aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/cblas/csyrk.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/cblas/csyrk.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/cblas/csyrk.c')
-rw-r--r--contrib/libs/cblas/csyrk.c457
1 files changed, 457 insertions, 0 deletions
diff --git a/contrib/libs/cblas/csyrk.c b/contrib/libs/cblas/csyrk.c
new file mode 100644
index 0000000000..fdc8692957
--- /dev/null
+++ b/contrib/libs/cblas/csyrk.c
@@ -0,0 +1,457 @@
+/* csyrk.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Subroutine */ int csyrk_(char *uplo, char *trans, integer *n, integer *k,
+ complex *alpha, complex *a, integer *lda, complex *beta, complex *c__,
+ integer *ldc)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3, i__4, i__5,
+ i__6;
+ complex q__1, q__2, q__3;
+
+ /* Local variables */
+ integer i__, j, l, info;
+ complex temp;
+ extern logical lsame_(char *, char *);
+ integer nrowa;
+ logical upper;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CSYRK performs one of the symmetric rank k operations */
+
+/* C := alpha*A*A' + beta*C, */
+
+/* or */
+
+/* C := alpha*A'*A + beta*C, */
+
+/* where alpha and beta are scalars, C is an n by n symmetric matrix */
+/* and A is an n by k matrix in the first case and a k by n matrix */
+/* in the second case. */
+
+/* Arguments */
+/* ========== */
+
+/* UPLO - CHARACTER*1. */
+/* On entry, UPLO specifies whether the upper or lower */
+/* triangular part of the array C is to be referenced as */
+/* follows: */
+
+/* UPLO = 'U' or 'u' Only the upper triangular part of C */
+/* is to be referenced. */
+
+/* UPLO = 'L' or 'l' Only the lower triangular part of C */
+/* is to be referenced. */
+
+/* Unchanged on exit. */
+
+/* TRANS - CHARACTER*1. */
+/* On entry, TRANS specifies the operation to be performed as */
+/* follows: */
+
+/* TRANS = 'N' or 'n' C := alpha*A*A' + beta*C. */
+
+/* TRANS = 'T' or 't' C := alpha*A'*A + beta*C. */
+
+/* Unchanged on exit. */
+
+/* N - INTEGER. */
+/* On entry, N specifies the order of the matrix C. N must be */
+/* at least zero. */
+/* Unchanged on exit. */
+
+/* K - INTEGER. */
+/* On entry with TRANS = 'N' or 'n', K specifies the number */
+/* of columns of the matrix A, and on entry with */
+/* TRANS = 'T' or 't', K specifies the number of rows of the */
+/* matrix A. K must be at least zero. */
+/* Unchanged on exit. */
+
+/* ALPHA - COMPLEX . */
+/* On entry, ALPHA specifies the scalar alpha. */
+/* Unchanged on exit. */
+
+/* A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is */
+/* k when TRANS = 'N' or 'n', and is n otherwise. */
+/* Before entry with TRANS = 'N' or 'n', the leading n by k */
+/* part of the array A must contain the matrix A, otherwise */
+/* the leading k by n part of the array A must contain the */
+/* matrix A. */
+/* Unchanged on exit. */
+
+/* LDA - INTEGER. */
+/* On entry, LDA specifies the first dimension of A as declared */
+/* in the calling (sub) program. When TRANS = 'N' or 'n' */
+/* then LDA must be at least max( 1, n ), otherwise LDA must */
+/* be at least max( 1, k ). */
+/* Unchanged on exit. */
+
+/* BETA - COMPLEX . */
+/* On entry, BETA specifies the scalar beta. */
+/* Unchanged on exit. */
+
+/* C - COMPLEX array of DIMENSION ( LDC, n ). */
+/* Before entry with UPLO = 'U' or 'u', the leading n by n */
+/* upper triangular part of the array C must contain the upper */
+/* triangular part of the symmetric matrix and the strictly */
+/* lower triangular part of C is not referenced. On exit, the */
+/* upper triangular part of the array C is overwritten by the */
+/* upper triangular part of the updated matrix. */
+/* Before entry with UPLO = 'L' or 'l', the leading n by n */
+/* lower triangular part of the array C must contain the lower */
+/* triangular part of the symmetric matrix and the strictly */
+/* upper triangular part of C is not referenced. On exit, the */
+/* lower triangular part of the array C is overwritten by the */
+/* lower triangular part of the updated matrix. */
+
+/* LDC - INTEGER. */
+/* On entry, LDC specifies the first dimension of C as declared */
+/* in the calling (sub) program. LDC must be at least */
+/* max( 1, n ). */
+/* Unchanged on exit. */
+
+
+/* Level 3 Blas routine. */
+
+/* -- Written on 8-February-1989. */
+/* Jack Dongarra, Argonne National Laboratory. */
+/* Iain Duff, AERE Harwell. */
+/* Jeremy Du Croz, Numerical Algorithms Group Ltd. */
+/* Sven Hammarling, Numerical Algorithms Group Ltd. */
+
+
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Parameters .. */
+/* .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1;
+ c__ -= c_offset;
+
+ /* Function Body */
+ if (lsame_(trans, "N")) {
+ nrowa = *n;
+ } else {
+ nrowa = *k;
+ }
+ upper = lsame_(uplo, "U");
+
+ info = 0;
+ if (! upper && ! lsame_(uplo, "L")) {
+ info = 1;
+ } else if (! lsame_(trans, "N") && ! lsame_(trans,
+ "T")) {
+ info = 2;
+ } else if (*n < 0) {
+ info = 3;
+ } else if (*k < 0) {
+ info = 4;
