aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/go/_std_1.21/src/crypto/tls
diff options
context:
space:
mode:
authormixa108 <mixa108@yandex-team.com>2023-11-16 19:41:57 +0300
committermixa108 <mixa108@yandex-team.com>2023-11-16 20:39:42 +0300
commit177b2aacb85a58acd19ca2e22d79c6030cd4c68b (patch)
tree948ffeb9b1aa2a741b4a89fbecdffee6460f1031 /contrib/go/_std_1.21/src/crypto/tls
parentb098c151d43da3ece1440d49d69bf76061429aeb (diff)
downloadydb-177b2aacb85a58acd19ca2e22d79c6030cd4c68b.tar.gz
bump go ver 1.21.3
bump go to 1.21.3 build go.conf Golang 1.20.6 -> 1.21.3 init Golang 1.20.6 -> 1.21.3: copy blame
Diffstat (limited to 'contrib/go/_std_1.21/src/crypto/tls')
-rw-r--r--contrib/go/_std_1.21/src/crypto/tls/alert.go109
-rw-r--r--contrib/go/_std_1.21/src/crypto/tls/auth.go293
-rw-r--r--contrib/go/_std_1.21/src/crypto/tls/cache.go95
-rw-r--r--contrib/go/_std_1.21/src/crypto/tls/cipher_suites.go694
-rw-r--r--contrib/go/_std_1.21/src/crypto/tls/common.go1547
-rw-r--r--contrib/go/_std_1.21/src/crypto/tls/common_string.go116
-rw-r--r--contrib/go/_std_1.21/src/crypto/tls/conn.go1655
-rw-r--r--contrib/go/_std_1.21/src/crypto/tls/handshake_client.go1140
-rw-r--r--contrib/go/_std_1.21/src/crypto/tls/handshake_client_tls13.go772
-rw-r--r--contrib/go/_std_1.21/src/crypto/tls/handshake_messages.go1903
-rw-r--r--contrib/go/_std_1.21/src/crypto/tls/handshake_server.go954
-rw-r--r--contrib/go/_std_1.21/src/crypto/tls/handshake_server_tls13.go991
-rw-r--r--contrib/go/_std_1.21/src/crypto/tls/key_agreement.go366
-rw-r--r--contrib/go/_std_1.21/src/crypto/tls/key_schedule.go159
-rw-r--r--contrib/go/_std_1.21/src/crypto/tls/notboring.go20
-rw-r--r--contrib/go/_std_1.21/src/crypto/tls/prf.go292
-rw-r--r--contrib/go/_std_1.21/src/crypto/tls/quic.go421
-rw-r--r--contrib/go/_std_1.21/src/crypto/tls/ticket.go421
-rw-r--r--contrib/go/_std_1.21/src/crypto/tls/tls.go356
-rw-r--r--contrib/go/_std_1.21/src/crypto/tls/ya.make54
20 files changed, 12358 insertions, 0 deletions
diff --git a/contrib/go/_std_1.21/src/crypto/tls/alert.go b/contrib/go/_std_1.21/src/crypto/tls/alert.go
new file mode 100644
index 0000000000..33022cd2b4
--- /dev/null
+++ b/contrib/go/_std_1.21/src/crypto/tls/alert.go
@@ -0,0 +1,109 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package tls
+
+import "strconv"
+
+// An AlertError is a TLS alert.
+//
+// When using a QUIC transport, QUICConn methods will return an error
+// which wraps AlertError rather than sending a TLS alert.
+type AlertError uint8
+
+func (e AlertError) Error() string {
+ return alert(e).String()
+}
+
+type alert uint8
+
+const (
+ // alert level
+ alertLevelWarning = 1
+ alertLevelError = 2
+)
+
+const (
+ alertCloseNotify alert = 0
+ alertUnexpectedMessage alert = 10
+ alertBadRecordMAC alert = 20
+ alertDecryptionFailed alert = 21
+ alertRecordOverflow alert = 22
+ alertDecompressionFailure alert = 30
+ alertHandshakeFailure alert = 40
+ alertBadCertificate alert = 42
+ alertUnsupportedCertificate alert = 43
+ alertCertificateRevoked alert = 44
+ alertCertificateExpired alert = 45
+ alertCertificateUnknown alert = 46
+ alertIllegalParameter alert = 47
+ alertUnknownCA alert = 48
+ alertAccessDenied alert = 49
+ alertDecodeError alert = 50
+ alertDecryptError alert = 51
+ alertExportRestriction alert = 60
+ alertProtocolVersion alert = 70
+ alertInsufficientSecurity alert = 71
+ alertInternalError alert = 80
+ alertInappropriateFallback alert = 86
+ alertUserCanceled alert = 90
+ alertNoRenegotiation alert = 100
+ alertMissingExtension alert = 109
+ alertUnsupportedExtension alert = 110
+ alertCertificateUnobtainable alert = 111
+ alertUnrecognizedName alert = 112
+ alertBadCertificateStatusResponse alert = 113
+ alertBadCertificateHashValue alert = 114
+ alertUnknownPSKIdentity alert = 115
+ alertCertificateRequired alert = 116
+ alertNoApplicationProtocol alert = 120
+)
+
+var alertText = map[alert]string{
+ alertCloseNotify: "close notify",
+ alertUnexpectedMessage: "unexpected message",
+ alertBadRecordMAC: "bad record MAC",
