *incx; + kk -= *n - j + 1; +/* L200: */ + } + } + } + } + + return 0; + +/* End of CTPSV . */ + +} /* ctpsv_ */ |