diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/cblas/cgbmv.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/cblas/cgbmv.c')
-rw-r--r-- | contrib/libs/cblas/cgbmv.c | 477 |
1 files changed, 477 insertions, 0 deletions
diff --git a/contrib/libs/cblas/cgbmv.c b/contrib/libs/cblas/cgbmv.c new file mode 100644 index 0000000000..ec04382a29 --- /dev/null +++ b/contrib/libs/cblas/cgbmv.c @@ -0,0 +1,477 @@ +/* cgbmv.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Subroutine */ int cgbmv_(char *trans, integer *m, integer *n, integer *kl, + integer *ku, complex *alpha, complex *a, integer *lda, complex *x, + integer *incx, complex *beta, complex *y, integer *incy) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6; + complex q__1, q__2, q__3; + + /* Builtin functions */ + void r_cnjg(complex *, complex *); + + /* Local variables */ + integer i__, j, k, ix, iy, jx, jy, kx, ky, kup1, info; + complex temp; + integer lenx, leny; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int xerbla_(char *, integer *); + logical noconj; + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* CGBMV performs one of the matrix-vector operations */ + +/* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or */ + +/* y := alpha*conjg( A' )*x + beta*y, */ + +/* where alpha and beta are scalars, x and y are vectors and A is an */ +/* m by n band matrix, with kl sub-diagonals and ku super-diagonals. */ + +/* Arguments */ +/* ========== */ + +/* TRANS - CHARACTER*1. */ +/* On entry, TRANS specifies the operation to be performed as */ +/* follows: */ + +/* TRANS = 'N' or 'n' y := alpha*A*x + beta*y. */ + +/* TRANS = 'T' or 't' y := alpha*A'*x + beta*y. */ + +/* TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y. */ + +/* Unchanged on exit. */ + +/* M - INTEGER. */ +/* On entry, M specifies the number of rows of the matrix A. */ +/* M must be at least zero. */ +/* Unchanged on exit. */ + +/* N - INTEGER. */ +/* On entry, N specifies the number of columns of the matrix A. */ +/* N must be at least zero. */ +/* Unchanged on exit. */ + +/* KL - INTEGER. */ +/* On entry, KL specifies the number of sub-diagonals of the */ +/* matrix A. KL must satisfy 0 .le. KL. */ +/* Unchanged on exit. */ + +/* KU - INTEGER. */ +/* On entry, KU specifies the number of super-diagonals of the */ +/* matrix A. KU must satisfy 0 .le. KU. */ +/* Unchanged on exit. */ + +/* ALPHA - COMPLEX . */ +/* On entry, ALPHA specifies the scalar alpha. */ +/* Unchanged on exit. */ + +/* A - COMPLEX array of DIMENSION ( LDA, n ). */ +/* Before entry, the leading ( kl + ku + 1 ) by n part of the */ +/* array A must contain the matrix of coefficients, supplied */ +/* column by column, with the leading diagonal of the matrix in */ +/* row ( ku + 1 ) of the array, the first super-diagonal */ +/* starting at position 2 in row ku, the first sub-diagonal */ +/* starting at position 1 in row ( ku + 2 ), and so on. */ +/* Elements in the array A that do not correspond to elements */ +/* in the band matrix (such as the top left ku by ku triangle) */ +/* are not referenced. */ +/* The following program segment will transfer a band matrix */ +/* from conventional full matrix storage to band storage: */ + +/* DO 20, J = 1, N */ +/* K = KU + 1 - J */ +/* DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL ) */ +/* A( K + I, J ) = matrix( I, J ) */ +/* 10 CONTINUE */ +/* 20 CONTINUE */ + +/* Unchanged on exit. */ + +/* LDA - INTEGER. */ +/* On entry, LDA specifies the first dimension of A as declared */ +/* in the calling (sub) program. LDA must be at least */ +/* ( kl + ku + 1 ). */ +/* Unchanged on exit. */ + +/* X - COMPLEX array of DIMENSION at least */ +/* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' */ +/* and at least */ +/* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. */ +/* Before entry, the incremented array X must contain the */ +/* vector x. */ +/* Unchanged on exit. */ + +/* INCX - INTEGER. */ +/* On entry, INCX specifies the increment for the elements of */ +/* X. INCX must not be zero. */ +/* Unchanged on exit. */ + +/* BETA - COMPLEX . */ +/* On entry, BETA specifies the scalar beta. When BETA is */ +/* supplied as zero then Y need not be set on input. */ +/* Unchanged on exit. */ + +/* Y - COMPLEX array of DIMENSION at least */ +/* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' */ +/* and at least */ +/* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. */ +/* Before entry, the incremented array Y must contain the */ +/* vector y. On exit, Y is overwritten by the updated vector y. */ + + +/* INCY - INTEGER. */ +/* On entry, INCY specifies the increment for the elements of */ +/* Y. INCY must not be zero. */ +/* Unchanged on exit. */ + + +/* Level 2 Blas routine. */ + +/* -- Written on 22-October-1986. */ +/* Jack Dongarra, Argonne National Lab. */ +/* Jeremy Du Croz, Nag Central Office. */ +/* Sven Hammarling, Nag Central Office. */ +/* Richard Hanson, Sandia National Labs. */ + + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --x; + --y; + + /* Function Body */ + info = 0; + if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! lsame_(trans, "C") + ) { + info = 1; + } else if (*m < 0) { + info = 2; + } else if (*n < 0) { + info = 3; + } else if (*kl < 0) { + info = 4; + } else if (*ku < 0) { + info = 5; + } else if (*lda < *kl + *ku + 1) { + info = 8; + } else if (*incx == 0) { + info = 10; + } else if (*incy == 0) { + info = 13; + } + if (info != 0) { + xerbla_("CGBMV ", &info); + return 0; + } + +/* Quick return if possible. */ + + if (*m == 0 || *n == 0 || alpha->r == 0.f && alpha->i == 0.f && (beta->r + == 1.f && beta->i == 0.f)) { + return 0; + } + + noconj = lsame_(trans, "T"); + +/* Set LENX and LENY, the lengths of the vectors x and y, and set */ +/* up the start points in X and Y. */ + + if (lsame_(trans, "N")) { + lenx = *n; + leny = *m; + } else { + lenx = *m; + leny = *n; + } + if (*incx > 0) { + kx = 1; + } else { + kx = 1 - (lenx - 1) * *incx; + } + if (*incy > 0) { + ky = 1; + } else { + ky = 1 - (leny - 1) * *incy; + } + +/* Start the operations. In this version the elements of A are */ +/* accessed sequentially with one pass through the band part of A. */ + +/* First form y := beta*y. */ + + if (beta->r != 1.f || beta->i != 0.f) { + if (*incy == 1) { + if (beta->r == 0.f && beta->i == 0.f) { + i__1 = leny; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + y[i__2].r = 0.f, y[i__2].i = 0.f; +/* L10: */ + } + } else { + i__1 = leny; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__; + i__3 = i__; + q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, + q__1.i = beta->r * y[i__3].i + beta->i * y[i__3] + .r; + y[i__2].r = q__1.r, y[i__2].i = q__1.i; +/* L20: */ + } + } + } else { + iy = ky; + if (beta->r == 0.f && beta->i == 0.f) { + i__1 = leny; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = iy; + y[i__2].r = 0.f, y[i__2].i = 0.f; + iy += *incy; +/* L30: */ + } + } else { + i__1 = leny; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = iy; + i__3 = iy; + q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, + q__1.i = beta->r * y[i__3].i + beta->i * y[i__3] + .r; + y[i__2].r = q__1.r, y[i__2].i = q__1.i; + iy += *incy; +/* L40: */ + } + } + } + } + if (alpha->r == 0.f && alpha->i == 0.f) { + return 0; + } + kup1 = *ku + 1; + if (lsame_(trans, "N")) { + +/* Form y := alpha*A*x + y. */ + + jx = kx; + if (*incy == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = jx; + if (x[i__2].r != 0.f || x[i__2].i != 0.f) { + i__2 = jx; + q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, + q__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2] + .r; + temp.r = q__1.r, temp.i = q__1.i; + k = kup1 - j; +/* Computing MAX */ + i__2 = 1, i__3 = j - *ku; +/* Computing MIN */ + i__5 = *m, i__6 = j + *kl; + i__4 = min(i__5,i__6); + for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) { + i__2 = i__; + i__3 = i__; + i__5 = k + i__ + j * a_dim1; + q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, + q__2.i = temp.r * a[i__5].i + temp.i * a[i__5] + .r; + q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + + q__2.i; + y[i__2].r = q__1.r, y[i__2].i = q__1.i; +/* L50: */ + } + } + jx += *incx; +/* L60: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__4 = jx; + if (x[i__4].r != 0.f || x[i__4].i != 0.f) { + i__4 = jx; + q__1.r = alpha->r * x[i__4].r - alpha->i * x[i__4].i, + q__1.i = alpha->r * x[i__4].i + alpha->i * x[i__4] + .r; + temp.r = q__1.r, temp.i = q__1.i; + iy = ky; + k = kup1 - j; +/* Computing MAX */ + i__4 = 1, i__2 = j - *ku; +/* Computing MIN */ + i__5 = *m, i__6 = j + *kl; + i__3 = min(i__5,i__6); + for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) { + i__4 = iy; + i__2 = iy; + i__5 = k + i__ + j * a_dim1; + q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i, + q__2.i = temp.r * a[i__5].i + temp.i * a[i__5] + .r; + q__1.r = y[i__2].r + q__2.r, q__1.i = y[i__2].i + + q__2.i; + y[i__4].r = q__1.r, y[i__4].i = q__1.i; + iy += *incy; +/* L70: */ + } + } + jx += *incx; + if (j > *ku) { + ky += *incy; + } +/* L80: */ + } + } + } else { + +/* Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y. */ + + jy = ky; + if (*incx == 1) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp.r = 0.f, temp.i = 0.f; + k = kup1 - j; + if (noconj) { +/* Computing MAX */ + i__3 = 1, i__4 = j - *ku; +/* Computing MIN */ + i__5 = *m, i__6 = j + *kl; + i__2 = min(i__5,i__6); + for (i__ = max(i__3,i__4); i__ <= i__2; ++i__) { + i__3 = k + i__ + j * a_dim1; + i__4 = i__; + q__2.r = a[i__3].r * x[i__4].r - a[i__3].i * x[i__4] + .i, q__2.i = a[i__3].r * x[i__4].i + a[i__3] + .i * x[i__4].r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L90: */ + } + } else { +/* Computing MAX */ + i__2 = 1, i__3 = j - *ku; +/* Computing MIN */ + i__5 = *m, i__6 = j + *kl; + i__4 = min(i__5,i__6); + for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) { + r_cnjg(&q__3, &a[k + i__ + j * a_dim1]); + i__2 = i__; + q__2.r = q__3.r * x[i__2].r - q__3.i * x[i__2].i, + q__2.i = q__3.r * x[i__2].i + q__3.i * x[i__2] + .r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; +/* L100: */ + } + } + i__4 = jy; + i__2 = jy; + q__2.r = alpha->r * temp.r - alpha->i * temp.i, q__2.i = + alpha->r * temp.i + alpha->i * temp.r; + q__1.r = y[i__2].r + q__2.r, q__1.i = y[i__2].i + q__2.i; + y[i__4].r = q__1.r, y[i__4].i = q__1.i; + jy += *incy; +/* L110: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + temp.r = 0.f, temp.i = 0.f; + ix = kx; + k = kup1 - j; + if (noconj) { +/* Computing MAX */ + i__4 = 1, i__2 = j - *ku; +/* Computing MIN */ + i__5 = *m, i__6 = j + *kl; + i__3 = min(i__5,i__6); + for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) { + i__4 = k + i__ + j * a_dim1; + i__2 = ix; + q__2.r = a[i__4].r * x[i__2].r - a[i__4].i * x[i__2] + .i, q__2.i = a[i__4].r * x[i__2].i + a[i__4] + .i * x[i__2].r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; + ix += *incx; +/* L120: */ + } + } else { +/* Computing MAX */ + i__3 = 1, i__4 = j - *ku; +/* Computing MIN */ + i__5 = *m, i__6 = j + *kl; + i__2 = min(i__5,i__6); + for (i__ = max(i__3,i__4); i__ <= i__2; ++i__) { + r_cnjg(&q__3, &a[k + i__ + j * a_dim1]); + i__3 = ix; + q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, + q__2.i = q__3.r * x[i__3].i + q__3.i * x[i__3] + .r; + q__1.r = temp.r + q__2.r, q__1.i = temp.i + q__2.i; + temp.r = q__1.r, temp.i = q__1.i; + ix += *incx; +/* L130: */ + } + } + i__2 = jy; + i__3 = jy; + q__2.r = alpha->r * temp.r - alpha->i * temp.i, q__2.i = + alpha->r * temp.i + alpha->i * temp.r; + q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i; + y[i__2].r = q__1.r, y[i__2].i = q__1.i; + jy += *incy; + if (j > *ku) { + kx += *incx; + } +/* L140: */ + } + } + } + + return 0; + +/* End of CGBMV . */ + +} /* cgbmv_ */ |