+ alertDecryptionFailed: "decryption failed",
+ alertRecordOverflow: "record overflow",
+ alertDecompressionFailure: "decompression failure",
+ alertHandshakeFailure: "handshake failure",
+ alertBadCertificate: "bad certificate",
+ alertUnsupportedCertificate: "unsupported certificate",
+ alertCertificateRevoked: "revoked certificate",
+ alertCertificateExpired: "expired certificate",
+ alertCertificateUnknown: "unknown certificate",
+ alertIllegalParameter: "illegal parameter",
+ alertUnknownCA: "unknown certificate authority",
+ alertAccessDenied: "access denied",
+ alertDecodeError: "error decoding message",
+ alertDecryptError: "error decrypting message",
+ alertExportRestriction: "export restriction",
+ alertProtocolVersion: "protocol version not supported",
+ alertInsufficientSecurity: "insufficient security level",
+ alertInternalError: "internal error",
+ alertInappropriateFallback: "inappropriate fallback",
+ alertUserCanceled: "user canceled",
+ alertNoRenegotiation: "no renegotiation",
+ alertMissingExtension: "missing extension",
+ alertUnsupportedExtension: "unsupported extension",
+ alertCertificateUnobtainable: "certificate unobtainable",
+ alertUnrecognizedName: "unrecognized name",
+ alertBadCertificateStatusResponse: "bad certificate status response",
+ alertBadCertificateHashValue: "bad certificate hash value",
+ alertUnknownPSKIdentity: "unknown PSK identity",
+ alertCertificateRequired: "certificate required",
+ alertNoApplicationProtocol: "no application protocol",
+}
+
+func (e alert) String() string {
+ s, ok := alertText[e]
+ if ok {
+ return "tls: " + s
+ }
+ return "tls: alert(" + strconv.Itoa(int(e)) + ")"
+}
+
+func (e alert) Error() string {
+ return e.String()
+}
diff --git a/contrib/go/_std_1.21/src/crypto/tls/auth.go b/contrib/go/_std_1.21/src/crypto/tls/auth.go
new file mode 100644
index 0000000000..7c5675c6d9
--- /dev/null
+++ b/contrib/go/_std_1.21/src/crypto/tls/auth.go
@@ -0,0 +1,293 @@
+// Copyright 2017 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package tls
+
+import (
+ "bytes"
+ "crypto"
+ "crypto/ecdsa"
+ "crypto/ed25519"
+ "crypto/elliptic"
+ "crypto/rsa"
+ "errors"
+ "fmt"
+ "hash"
+ "io"
+)
+
+// verifyHandshakeSignature verifies a signature against pre-hashed
+// (if required) handshake contents.
+func verifyHandshakeSignature(sigType uint8, pubkey crypto.PublicKey, hashFunc crypto.Hash, signed, sig []byte) error {
+ switch sigType {
+ case signatureECDSA:
+ pubKey, ok := pubkey.(*ecdsa.PublicKey)
+ if !ok {
+ return fmt.Errorf("expected an ECDSA public key, got %T", pubkey)
+ }
+ if !ecdsa.VerifyASN1(pubKey, signed, sig) {
+ return errors.New("ECDSA verification failure")
+ }
+ case signatureEd25519:
+ pubKey, ok := pubkey.(ed25519.PublicKey)
+ if !ok {
+ return fmt.Errorf("expected an Ed25519 public key, got %T", pubkey)
+ }
+ if !ed25519.Verify(pubKey, signed, sig) {
+ return errors.New("Ed25519 verification failure")
+ }
+ case signaturePKCS1v15:
+ pubKey, ok := pubkey.(*rsa.PublicKey)
+ if !ok {
+ return fmt.Errorf("expected an RSA public key, got %T", pubkey)
+ }
+ if err := rsa.VerifyPKCS1v15(pubKey, hashFunc, signed, sig); err != nil {
+ return err
+ }
+ case signatureRSAPSS:
+ pubKey, ok := pubkey.(*rsa.PublicKey)
+ if !ok {
+ return fmt.Errorf("expected an RSA public key, got %T", pubkey)
+ }
+ signOpts := &rsa.PSSOptions{SaltLength: rsa.PSSSaltLengthEqualsHash}
+ if err := rsa.VerifyPSS(pubKey, hashFunc, signed, sig, signOpts); err != nil {
+ return err
+ }
+ default:
+ return errors.New("internal error: unknown signature type")
+ }
+ return nil
+}
+
+const (
+ serverSignatureContext = "TLS 1.3, server CertificateVerify\x00"
+ clientSignatureContext = "TLS 1.3, client CertificateVerify\x00"
+)
+
+var signaturePadding = []byte{
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
+ 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
+}
+
+// signedMessage returns the pre-hashed (if necessary) message to be signed by
+// certificate keys in TLS 1.3. See RFC 8446, Section 4.4.3.
