aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/cblas/cgemm.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/cblas/cgemm.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/cblas/cgemm.c')
-rw-r--r--contrib/libs/cblas/cgemm.c697
1 files changed, 697 insertions, 0 deletions
diff --git a/contrib/libs/cblas/cgemm.c b/contrib/libs/cblas/cgemm.c
new file mode 100644
index 0000000000..7568b5cbfe
--- /dev/null
+++ b/contrib/libs/cblas/cgemm.c
@@ -0,0 +1,697 @@
+/* cgemm.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Subroutine */ int cgemm_(char *transa, char *transb, integer *m, integer *
+ n, integer *k, complex *alpha, complex *a, integer *lda, complex *b,
+ integer *ldb, complex *beta, complex *c__, integer *ldc)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
+ i__3, i__4, i__5, i__6;
+ complex q__1, q__2, q__3, q__4;
+
+ /* Builtin functions */
+ void r_cnjg(complex *, complex *);
+
+ /* Local variables */
+ integer i__, j, l, info;
+ logical nota, notb;
+ complex temp;
+ logical conja, conjb;
+ integer ncola;
+ extern logical lsame_(char *, char *);
+ integer nrowa, nrowb;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CGEMM performs one of the matrix-matrix operations */
+
+/* C := alpha*op( A )*op( B ) + beta*C, */
+
+/* where op( X ) is one of */
+
+/* op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ), */
+
+/* alpha and beta are scalars, and A, B and C are matrices, with op( A ) */
+/* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. */
+
+/* Arguments */
+/* ========== */
+
+/* TRANSA - CHARACTER*1. */
+/* On entry, TRANSA specifies the form of op( A ) to be used in */
+/* the matrix multiplication as follows: */
+
+/* TRANSA = 'N' or 'n', op( A ) = A. */
+
+/* TRANSA = 'T' or 't', op( A ) = A'. */
+
+/* TRANSA = 'C' or 'c', op( A ) = conjg( A' ). */
+
+/* Unchanged on exit. */
+
+/* TRANSB - CHARACTER*1. */
+/* On entry, TRANSB specifies the form of op( B ) to be used in */
+/* the matrix multiplication as follows: */
+
+/* TRANSB = 'N' or 'n', op( B ) = B. */
+
+/* TRANSB = 'T' or 't', op( B ) = B'. */
+
+/* TRANSB = 'C' or 'c', op( B ) = conjg( B' ). */
+
+/* Unchanged on exit. */
+
+/* M - INTEGER. */
+/* On entry, M specifies the number of rows of the matrix */
+/* op( A ) and of the matrix C. M must be at least zero. */
+/* Unchanged on exit. */
+
+/* N - INTEGER. */
+/* On entry, N specifies the number of columns of the matrix */
+/* op( B ) and the number of columns of the matrix C. N must be */
+/* at least zero. */
+/* Unchanged on exit. */
+
+/* K - INTEGER. */
+/* On entry, K specifies the number of columns of the matrix */
+/* op( A ) and the number of rows of the matrix op( B ). K must */
+/* be at least zero. */
+/* Unchanged on exit. */
+
+/* ALPHA - COMPLEX . */
+/* On entry, ALPHA specifies the scalar alpha. */
+/* Unchanged on exit. */
+
+/* A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is */
+/* k when TRANSA = 'N' or 'n', and is m otherwise. */
+/* Before entry with TRANSA = 'N' or 'n', the leading m by k */
+/* part of the array A must contain the matrix A, otherwise */
+/* the leading k by m part of the array A must contain the */
+/* matrix A. */
+/* Unchanged on exit. */
+
+/* LDA - INTEGER. */
+/* On entry, LDA specifies the first dimension of A as declared */
+/* in the calling (sub) program. When TRANSA = 'N' or 'n' then */
+/* LDA must be at least max( 1, m ), otherwise LDA must be at */
+/* least max( 1, k ). */
+/* Unchanged on exit. */
+
+/* B - COMPLEX array of DIMENSION ( LDB, kb ), where kb is */
+/* n when TRANSB = 'N' or 'n', and is k otherwise. */
+/* Before entry with TRANSB = 'N' or 'n', the leading k by n */
+/* part of the array B must contain the matrix B, otherwise */
+/* the leading n by k part of the array B must contain the */
+/* matrix B. */
+/* Unchanged on exit. */
+
+/* LDB - INTEGER. */
+/* On entry, LDB specifies the first dimension of B as declared */
+/* in the calling (sub) program. When TRANSB = 'N' or 'n' then */
