diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/cblas/ctbmv.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/cblas/ctbmv.c')
-rw-r--r-- | contrib/libs/cblas/ctbmv.c | 641 |
1 files changed, 641 insertions, 0 deletions
diff --git a/contrib/libs/cblas/ctbmv.c b/contrib/libs/cblas/ctbmv.c new file mode 100644 index 0000000000..cbaf63578b --- /dev/null +++ b/contrib/libs/cblas/ctbmv.c @@ -0,0 +1,641 @@ +/* ctbmv.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Subroutine */ int ctbmv_(char *uplo, char *trans, char *diag, integer *n, + integer *k, complex *a, integer *lda, complex *x, integer *incx) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; + complex q__1, q__2, q__3; + + /* Builtin functions */ + void r_cnjg(complex *, complex *); + + /* Local variables */ + integer i__, j, l, ix, jx, kx, info; + complex temp; + extern logical lsame_(char *, char *); + integer kplus1; + extern /* Subroutine */ int xerbla_(char *, integer *); + logical noconj, nounit; + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* CTBMV performs one of the matrix-vector operations */ + +/* x := A*x, or x := A'*x, or x := conjg( A' )*x, */ + +/* where x is an n element vector and A is an n by n unit, or non-unit, */ +/* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */ + +/* Arguments */ +/* ========== */ + +/* UPLO - CHARACTER*1. */ +/* On entry, UPLO specifies whether the matrix is an upper or */ +/* lower triangular matrix as follows: */ + +/* UPLO = 'U' or 'u' A is an upper triangular matrix. */ + +/* UPLO = 'L' or 'l' A is a lower triangular matrix. */ + +/* Unchanged on exit. */ + +/* TRANS - CHARACTER*1. */ +/* On entry, TRANS specifies the operation to be performed as */ +/* follows: */ + +/* TRANS = 'N' or 'n' x := A*x. */ + +/* TRANS = 'T' or 't' x := A'*x. */ + +/* TRANS = 'C' or 'c' x := conjg( A' )*x. */ + +/* Unchanged on exit. */ + +/* DIAG - CHARACTER*1. */ +/* On entry, DIAG specifies whether or not A is unit */ +/* triangular as follows: */ + +/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */ + +/* DIAG = 'N' or 'n' A is not assumed to be unit */ +/* triangular. */ + +/* Unchanged on exit. */ + +/* N - INTEGER. */ +/* On entry, N specifies the order of the matrix A. */ +/* N must be at least zero. */ +/* Unchanged on exit. */ + +/* K - INTEGER. */ +/* On entry with UPLO = 'U' or 'u', K specifies the number of */ +/* super-diagonals of the matrix A. */ +/* On entry with UPLO = 'L' or 'l', K specifies the number of */ +/* sub-diagonals of the matrix A. */ +/* K must satisfy 0 .le. K. */ +/* Unchanged on exit. */ + +/* A - COMPLEX array of DIMENSION ( LDA, n ). */ +/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */ +/* by n part of the array A must contain the upper triangular */ +/* band part of the matrix of coefficients, supplied column by */ +/* column, with the leading diagonal of the matrix in row */ +/* ( k + 1 ) of the array, the first super-diagonal starting at */ +/* position 2 in row k, and so on. The top left k by k triangle */ +/* of the array A is not referenced. */ +/* The following program segment will transfer