+func signedMessage(sigHash crypto.Hash, context string, transcript hash.Hash) []byte {
+ if sigHash == directSigning {
+ b := &bytes.Buffer{}
+ b.Write(signaturePadding)
+ io.WriteString(b, context)
+ b.Write(transcript.Sum(nil))
+ return b.Bytes()
+ }
+ h := sigHash.New()
+ h.Write(signaturePadding)
+ io.WriteString(h, context)
+ h.Write(transcript.Sum(nil))
+ return h.Sum(nil)
+}
+
+// typeAndHashFromSignatureScheme returns the corresponding signature type and
+// crypto.Hash for a given TLS SignatureScheme.
+func typeAndHashFromSignatureScheme(signatureAlgorithm SignatureScheme) (sigType uint8, hash crypto.Hash, err error) {
+ switch signatureAlgorithm {
+ case PKCS1WithSHA1, PKCS1WithSHA256, PKCS1WithSHA384, PKCS1WithSHA512:
+ sigType = signaturePKCS1v15
+ case PSSWithSHA256, PSSWithSHA384, PSSWithSHA512:
+ sigType = signatureRSAPSS
+ case ECDSAWithSHA1, ECDSAWithP256AndSHA256, ECDSAWithP384AndSHA384, ECDSAWithP521AndSHA512:
+ sigType = signatureECDSA
+ case Ed25519:
+ sigType = signatureEd25519
+ default:
+ return 0, 0, fmt.Errorf("unsupported signature algorithm: %v", signatureAlgorithm)
+ }
+ switch signatureAlgorithm {
+ case PKCS1WithSHA1, ECDSAWithSHA1:
+ hash = crypto.SHA1
+ case PKCS1WithSHA256, PSSWithSHA256, ECDSAWithP256AndSHA256:
+ hash = crypto.SHA256
+ case PKCS1WithSHA384, PSSWithSHA384, ECDSAWithP384AndSHA384:
+ hash = crypto.SHA384
+ case PKCS1WithSHA512, PSSWithSHA512, ECDSAWithP521AndSHA512:
+ hash = crypto.SHA512
+ case Ed25519:
+ hash = directSigning
+ default:
+ return 0, 0, fmt.Errorf("unsupported signature algorithm: %v", signatureAlgorithm)
+ }
+ return sigType, hash, nil
+}
+
+// legacyTypeAndHashFromPublicKey returns the fixed signature type and crypto.Hash for
+// a given public key used with TLS 1.0 and 1.1, before the introduction of
+// signature algorithm negotiation.
+func legacyTypeAndHashFromPublicKey(pub crypto.PublicKey) (sigType uint8, hash crypto.Hash, err error) {
+ switch pub.(type) {
+ case *rsa.PublicKey:
+ return signaturePKCS1v15, crypto.MD5SHA1, nil
+ case *ecdsa.PublicKey:
+ return signatureECDSA, crypto.SHA1, nil
+ case ed25519.PublicKey:
+ // RFC 8422 specifies support for Ed25519 in TLS 1.0 and 1.1,
+ // but it requires holding on to a handshake transcript to do a
+ // full signature, and not even OpenSSL bothers with the
+ // complexity, so we can't even test it properly.
+ return 0, 0, fmt.Errorf("tls: Ed25519 public keys are not supported before TLS 1.2")
+ default:
+ return 0, 0, fmt.Errorf("tls: unsupported public key: %T", pub)
+ }
+}
+
+var rsaSignatureSchemes = []struct {
+ scheme SignatureScheme
+ minModulusBytes int
+ maxVersion uint16
+}{
+ // RSA-PSS is used with PSSSaltLengthEqualsHash, and requires
+ // emLen >= hLen + sLen + 2
+ {PSSWithSHA256, crypto.SHA256.Size()*2 + 2, VersionTLS13},
+ {PSSWithSHA384, crypto.SHA384.Size()*2 + 2, VersionTLS13},
+ {PSSWithSHA512, crypto.SHA512.Size()*2 + 2, VersionTLS13},
+ // PKCS #1 v1.5 uses prefixes from hashPrefixes in crypto/rsa, and requires
+ // emLen >= len(prefix) + hLen + 11
+ // TLS 1.3 dropped support for PKCS #1 v1.5 in favor of RSA-PSS.
+ {PKCS1WithSHA256, 19 + crypto.SHA256.Size() + 11, VersionTLS12},
+ {PKCS1WithSHA384, 19 + crypto.SHA384.Size() + 11, VersionTLS12},
+ {PKCS1WithSHA512, 19 + crypto.SHA512.Size() + 11, VersionTLS12},
+ {PKCS1WithSHA1, 15 + crypto.SHA1.Size() + 11, VersionTLS12},
+}
+
+// signatureSchemesForCertificate returns the list of supported SignatureSchemes
+// for a given certificate, based on the public key and the protocol version,
+// and optionally filtered by its explicit SupportedSignatureAlgorithms.
+//
+// This function must be kept in sync with supportedSignatureAlgorithms.
+// FIPS filtering is applied in the caller, selectSignatureScheme.
+func signatureSchemesForCertificate(version uint16, cert *Certificate) []SignatureScheme {
+ priv, ok := cert.PrivateKey.(crypto.Signer)
+ if !ok {
+ return nil
+ }
+
+ var sigAlgs []SignatureScheme
+ switch pub := priv.Public().(type) {
+ case *ecdsa.PublicKey:
+ if version != VersionTLS13 {
+ // In TLS 1.2 and earlier, ECDSA algorithms are not
+ // constrained to a single curve.