+/* LDB must be at least max( 1, k ), otherwise LDB must be at */
+/* least max( 1, n ). */
+/* Unchanged on exit. */
+
+/* BETA - COMPLEX . */
+/* On entry, BETA specifies the scalar beta. When BETA is */
+/* supplied as zero then C need not be set on input. */
+/* Unchanged on exit. */
+
+/* C - COMPLEX array of DIMENSION ( LDC, n ). */
+/* Before entry, the leading m by n part of the array C must */
+/* contain the matrix C, except when beta is zero, in which */
+/* case C need not be set on entry. */
+/* On exit, the array C is overwritten by the m by n matrix */
+/* ( alpha*op( A )*op( B ) + beta*C ). */
+
+/* LDC - INTEGER. */
+/* On entry, LDC specifies the first dimension of C as declared */
+/* in the calling (sub) program. LDC must be at least */
+/* max( 1, m ). */
+/* Unchanged on exit. */
+
+
+/* Level 3 Blas routine. */
+
+/* -- Written on 8-February-1989. */
+/* Jack Dongarra, Argonne National Laboratory. */
+/* Iain Duff, AERE Harwell. */
+/* Jeremy Du Croz, Numerical Algorithms Group Ltd. */
+/* Sven Hammarling, Numerical Algorithms Group Ltd. */
+
+
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Parameters .. */
+/* .. */
+
+/* Set NOTA and NOTB as true if A and B respectively are not */
+/* conjugated or transposed, set CONJA and CONJB as true if A and */
+/* B respectively are to be transposed but not conjugated and set */
+/* NROWA, NCOLA and NROWB as the number of rows and columns of A */
+/* and the number of rows of B respectively. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1;
+ c__ -= c_offset;
+
+ /* Function Body */
+ nota = lsame_(transa, "N");
+ notb = lsame_(transb, "N");
+ conja = lsame_(transa, "C");
+ conjb = lsame_(transb, "C");
+ if (nota) {
+ nrowa = *m;
+ ncola = *k;
+ } else {
+ nrowa = *k;
+ ncola = *m;
+ }
+ if (notb) {
+ nrowb = *k;
+ } else {
+ nrowb = *n;
+ }
+
+/* Test the input parameters. */
+
+ info = 0;
+ if (! nota && ! conja && ! lsame_(transa, "T")) {
+ info = 1;
+ } else if (! notb && ! conjb && ! lsame_(transb, "T")) {
+ info = 2;
+ } else if (*m < 0) {
+ info = 3;
+ } else if (*n < 0) {
+ info = 4;
+ } else if (*k < 0) {
+ info = 5;
+ } else if (*lda < max(1,nrowa)) {
+ info = 8;
+ } else if (*ldb < max(1,nrowb)) {
+ info = 10;
+ } else if (*ldc < max(1,*m)) {
+ info = 13;
+ }
+ if (info != 0) {
+ xerbla_("CGEMM ", &info);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*m == 0 || *n == 0 || (alpha->r == 0.f && alpha->i == 0.f || *k == 0)
+ && (beta->r == 1.f && beta->i == 0.f)) {
+ return 0;
+ }
+
+/* And when alpha.eq.zero. */
+
+ if (alpha->r == 0.f && alpha->i == 0.f) {
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0.f, c__[i__3].i = 0.f;
+/* L10: */
+ }
+/* L20: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4].i,
+ q__1.i = beta->r * c__[i__4].i + beta->i * c__[
+ i__4].r;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+/* L30: */
+ }
+/* L40: */
+ }
+ }
+ return 0;
+ }
+
+/* Start the operations. */
+
+ if (notb) {
+ if (nota) {
+
+/* Form C := alpha*A*B + beta*C. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0.f, c__[i__3].i = 0.f;
+/* L50: */
+ }
+ } else if (beta->r != 1.f || beta->i != 0.f) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, q__1.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+/* L60: */
+ }
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ i__3 = l + j * b_dim1;
+ if (b[i__3].r != 0.f || b[i__3].i != 0.f) {
+ i__3 = l + j * b_dim1;
+ q__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i,
+ q__1.i = alpha->r * b[i__3].i + alpha->i * b[
+ i__3].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * c_dim1;
+ i__5 = i__ + j * c_dim1;
+ i__6 = i__ + l * a_dim1;
+ q__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
+ q__2.i = temp.r * a[i__6].i + temp.i * a[
+ i__6].r;
+ q__1.r = c__[i__5].r + q__2.r, q__1.i = c__[i__5]
+ .i + q__2.i;
+ c__[i__4].r = q__1.r, c__[i__4].i = q__1.i;
+/* L70: */
+ }
+ }
+/* L80: */
+ }
+/* L90: */
+ }
+ } else if (conja) {
+