+ } else if (*lda < max(1,nrowa)) {
+ info = 7;
+ } else if (*ldc < max(1,*n)) {
+ info = 10;
+ }
+ if (info != 0) {
+ xerbla_("CSYRK ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0 || (alpha->r == 0.f && alpha->i == 0.f || *k == 0) && (
+ beta->r == 1.f && beta->i == 0.f)) {
+ return 0;
+ }
+
+/* And when alpha.eq.zero. */
+
+ if (alpha->r == 0.f && alpha->i == 0.f) {
+ if (upper) {
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0.f, c__[i__3].i = 0.f;
+/* L10: */
+ }
+/* L20: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, q__1.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+/* L30: */
+ }
+/* L40: */
+ }
+ }
+ } else {
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0.f, c__[i__3].i = 0.f;
+/* L50: */
+ }
+/* L60: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, q__1.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+/* L70: */
+ }
+/* L80: */
+ }
+ }
+ }
+ return 0;
+ }
+
+/* Start the operations. */
+
+ if (lsame_(trans, "N")) {
+
+/* Form C := alpha*A*A' + beta*C. */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0.f, c__[i__3].i = 0.f;
+/* L90: */
+ }
+ } else if (beta->r != 1.f || beta->i != 0.f) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, q__1.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+/* L100: */
+ }
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ i__3 = j + l * a_dim1;
+ if (a[i__3].r != 0.f || a[i__3].i != 0.f) {
+ i__3 = j + l * a_dim1;
+ q__1.r = alpha->r * a[i__3].r - alpha->i * a[i__3].i,
+ q__1.i = alpha->r * a[i__3].i + alpha->i * a[
+ i__3].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ i__3 = j;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * c_dim1;
+ i__5 = i__ + j * c_dim1;
+ i__6 = i__ + l * a_dim1;
+ q__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
+ q__2.i = temp.r * a[i__6].i + temp.i * a[
+ i__6].r;
+ q__1.r = c__[i__5].r + q__2.r, q__1.i = c__[i__5]
+ .i + q__2.i;
+ c__[i__4].r = q__1.r, c__[i__4].i = q__1.i;
+/* L110: */
+ }
+ }
+/* L120: */
+ }
+/* L130: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0.f, c__[i__3].i = 0.f;
+/* L140: */
+ }
+ } else if (beta->r != 1.f || beta->i != 0.f) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, q__1.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+/* L150: */
+ }
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ i__3 = j + l * a_dim1;
+ if (a[i__3].r != 0.f || a[i__3].i != 0.f) {
+ i__3 = j + l * a_dim1;
+ q__1.r = alpha->r * a[i__3].r - alpha->i * a[i__3].i,
+ q__1.i = alpha->r * a[i__3].i + alpha->i * a[
+ i__3].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ i__3 = *n;
+ for (i__ = j; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * c_dim1;
+ i__5 = i__ + j * c_dim1;
+ i__6 = i__ + l * a_dim1;
+ q__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
+ q__2.i = temp.r * a[i__6].i + temp.i * a[
+ i__6].r;
+ q__1.r = c__[i__5].r + q__2.r, q__1.i = c__[i__5]
+ .i + q__2.i;
+ c__[i__4].r = q__1.r, c__[i__4].i = q__1.i;
+/* L160: */
+ }
+ }
+/* L170: */
+ }
+/* L180: */
+ }
+ }
+ } else {
+
+/* Form C := alpha*A'*A + beta*C. */
+
+ if (upper) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp.r = 0.f, temp.i = 0.f;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ i__4 = l + i__ * a_dim1;
+ i__5 = l + j * a_dim1;
+ q__2.r = a[i__4].r * a[i__5].r - a[i__4].i * a[i__5]
+ .i, q__2.i = a[i__4].r * a[i__5].i + a[i__4]
+ .i * a[i__5].r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L190: */
+ }
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__3 = i__ + j * c_dim1;
+ q__1.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__1.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ } else {
+ i__3 = i__ + j * c_dim1;
+ q__2.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__2.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ i__4 = i__ + j * c_dim1;
+ q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, q__3.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ }
+/* L200: */
+ }
+/* L210: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n;
+ for (i__ = j; i__ <= i__2; ++i__) {
+ temp.r = 0.f, temp.i = 0.f;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ i__4 = l + i__ * a_dim1;
+ i__5 = l + j * a_dim1;
+ q__2.r = a[i__4].r * a[i__5].r - a[i__4].i * a[i__5]
+ .i, q__2.i = a[i__4].r * a[i__5].i + a[i__4]
+ .i * a[i__5].r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L220: */
+ }
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__3 = i__ + j * c_dim1;
+ q__1.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__1.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ } else {
+ i__3 = i__ + j * c_dim1;
+ q__2.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__2.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ i__4 = i__ + j * c_dim1;
+ q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, q__3.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ }
+/* L230: */
+ }
+/* L240: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of CSYRK . */
+
+} /* csyrk_ */