+ sigAlgs = []SignatureScheme{
+ ECDSAWithP256AndSHA256,
+ ECDSAWithP384AndSHA384,
+ ECDSAWithP521AndSHA512,
+ ECDSAWithSHA1,
+ }
+ break
+ }
+ switch pub.Curve {
+ case elliptic.P256():
+ sigAlgs = []SignatureScheme{ECDSAWithP256AndSHA256}
+ case elliptic.P384():
+ sigAlgs = []SignatureScheme{ECDSAWithP384AndSHA384}
+ case elliptic.P521():
+ sigAlgs = []SignatureScheme{ECDSAWithP521AndSHA512}
+ default:
+ return nil
+ }
+ case *rsa.PublicKey:
+ size := pub.Size()
+ sigAlgs = make([]SignatureScheme, 0, len(rsaSignatureSchemes))
+ for _, candidate := range rsaSignatureSchemes {
+ if size >= candidate.minModulusBytes && version <= candidate.maxVersion {
+ sigAlgs = append(sigAlgs, candidate.scheme)
+ }
+ }
+ case ed25519.PublicKey:
+ sigAlgs = []SignatureScheme{Ed25519}
+ default:
+ return nil
+ }
+
+ if cert.SupportedSignatureAlgorithms != nil {
+ var filteredSigAlgs []SignatureScheme
+ for _, sigAlg := range sigAlgs {
+ if isSupportedSignatureAlgorithm(sigAlg, cert.SupportedSignatureAlgorithms) {
+ filteredSigAlgs = append(filteredSigAlgs, sigAlg)
+ }
+ }
+ return filteredSigAlgs
+ }
+ return sigAlgs
+}
+
+// selectSignatureScheme picks a SignatureScheme from the peer's preference list
+// that works with the selected certificate. It's only called for protocol
+// versions that support signature algorithms, so TLS 1.2 and 1.3.
+func selectSignatureScheme(vers uint16, c *Certificate, peerAlgs []SignatureScheme) (SignatureScheme, error) {
+ supportedAlgs := signatureSchemesForCertificate(vers, c)
+ if len(supportedAlgs) == 0 {
+ return 0, unsupportedCertificateError(c)
+ }
+ if len(peerAlgs) == 0 && vers == VersionTLS12 {
+ // For TLS 1.2, if the client didn't send signature_algorithms then we
+ // can assume that it supports SHA1. See RFC 5246, Section 7.4.1.4.1.
+ peerAlgs = []SignatureScheme{PKCS1WithSHA1, ECDSAWithSHA1}
+ }
+ // Pick signature scheme in the peer's preference order, as our
+ // preference order is not configurable.
+ for _, preferredAlg := range peerAlgs {
+ if needFIPS() && !isSupportedSignatureAlgorithm(preferredAlg, fipsSupportedSignatureAlgorithms) {
+ continue
+ }
+ if isSupportedSignatureAlgorithm(preferredAlg, supportedAlgs) {
+ return preferredAlg, nil
+ }
+ }
+ return 0, errors.New("tls: peer doesn't support any of the certificate's signature algorithms")
+}
+
+// unsupportedCertificateError returns a helpful error for certificates with
+// an unsupported private key.
+func unsupportedCertificateError(cert *Certificate) error {
+ switch cert.PrivateKey.(type) {
+ case rsa.PrivateKey, ecdsa.PrivateKey:
+ return fmt.Errorf("tls: unsupported certificate: private key is %T, expected *%T",
+ cert.PrivateKey, cert.PrivateKey)
+ case *ed25519.PrivateKey:
+ return fmt.Errorf("tls: unsupported certificate: private key is *ed25519.PrivateKey, expected ed25519.PrivateKey")
+ }
+
+ signer, ok := cert.PrivateKey.(crypto.Signer)
+ if !ok {
+ return fmt.Errorf("tls: certificate private key (%T) does not implement crypto.Signer",
+ cert.PrivateKey)
+ }
+
+ switch pub := signer.Public().(type) {
+ case *ecdsa.PublicKey:
+ switch pub.Curve {
+ case elliptic.P256():
+ case elliptic.P384():
+ case elliptic.P521():
+ default:
+ return fmt.Errorf("tls: unsupported certificate curve (%s)", pub.Curve.Params().Name)
+ }
+ case *rsa.PublicKey:
+ return fmt.Errorf("tls: certificate RSA key size too small for supported signature algorithms")
+ case ed25519.PublicKey:
+ default:
+ return fmt.Errorf("tls: unsupported certificate key (%T)", pub)
+ }
+
+ if cert.SupportedSignatureAlgorithms != nil {
+ return fmt.Errorf("tls: peer doesn't support the certificate custom signature algorithms")
+ }
+
+ return fmt.Errorf("tls: internal error: unsupported key (%T)", cert.PrivateKey)
+}
diff --git a/contrib/go/_std_1.21/src/crypto/tls/cache.go b/contrib/go/_std_1.21/src/crypto/tls/cache.go
new file mode 100644
index 0000000000..a7677611fd
--- /dev/null
+++ b/contrib/go/_std_1.21/src/crypto/tls/cache.go
@@ -0,0 +1,95 @@
+// Copyright 2022 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package tls
+
+import (
+ "crypto/x509"
+ "runtime"
+ "sync"
+ "sync/atomic"
+)
+
+type cacheEntry struct {
+ refs atomic.Int64
+ cert *x509.Certificate
+}
+
+// certCache implements an intern table for reference counted x509.Certificates,
+// implemented in a similar fashion to BoringSSL's CRYPTO_BUFFER_POOL. This
+// allows for a single x509.Certificate to be kept in memory and referenced from
+// multiple Conns. Returned references should not be mutated by callers. Certificates
+// are still safe to use after they are removed from the cache.