+/* Form C := alpha*conjg( A' )*B + beta*C. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp.r = 0.f, temp.i = 0.f;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ r_cnjg(&q__3, &a[l + i__ * a_dim1]);
+ i__4 = l + j * b_dim1;
+ q__2.r = q__3.r * b[i__4].r - q__3.i * b[i__4].i,
+ q__2.i = q__3.r * b[i__4].i + q__3.i * b[i__4]
+ .r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L100: */
+ }
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__3 = i__ + j * c_dim1;
+ q__1.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__1.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ } else {
+ i__3 = i__ + j * c_dim1;
+ q__2.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__2.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ i__4 = i__ + j * c_dim1;
+ q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, q__3.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ }
+/* L110: */
+ }
+/* L120: */
+ }
+ } else {
+
+/* Form C := alpha*A'*B + beta*C */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp.r = 0.f, temp.i = 0.f;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ i__4 = l + i__ * a_dim1;
+ i__5 = l + j * b_dim1;
+ q__2.r = a[i__4].r * b[i__5].r - a[i__4].i * b[i__5]
+ .i, q__2.i = a[i__4].r * b[i__5].i + a[i__4]
+ .i * b[i__5].r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L130: */
+ }
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__3 = i__ + j * c_dim1;
+ q__1.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__1.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ } else {
+ i__3 = i__ + j * c_dim1;
+ q__2.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__2.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ i__4 = i__ + j * c_dim1;
+ q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, q__3.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ }
+/* L140: */
+ }
+/* L150: */
+ }
+ }
+ } else if (nota) {
+ if (conjb) {
+
+/* Form C := alpha*A*conjg( B' ) + beta*C. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0.f, c__[i__3].i = 0.f;
+/* L160: */
+ }
+ } else if (beta->r != 1.f || beta->i != 0.f) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, q__1.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+/* L170: */
+ }
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ i__3 = j + l * b_dim1;
+ if (b[i__3].r != 0.f || b[i__3].i != 0.f) {
+ r_cnjg(&q__2, &b[j + l * b_dim1]);
+ q__1.r = alpha->r * q__2.r - alpha->i * q__2.i,
+ q__1.i = alpha->r * q__2.i + alpha->i *
+ q__2.r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * c_dim1;
+ i__5 = i__ + j * c_dim1;
+ i__6 = i__ + l * a_dim1;
+ q__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
+ q__2.i = temp.r * a[i__6].i + temp.i * a[
+ i__6].r;
+ q__1.r = c__[i__5].r + q__2.r, q__1.i = c__[i__5]
+ .i + q__2.i;
+ c__[i__4].r = q__1.r, c__[i__4].i = q__1.i;
+/* L180: */
+ }
+ }
+/* L190: */
+ }
+/* L200: */
+ }
+ } else {
+
+/* Form C := alpha*A*B' + beta*C */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ c__[i__3].r = 0.f, c__[i__3].i = 0.f;
+/* L210: */
+ }
+ } else if (beta->r != 1.f || beta->i != 0.f) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * c_dim1;
+ i__4 = i__ + j * c_dim1;
+ q__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, q__1.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+/* L220: */
+ }
+ }
+ i__2 = *k;
+ for (l = 1; l <= i__2; ++l) {
+ i__3 = j + l * b_dim1;
+ if (b[i__3].r != 0.f || b[i__3].i != 0.f) {
+ i__3 = j + l * b_dim1;
+ q__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i,
+ q__1.i = alpha->r * b[i__3].i + alpha->i * b[
+ i__3].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ i__3 = *m;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + j * c_dim1;
+ i__5 = i__ + j * c_dim1;
+ i__6 = i__ + l * a_dim1;
+ q__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
+ q__2.i = temp.r * a[i__6].i + temp.i * a[
+ i__6].r;
+ q__1.r = c__[i__5].r + q__2.r, q__1.i = c__[i__5]
+ .i + q__2.i;
+ c__[i__4].r = q__1.r, c__[i__4].i = q__1.i;
+/* L230: */
+ }
+ }
+/* L240: */
+ }
+/* L250: */
+ }
+ }
+ } else if (conja) {
+ if (conjb) {
+