an upper */ +/* triangular band matrix from conventional full matrix storage */ +/* to band storage: */ + +/* DO 20, J = 1, N */ +/* M = K + 1 - J */ +/* DO 10, I = MAX( 1, J - K ), J */ +/* A( M + I, J ) = matrix( I, J ) */ +/* 10 CONTINUE */ +/* 20 CONTINUE */ + +/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */ +/* by n part of the array A must contain the lower triangular */ +/* band part of the matrix of coefficients, supplied column by */ +/* column, with the leading diagonal of the matrix in row 1 of */ +/* the array, the first sub-diagonal starting at position 1 in */ +/* row 2, and so on. The bottom right k by k triangle of the */ +/* array A is not referenced. */ +/* The following program segment will transfer a lower */ +/* triangular band matrix from conventional full matrix storage */ +/* to band storage: */ + +/* DO 20, J = 1, N */ +/* M = 1 - J */ +/* DO 10, I = J, MIN( N, J + K ) */ +/* A( M + I, J ) = matrix( I, J ) */ +/* 10 CONTINUE */ +/* 20 CONTINUE */ + +/* Note that when DIAG = 'U' or 'u' the elements of the array A */ +/* corresponding to the diagonal elements of the matrix are not */ +/* referenced, but are assumed to be unity. */ +/* Unchanged on exit. */ + +/* LDA - INTEGER. */ +/* On entry, LDA specifies the first dimension of A as declared */ +/* in the calling (sub) program. LDA must be at least */ +/* ( k + 1 ). */ +/* Unchanged on exit. */ + +/* X - COMPLEX array of dimension at least */ +/* ( 1 + ( n - 1 )*abs( INCX ) ). */ +/* Before entry, the incremented array X must contain the n */ +/* element vector x. On exit, X is overwritten with the */ +/* tranformed vector x. */ + +/* INCX - INTEGER. */ +/* On entry, INCX specifies the increment for the elements of */ +/* X. INCX must not be zero. */ +/* Unchanged on exit. */ + + +/* Level 2 Blas routine. */ + +/* -- Written on 22-October-1986. */ +/* Jack Dongarra, Argonne National Lab. */ +/* Jeremy Du Croz, Nag Central Office. */ +/* Sven Hammarling, Nag Central Office. */ +/* Richard Hanson, Sandia National Labs. */ + + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --x; + + /* Function Body */ + info = 0; + if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { + info = 1; + } else if (! lsame_(trans, "N") && ! lsame_(trans, + "T") && ! lsame_(trans, "C")) { + info = 2; + } else if (! lsame_(diag, "U") && ! lsame_(diag, + "N")) { + info = 3; + } else if (*n < 0) { + info = 4; + } else if (*k < 0) { + info = 5; + } else if (*lda < *k + 1) { + info = 7; + } else if (*incx == 0) { + info = 9; + } + if (info != 0) { + xerbla_("CTBMV ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (*n == 0) { + return 0; + } + + noconj = lsame_(trans, "T"); + nounit = lsame_(diag, "N"); + +/* Set up the start point in X if the increment is not unity. This */ +/* will be ( N - 1 )*INCX too small for descending loops. */ + + if (*incx <= 0) { + kx = 1 - (*n - 1) * *incx; + } else if (*incx != 1) { + kx = 1; + } + +/* Start the operations. In this version the elements of A are */ +/* accessed sequentially with one pass through A. */ + + if (lsame_(trans, "N")) { + +/* Form x := A*x. */ + + if (lsame_(uplo, "U")) { + kplus1 = *k + 1; + if (*incx == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + if (x[i__2].r != 0.f || x[i__2].i != 0.f) { + i__2 = j; + temp.r = x[i__2].r, temp.i = x[i__2].i; + l = kplus1 - j; +/* Computing MAX */ + i__2 = 1, i__3 = j - *k; + i__4 = j - 1; + for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) { + i__2 = i__; + i__3 = i__; + i__5 = l + i__ + j * a_dim1; + q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, + q__2.i = temp.r * a[i__5].i + temp.i * a[ + i__5].r; + q__1.r = x[i__3].r + q__2.r, q__1.i = x[i__3].i + + q__2.i; + x[i__2].r = q__1.r, x[i__2].i = q__1.i; +/* L10: */ + } + if (nounit) { + i__4 = j; + i__2 = j; + i__3 = kplus1 + j * a_dim1; + q__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[ + i__3].i, q__1.i = x[i__2].r * a[i__3].i + + x[i__2].i * a[i__3].r; + x[i__4].r = q__1.r, x[i__4].i = q__1.i; + } + } +/* L20: */ + } + } else { + jx = kx; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__4 = jx; + if (x[i__4].r != 0.f || x[i__4].i != 0.f) { + i__4 = jx; + temp.r = x[i__4].r, temp.i = x[i__4].i; + ix = kx; + l = kplus1 - j; +/* Computing MAX */ + i__4 = 1, i__2 = j - *k; + i__3 = j - 1; + for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) { + i__4 = ix; + i__2 = ix; + i__5 = l + i__ + j * a_dim1; + q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, + q__2.i = temp.r * a[i__5].i + temp.i * a[ + i__5].r; + q__1.r = x[i__2].r + q__2.r, q__1.i = x[i__2].i + + q__2.i; + x[i__4].r = q__1.r, x[i__4].i = q__1.i; + ix += *incx; +/* L30: */ + } + if (nounit) { + i__3 = jx; + i__4 = jx; + i__2 = kplus1 + j * a_dim1; + q__1.r = x[i__4].r * a[i__2].r - x[i__4].i * a[ + i__2].i, q__1.i = x[i__4].r * a[i__2].i + + x[i__4].i * a[i__2].r; + x[i__3].r = q__1.r, x[i__3].i = q__1.i; + } + } + jx += *incx; + if (j > *k) { + kx += *incx; + } +/* L40: */ + } + } + } else { + if (*incx == 1) { + for (j = *n; j >= 1; --j) { + i__1 = j; + if (x[i__1].r != 0.f || x[i__1].i != 0.f) { + i__1 = j; + temp.r = x[i__1].r, temp.i = x[i__1].i; + l = 1 - j; +/* Computing MIN */ + i__1 = *n, i__3 = j + *k; + i__4 = j + 1; + for (i__ = min(i__1,i__3); i__ >= i__4; --i__) { + i__1 = i__; + i__3 = i__; + i__2 = l + i__ + j * a_dim1; + q__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i, + q__2.i = temp.r * a[i__2].i + temp.i * a[ + i__2].r; + q__1.r = x[i__3].r + q__2.r, q__1.i = x[i__3].i + + q__2.i; + x[i__1].r = q__1.r, x[i__1].i = q__1.i; +/* L50: */ + } + if (nounit) { + i__4 = j; + i__1 = j; + i__3 = j * a_dim1 + 1; + q__1.r = x[i__1].r * a[i__3].r - x[i__1].i * a[ + i__3].i, q__1.i = x[i__1].r * a[i__3].i + + x[i__1].i * a[i__3].r; + x[i__4].r = q__1.r, x[i__4].i = q__1.i; + } + } +/* L60: */ + } + } else { + kx += (*n - 1) * *incx; + jx = kx; + for (j = *n; j >= 1; --j) { + i__4 = jx; + if (x[i__4].r != 0.f || x[i__4].i != 0.f) { + i__4 = jx; + temp.r = x[i__4].r, temp.i = x[i__4].i; + ix = kx; + l = 1 - j; +/* Computing MIN */ + i__4 = *n, i__1 = j + *k; + i__3 = j + 1; + for (i__ = min(i__4,i__1); i__ >= i__3; --i__) { + i__4 = ix; + i__1 = ix; + i__2 = l + i__ + j * a_dim1; + q__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i, + q__2.i = temp.r * a[i__2].i + temp.i * a[ + i__2].r; + q__1.r = x[i__1].r + q__2.r, q__1.i = x[i__1].i + + q__2.i; + x[i__4].r = q__1.r, x[i__4].i = q__1.i; + ix -= *incx; +/* L70: */ + } + if (nounit) { + i__3 = jx; + i__4 = jx; + i__1 = j * a_dim1 + 1; + q__1.r = x[i__4].r * a[i__1].r - x[i__4].i * a[ + i__1].i, q__1.i = x[i__4].r * a[i__1].i + + x[i__4].i * a[i__1].r; + x[i__3].r = q__1.r, x[i__3].i = q__1.i; + } + } + jx -= *incx; + if (*n - j >= *k) { + kx -= *incx; + } +/* L80: */ + } + } + } + } else { + +/* Form x := A'*x or x := conjg( A' )*x. */ + + if (lsame_(uplo, "U")) { + kplus1 = *k + 1; + if (*incx == 1) { + for (j = *n; j >= 1; --j) { + i__3 = j; + temp.r = x[i__3].r, temp.i = x[i__3].i; + l = kplus1 - j; + if (noconj) { + if (nounit) { + i__3 = kplus1 + j * a_dim1; + q__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i, + q__1.i = temp.r * a[i__3].i + temp.i * a[ + i__3].r; + temp.r = q__1.r, temp.i = q__1.i; + } +/* Computing MAX */ + i__4 = 1, i__1 = j - *k; + i__3 = max(i__4,i__1); + for (i__ = j - 1; i__ >= i__3; --i__) { + i__4 = l + i__ + j * a_dim1; + i__1 = i__; + q__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[ + i__1].i, q__2.i = a[i__4].r * x[i__1].i + + a[i__4].i * x[i__1].r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L90: */ + } + } else { + if (nounit) { + r_cnjg(&q__2, &a[kplus1 + j * a_dim1]); + q__1.r = temp.r * q__2.r - temp.i * q__2.i, + q__1.i = temp.r * q__2.i + temp.i * + q__2.r; + temp.r = q__1.r, temp.i = q__1.i; + } +/* Computing MAX */ + i__4 = 1, i__1 = j - *k; + i__3 = max(i__4,i__1); + for (i__ = j - 1; i__ >= i__3; --i__) { + r_cnjg(&q__3, &a[l + i__ + j * a_dim1]); + i__4 = i__; + q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, + q__2.i = q__3.r * x[i__4].i + q__3.i * x[ + i__4].r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L100: */ + } + } + i__3 = j; + x[i__3].r = temp.r, x[i__3].i = temp.i; +/* L110: */ + } + } else { + kx += (*n - 1) * *incx; + jx = kx; + for (j = *n; j >= 1; --j) { + i__3 = jx; + temp.r = x[i__3].r, temp.i = x[i__3].i; + kx -= *incx; + ix = kx; + l = kplus1 - j; + if (noconj) { + if (nounit) { + i__3 = kplus1 + j * a_dim1; + q__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i, + q__1.i = temp.r * a[i__3].i + temp.i * a[ + i__3].r; + temp.r = q__1.r, temp.i = q__1.i; + } +/* Computing MAX */ + i__4 = 1, i__1 = j - *k; + i__3 = max(i__4,i__1); + for (i__ = j - 1; i__ >= i__3; --i__) { + i__4 = l + i__ + j * a_dim1; + i__1 = ix; + q__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[ + i__1].i, q__2.i = a[i__4].r * x[i__1].i + + a[i__4].i * x[i__1].r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; + ix -= *incx; +/* L120: */ + } + } else { + if (nounit) { + r_cnjg(&q__2, &a[kplus1 + j * a_dim1]); + q__1.r = temp.r * q__2.r - temp.i * q__2.i, + q__1.i = temp.r * q__2.i + temp.i * + q__2.r; + temp.r = q__1.r, temp.i = q__1.i; + } +/* Computing MAX */ + i__4 = 1, i__1 = j - *k; + i__3 = max(i__4,i__1); + for (i__ = j - 1; i__ >= i__3; --i__) { + r_cnjg(&q__3, &a[l + i__ + j * a_dim1]); + i__4 = ix; + q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, + q__2.i = q__3.r * x[i__4].i + q__3.i * x[ + i__4].r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; + ix -= *incx; +/* L130: */ + } + } + i__3 = jx; + x[i__3].r = temp.r, x[i__3].i = temp.i; + jx -= *incx; +/* L140: */ + } + } + } else { + if (*incx == 1) { + i__3 = *n; + for (j = 1; j <= i__3; ++j) { + i__4 = j; + temp.r = x[i__4].r, temp.i = x[i__4].i; + l = 1 - j; + if (noconj) { + if (nounit) { + i__4 = j * a_dim1 + 1; + q__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i, + q__1.i = temp.r * a[i__4].i + temp.i * a[ + i__4].r; + temp.r = q__1.r, temp.i = q__1.i; + } +/* Computing MIN */ + i__1 = *n, i__2 = j + *k; + i__4 = min(i__1,i__2); + for (i__ = j + 1; i__ <= i__4; ++i__) { + i__1 = l + i__ + j * a_dim1; + i__2 = i__; + q__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[ + i__2].i, q__2.i = a[i__1].r * x[i__2].i + + a[i__1].i * x[i__2].r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L150: */ + } + } else { + if (nounit) { + r_cnjg(&q__2, &a[j * a_dim1 + 1]); + q__1.r = temp.r * q__2.r - temp.i * q__2.i, + q__1.i = temp.r * q__2.i + temp.i * + q__2.r; + temp.r = q__1.r, temp.i = q__1.i; + } +/* Computing MIN */ + i__1 = *n, i__2 = j + *k; + i__4 = min(i__1,i__2); + for (i__ = j + 1; i__ <= i__4; ++i__) { + r_cnjg(&q__3, &a[l + i__ + j * a_dim1]); + i__1 = i__; + q__2.r = q__3.r * x[i__1].r - q__3.i * x[i__1].i, + q__2.i = q__3.r * x[i__1].i + q__3.i * x[ + i__1].r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L160: */ + } + } + i__4 = j; + x[i__4].r = temp.r, x[i__4].i = temp.i; +/* L170: */ + } + } else { + jx = kx; + i__3 = *n; + for (j = 1; j <= i__3; ++j) { + i__4 = jx; + temp.r = x[i__4].r, temp.i = x[i__4].i; + kx += *incx; + ix = kx; + l = 1 - j; + if (noconj) { + if (nounit) { + i__4 = j * a_dim1 + 1; + q__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i, + q__1.i = temp.r * a[i__4].i + temp.i * a[ + i__4].r; + temp.r = q__1.r, temp.i = q__1.i; + } +/* Computing MIN */ + i__1 = *n, i__2 = j + *k; + i__4 = min(i__1,i__2); + for (i__ = j + 1; i__ <= i__4; ++i__) { + i__1 = l + i__ + j * a_dim1; + i__2 = ix; + q__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[ + i__2].i, q__2.i = a[i__1].r * x[i__2].i + + a[i__1].i * x[i__2].r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; + ix += *incx; +/* L180: */ + } + } else { + if (nounit) { + r_cnjg(&q__2, &a[j * a_dim1 + 1]); + q__1.r = temp.r * q__2.r - temp.i * q__2.i, + q__1.i = temp.r * q__2.i + temp.i * + q__2.r; + temp.r = q__1.r, temp.i = q__1.i; + } +/* Computing MIN */ + i__1 = *n, i__2 = j + *k; + i__4 = min(i__1,i__2); + for (i__ = j + 1; i__ <= i__4; ++i__) { + r_cnjg(&q__3, &a[l + i__ + j * a_dim1]); + i__1 = ix; + q__2.r = q__3.r * x[i__1].r - q__3.i * x[i__1].i, + q__2.i = q__3.r * x[i__1].i + q__3.i * x[ + i__1].r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; + ix += *incx; +/* L190: */ + } + } + i__4 = jx; + x[i__4].r = temp.r, x[i__4].i = temp.i; + jx += *incx; +/* L200: */ + } + } + } + } + + return 0; + +/* End of CTBMV . */ + +} /* ctbmv_ */ |