+//
+// Certificates are returned wrapped in an activeCert struct that should be held by
+// the caller. When references to the activeCert are freed, the number of references
+// to the certificate in the cache is decremented. Once the number of references
+// reaches zero, the entry is evicted from the cache.
+//
+// The main difference between this implementation and CRYPTO_BUFFER_POOL is that
+// CRYPTO_BUFFER_POOL is a more generic structure which supports blobs of data,
+// rather than specific structures. Since we only care about x509.Certificates,
+// certCache is implemented as a specific cache, rather than a generic one.
+//
+// See https://boringssl.googlesource.com/boringssl/+/master/include/openssl/pool.h
+// and https://boringssl.googlesource.com/boringssl/+/master/crypto/pool/pool.c
+// for the BoringSSL reference.
+type certCache struct {
+ sync.Map
+}
+
+var globalCertCache = new(certCache)
+
+// activeCert is a handle to a certificate held in the cache. Once there are
+// no alive activeCerts for a given certificate, the certificate is removed
+// from the cache by a finalizer.
+type activeCert struct {
+ cert *x509.Certificate
+}
+
+// active increments the number of references to the entry, wraps the
+// certificate in the entry in an activeCert, and sets the finalizer.
+//
+// Note that there is a race between active and the finalizer set on the
+// returned activeCert, triggered if active is called after the ref count is
+// decremented such that refs may be > 0 when evict is called. We consider this
+// safe, since the caller holding an activeCert for an entry that is no longer
+// in the cache is fine, with the only side effect being the memory overhead of
+// there being more than one distinct reference to a certificate alive at once.
+func (cc *certCache) active(e *cacheEntry) *activeCert {
+ e.refs.Add(1)
+ a := &activeCert{e.cert}
+ runtime.SetFinalizer(a, func(_ *activeCert) {
+ if e.refs.Add(-1) == 0 {
+ cc.evict(e)
+ }
+ })
+ return a
+}
+
+// evict removes a cacheEntry from the cache.
+func (cc *certCache) evict(e *cacheEntry) {
+ cc.Delete(string(e.cert.Raw))
+}
+
+// newCert returns a x509.Certificate parsed from der. If there is already a copy
+// of the certificate in the cache, a reference to the existing certificate will
+// be returned. Otherwise, a fresh certificate will be added to the cache, and
+// the reference returned. The returned reference should not be mutated.
+func (cc *certCache) newCert(der []byte) (*activeCert, error) {
+ if entry, ok := cc.Load(string(der)); ok {
+ return cc.active(entry.(*cacheEntry)), nil
+ }
+
+ cert, err := x509.ParseCertificate(der)
+ if err != nil {
+ return nil, err
+ }
+
+ entry := &cacheEntry{cert: cert}
+ if entry, loaded := cc.LoadOrStore(string(der), entry); loaded {
+ return cc.active(entry.(*cacheEntry)), nil
+ }
+ return cc.active(entry), nil
+}
diff --git a/contrib/go/_std_1.21/src/crypto/tls/cipher_suites.go b/contrib/go/_std_1.21/src/crypto/tls/cipher_suites.go
new file mode 100644
index 0000000000..589e8b6faf
--- /dev/null
+++ b/contrib/go/_std_1.21/src/crypto/tls/cipher_suites.go
@@ -0,0 +1,694 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package tls
+
+import (
+ "crypto"
+ "crypto/aes"
+ "crypto/cipher"
+ "crypto/des"
+ "crypto/hmac"
+ "crypto/internal/boring"
+ "crypto/rc4"
+ "crypto/sha1"
+ "crypto/sha256"
+ "fmt"
+ "hash"
+ "internal/cpu"
+ "runtime"
+
+ "golang.org/x/crypto/chacha20poly1305"
+)
+
+// CipherSuite is a TLS cipher suite. Note that most functions in this package
+// accept and expose cipher suite IDs instead of this type.
+type CipherSuite struct {
+ ID uint16
+ Name string
+
+ // Supported versions is the list of TLS protocol versions that can
+ // negotiate this cipher suite.
+ SupportedVersions []uint16
+
+ // Insecure is true if the cipher suite has known security issues
+ // due to its primitives, design, or implementation.
+ Insecure bool
+}
+
+var (
+ supportedUpToTLS12 = []uint16{VersionTLS10, VersionTLS11, VersionTLS12}
+ supportedOnlyTLS12 = []uint16{VersionTLS12}
+ supportedOnlyTLS13 = []uint16{VersionTLS13}
+)
+
+// CipherSuites returns a list of cipher suites currently implemented by this
+// package, excluding those with security issues, which are returned by
+// InsecureCipherSuites.