+/* Form C := alpha*conjg( A' )*conjg( B' ) + beta*C. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp.r = 0.f, temp.i = 0.f;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ r_cnjg(&q__3, &a[l + i__ * a_dim1]);
+ r_cnjg(&q__4, &b[j + l * b_dim1]);
+ q__2.r = q__3.r * q__4.r - q__3.i * q__4.i, q__2.i =
+ q__3.r * q__4.i + q__3.i * q__4.r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L260: */
+ }
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__3 = i__ + j * c_dim1;
+ q__1.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__1.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ } else {
+ i__3 = i__ + j * c_dim1;
+ q__2.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__2.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ i__4 = i__ + j * c_dim1;
+ q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, q__3.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ }
+/* L270: */
+ }
+/* L280: */
+ }
+ } else {
+
+/* Form C := alpha*conjg( A' )*B' + beta*C */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp.r = 0.f, temp.i = 0.f;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ r_cnjg(&q__3, &a[l + i__ * a_dim1]);
+ i__4 = j + l * b_dim1;
+ q__2.r = q__3.r * b[i__4].r - q__3.i * b[i__4].i,
+ q__2.i = q__3.r * b[i__4].i + q__3.i * b[i__4]
+ .r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L290: */
+ }
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__3 = i__ + j * c_dim1;
+ q__1.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__1.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ } else {
+ i__3 = i__ + j * c_dim1;
+ q__2.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__2.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ i__4 = i__ + j * c_dim1;
+ q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, q__3.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ }
+/* L300: */
+ }
+/* L310: */
+ }
+ }
+ } else {
+ if (conjb) {
+
+/* Form C := alpha*A'*conjg( B' ) + beta*C */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp.r = 0.f, temp.i = 0.f;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ i__4 = l + i__ * a_dim1;
+ r_cnjg(&q__3, &b[j + l * b_dim1]);
+ q__2.r = a[i__4].r * q__3.r - a[i__4].i * q__3.i,
+ q__2.i = a[i__4].r * q__3.i + a[i__4].i *
+ q__3.r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L320: */
+ }
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__3 = i__ + j * c_dim1;
+ q__1.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__1.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ } else {
+ i__3 = i__ + j * c_dim1;
+ q__2.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__2.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ i__4 = i__ + j * c_dim1;
+ q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, q__3.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ }
+/* L330: */
+ }
+/* L340: */
+ }
+ } else {
+
+/* Form C := alpha*A'*B' + beta*C */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *m;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ temp.r = 0.f, temp.i = 0.f;
+ i__3 = *k;
+ for (l = 1; l <= i__3; ++l) {
+ i__4 = l + i__ * a_dim1;
+ i__5 = j + l * b_dim1;
+ q__2.r = a[i__4].r * b[i__5].r - a[i__4].i * b[i__5]
+ .i, q__2.i = a[i__4].r * b[i__5].i + a[i__4]
+ .i * b[i__5].r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L350: */
+ }
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__3 = i__ + j * c_dim1;
+ q__1.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__1.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ } else {
+ i__3 = i__ + j * c_dim1;
+ q__2.r = alpha->r * temp.r - alpha->i * temp.i,
+ q__2.i = alpha->r * temp.i + alpha->i *
+ temp.r;
+ i__4 = i__ + j * c_dim1;
+ q__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
+ .i, q__3.i = beta->r * c__[i__4].i + beta->i *
+ c__[i__4].r;
+ q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
+ c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
+ }
+/* L360: */
+ }
+/* L370: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of CGEMM . */
+
+} /* cgemm_ */