+//
+// The list is sorted by ID. Note that the default cipher suites selected by
+// this package might depend on logic that can't be captured by a static list,
+// and might not match those returned by this function.
+func CipherSuites() []*CipherSuite {
+ return []*CipherSuite{
+ {TLS_RSA_WITH_AES_128_CBC_SHA, "TLS_RSA_WITH_AES_128_CBC_SHA", supportedUpToTLS12, false},
+ {TLS_RSA_WITH_AES_256_CBC_SHA, "TLS_RSA_WITH_AES_256_CBC_SHA", supportedUpToTLS12, false},
+ {TLS_RSA_WITH_AES_128_GCM_SHA256, "TLS_RSA_WITH_AES_128_GCM_SHA256", supportedOnlyTLS12, false},
+ {TLS_RSA_WITH_AES_256_GCM_SHA384, "TLS_RSA_WITH_AES_256_GCM_SHA384", supportedOnlyTLS12, false},
+
+ {TLS_AES_128_GCM_SHA256, "TLS_AES_128_GCM_SHA256", supportedOnlyTLS13, false},
+ {TLS_AES_256_GCM_SHA384, "TLS_AES_256_GCM_SHA384", supportedOnlyTLS13, false},
+ {TLS_CHACHA20_POLY1305_SHA256, "TLS_CHACHA20_POLY1305_SHA256", supportedOnlyTLS13, false},
+
+ {TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA", supportedUpToTLS12, false},
+ {TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, "TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA", supportedUpToTLS12, false},
+ {TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA", supportedUpToTLS12, false},
+ {TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA", supportedUpToTLS12, false},
+ {TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256", supportedOnlyTLS12, false},
+ {TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384", supportedOnlyTLS12, false},
+ {TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256", supportedOnlyTLS12, false},
+ {TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384", supportedOnlyTLS12, false},
+ {TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256", supportedOnlyTLS12, false},
+ {TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, "TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256", supportedOnlyTLS12, false},
+ }
+}
+
+// InsecureCipherSuites returns a list of cipher suites currently implemented by
+// this package and which have security issues.
+//
+// Most applications should not use the cipher suites in this list, and should
+// only use those returned by CipherSuites.
+func InsecureCipherSuites() []*CipherSuite {
+ // This list includes RC4, CBC_SHA256, and 3DES cipher suites. See
+ // cipherSuitesPreferenceOrder for details.
+ return []*CipherSuite{
+ {TLS_RSA_WITH_RC4_128_SHA, "TLS_RSA_WITH_RC4_128_SHA", supportedUpToTLS12, true},
+ {TLS_RSA_WITH_3DES_EDE_CBC_SHA, "TLS_RSA_WITH_3DES_EDE_CBC_SHA", supportedUpToTLS12, true},
+ {TLS_RSA_WITH_AES_128_CBC_SHA256, "TLS_RSA_WITH_AES_128_CBC_SHA256", supportedOnlyTLS12, true},
+ {TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, "TLS_ECDHE_ECDSA_WITH_RC4_128_SHA", supportedUpToTLS12, true},
+ {TLS_ECDHE_RSA_WITH_RC4_128_SHA, "TLS_ECDHE_RSA_WITH_RC4_128_SHA", supportedUpToTLS12, true},
+ {TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, "TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA", supportedUpToTLS12, true},
+ {TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256", supportedOnlyTLS12, true},
+ {TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256", supportedOnlyTLS12, true},
+ }
+}
+
+// CipherSuiteName returns the standard name for the passed cipher suite ID
+// (e.g. "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256"), or a fallback representation
+// of the ID value if the cipher suite is not implemented by this package.
+func CipherSuiteName(id uint16) string {
+ for _, c := range CipherSuites() {
+ if c.ID == id {
+ return c.Name
+ }
+ }
+ for _, c := range InsecureCipherSuites() {
+ if c.ID == id {
+ return c.Name
+ }
+ }
+ return fmt.Sprintf("0x%04X", id)
+}
+
+const (
+ // suiteECDHE indicates that the cipher suite involves elliptic curve
+ // Diffie-Hellman. This means that it should only be selected when the
+ // client indicates that it supports ECC with a curve and point format
+ // that we're happy with.
+ suiteECDHE = 1 << iota
+ // suiteECSign indicates that the cipher suite involves an ECDSA or
+ // EdDSA signature and therefore may only be selected when the server's
+ // certificate is ECDSA or EdDSA. If this is not set then the cipher suite
+ // is RSA based.
+ suiteECSign
+ // suiteTLS12 indicates that the cipher suite should only be advertised
+ // and accepted when using TLS 1.2.
+ suiteTLS12
+ // suiteSHA384 indicates that the cipher suite uses SHA384 as the
+ // handshake hash.
+ suiteSHA384
+)
+
+// A cipherSuite is a TLS 1.0–1.2 cipher suite, and defines the key exchange
+// mechanism, as well as the cipher+MAC pair or the AEAD.
+type cipherSuite struct {
+ id uint16
+ // the lengths, in bytes, of the key material needed for each component.
+ keyLen int
+ macLen int
+ ivLen int
+ ka func(version uint16) keyAgreement
+ // flags is a bitmask of the suite* values, above.
+ flags int
+ cipher func(key, iv []byte, isRead bool) any
+ mac func(key []byte) hash.Hash
+ aead func(key, fixedNonce []byte) aead
+}
+
+var cipherSuites = []*cipherSuite{ // TODO: replace with a map, since the order doesn't matter.
+ {TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305, 32, 0, 12, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadChaCha20Poly1305},
+ {TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, 32, 0, 12, ecdheECDSAKA, suiteECDHE | suiteECSign | suiteTLS12, nil, nil, aeadChaCha20Poly1305},
+ {TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadAESGCM},
+ {TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, ecdheECDSAKA, suiteECDHE | suiteECSign | suiteTLS12, nil, nil, aeadAESGCM},
+ {TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, ecdheRSAKA, suiteECDHE | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
+ {TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, ecdheECDSAKA, suiteECDHE | suiteECSign | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
+ {TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, ecdheRSAKA, suiteECDHE | suiteTLS12, cipherAES, macSHA256, nil},
+ {TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, 16, 20, 16, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil},
+ {TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, ecdheECDSAKA, suiteECDHE | suiteECSign | suiteTLS12, cipherAES, macSHA256, nil},
+ {TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, 16, 20, 16, ecdheECDSAKA, suiteECDHE | suiteECSign, cipherAES, macSHA1, nil},
+ {TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, 32, 20, 16, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil},
+ {TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, 32, 20, 16, ecdheECDSAKA, suiteECDHE | suiteECSign, cipherAES, macSHA1, nil},
+ {TLS_RSA_WITH_AES_128_GCM_SHA256, 16, 0, 4, rsaKA, suiteTLS12, nil, nil, aeadAESGCM},
+ {TLS_RSA_WITH_AES_256_GCM_SHA384, 32, 0, 4, rsaKA, suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM},
+ {TLS_RSA_WITH_AES_128_CBC_SHA256, 16, 32, 16, rsaKA, suiteTLS12, cipherAES, macSHA256, nil},
+ {TLS_RSA_WITH_AES_128_CBC_SHA, 16, 20, 16, rsaKA, 0, cipherAES, macSHA1, nil},
+ {TLS_RSA_WITH_AES_256_CBC_SHA, 32, 20, 16, rsaKA, 0, cipherAES, macSHA1, nil},
+ {TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, 8, ecdheRSAKA, suiteECDHE, cipher3DES, macSHA1, nil},
+ {TLS_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, 8, rsaKA, 0, cipher3DES, macSHA1, nil},
+ {TLS_RSA_WITH_RC4_128_SHA, 16, 20, 0, rsaKA, 0, cipherRC4, macSHA1, nil},
+ {TLS_ECDHE_RSA_WITH_RC4_128_SHA, 16, 20, 0, ecdheRSAKA, suiteECDHE, cipherRC4, macSHA1, nil},
+ {TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, 16, 20, 0, ecdheECDSAKA, suiteECDHE | suiteECSign, cipherRC4, macSHA1, nil},
+}
+
+// selectCipherSuite returns the first TLS 1.0–1.2 cipher suite from ids which
+// is also in supportedIDs and passes the ok filter.
+func selectCipherSuite(ids, supportedIDs []uint16, ok func(*cipherSuite) bool) *cipherSuite {
+ for _, id := range ids {
+ candidate := cipherSuiteByID(id)
+ if candidate == nil || !ok(candidate) {
+ continue
+ }
+
+ for _, suppID := range supportedIDs {
+ if id == suppID {
+ return candidate
+ }
+ }
+ }
+ return nil
+}
+
+// A cipherSuiteTLS13 defines only the pair of the AEAD algorithm and hash
+// algorithm to be used with HKDF. See RFC 8446, Appendix B.4.
+type cipherSuiteTLS13 struct {
+ id uint16
+ keyLen int
+ aead func(key, fixedNonce []byte) aead
+ hash crypto.Hash
+}
+
+var cipherSuitesTLS13 = []*cipherSuiteTLS13{ // TODO: replace with a map.
+ {TLS_AES_128_GCM_SHA256, 16, aeadAESGCMTLS13, crypto.SHA256},
+ {TLS_CHACHA20_POLY1305_SHA256, 32, aeadChaCha20Poly1305, crypto.SHA256},
+ {TLS_AES_256_GCM_SHA384, 32, aeadAESGCMTLS13, crypto.SHA384},
+}
+
+// cipherSuitesPreferenceOrder is the order in which we'll select (on the
+// server) or advertise (on the client) TLS 1.0–1.2 cipher suites.
+//
+// Cipher suites are filtered but not reordered based on the application and
+// peer's preferences, meaning we'll never select a suite lower in this list if
+// any higher one is available. This makes it more defensible to keep weaker
+// cipher suites enabled, especially on the server side where we get the last
+// word, since there are no known downgrade attacks on cipher suites selection.
+//
+// The list is sorted by applying the following priority rules, stopping at the
+// first (most important) applicable one:
+//
+// - Anything else comes before RC4
+//
+// RC4 has practically exploitable biases. See https://www.rc4nomore.com.
+//
+// - Anything else comes before CBC_SHA256
+//
+// SHA-256 variants of the CBC ciphersuites don't implement any Lucky13
+// countermeasures. See http://www.isg.rhul.ac.uk/tls/Lucky13.html and
+// https://www.imperialviolet.org/2013/02/04/luckythirteen.html.
+//
+// - Anything else comes before 3DES
+//
+// 3DES has 64-bit blocks, which makes it fundamentally susceptible to
+// birthday attacks. See https://sweet32.info.
+//
+// - ECDHE comes before anything else
+//
+// Once we got the broken stuff out of the way, the most important
+// property a cipher suite can have is forward secrecy. We don't
+// implement FFDHE, so that means ECDHE.
+//
+// - AEADs come before CBC ciphers
+//
+// Even with Lucky13 countermeasures, MAC-then-Encrypt CBC cipher suites
+// are fundamentally fragile, and suffered from an endless sequence of
+// padding oracle attacks. See https://eprint.iacr.org/2015/1129,
+// https://www.imperialviolet.org/2014/12/08/poodleagain.html, and
+// https://blog.cloudflare.com/yet-another-padding-oracle-in-openssl-cbc-ciphersuites/.
+//
+// - AES comes before ChaCha20
+//
+// When AES hardware is available, AES-128-GCM and AES-256-GCM are faster
+// than ChaCha20Poly1305.
+//
+// When AES hardware is not available, AES-128-GCM is one or more of: much
+// slower, way more complex, and less safe (because not constant time)
+// than ChaCha20Poly1305.
+//
+// We use this list if we think both peers have AES hardware, and
+// cipherSuitesPreferenceOrderNoAES otherwise.
+//
+// - AES-128 comes before AES-256
+//
+// The only potential advantages of AES-256 are better multi-target
+// margins, and hypothetical post-quantum properties. Neither apply to
+// TLS, and AES-256 is slower due to its four extra rounds (which don't
+// contribute to the advantages above).
+//
+// - ECDSA comes before RSA
+//
+// The relative order of ECDSA and RSA cipher suites doesn't matter,
+// as they depend on the certificate. Pick one to get a stable order.
+var cipherSuitesPreferenceOrder = []uint16{
+ // AEADs w/ ECDHE
+ TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
+ TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
+ TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,
+
+ // CBC w/ ECDHE
+ TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
+ TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
+
+ // AEADs w/o ECDHE
+ TLS_RSA_WITH_AES_128_GCM_SHA256,
+ TLS_RSA_WITH_AES_256_GCM_SHA384,
+
+ // CBC w/o ECDHE
+ TLS_RSA_WITH_AES_128_CBC_SHA,
+ TLS_RSA_WITH_AES_256_CBC_SHA,
+
+ // 3DES
+ TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
+ TLS_RSA_WITH_3DES_EDE_CBC_SHA,
+
+ // CBC_SHA256
+ TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
+ TLS_RSA_WITH_AES_128_CBC_SHA256,
+
+ // RC4
+ TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, TLS_ECDHE_RSA_WITH_RC4_128_SHA,
+ TLS_RSA_WITH_RC4_128_SHA,
+}
+
+var cipherSuitesPreferenceOrderNoAES = []uint16{
+ // ChaCha20Poly1305
+ TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,
+
+ // AES-GCM w/ ECDHE
+ TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
+ TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
+
+ // The rest of cipherSuitesPreferenceOrder.
+ TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,
+ TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,
+ TLS_RSA_WITH_AES_128_GCM_SHA256,
+ TLS_RSA_WITH_AES_256_GCM_SHA384,
+ TLS_RSA_WITH_AES_128_CBC_SHA,
+ TLS_RSA_WITH_AES_256_CBC_SHA,
+ TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
+ TLS_RSA_WITH_3DES_EDE_CBC_SHA,
+ TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
+ TLS_RSA_WITH_AES_128_CBC_SHA256,
+ TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, TLS_ECDHE_RSA_WITH_RC4_128_SHA,
+ TLS_RSA_WITH_RC4_128_SHA,
+}
+
+// disabledCipherSuites are not used unless explicitly listed in
+// Config.CipherSuites. They MUST be at the end of cipherSuitesPreferenceOrder.
+var disabledCipherSuites = []uint16{
+ // CBC_SHA256
+ TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,
+ TLS_RSA_WITH_AES_128_CBC_SHA256,
+
+ // RC4
+ TLS_ECDHE_ECDSA_WITH_RC4_128_SHA, TLS_ECDHE_RSA_WITH_RC4_128_SHA,
+ TLS_RSA_WITH_RC4_128_SHA,
+}
+
+var (
+ defaultCipherSuitesLen = len(cipherSuitesPreferenceOrder) - len(disabledCipherSuites)
+ defaultCipherSuites = cipherSuitesPreferenceOrder[:defaultCipherSuitesLen]
+)
+
+// defaultCipherSuitesTLS13 is also the preference order, since there are no
+// disabled by default TLS 1.3 cipher suites. The same AES vs ChaCha20 logic as
+// cipherSuitesPreferenceOrder applies.
+var defaultCipherSuitesTLS13 = []uint16{
+ TLS_AES_128_GCM_SHA256,
+ TLS_AES_256_GCM_SHA384,
+ TLS_CHACHA20_POLY1305_SHA256,
+}
+
+var defaultCipherSuitesTLS13NoAES = []uint16{
+ TLS_CHACHA20_POLY1305_SHA256,
+ TLS_AES_128_GCM_SHA256,
+ TLS_AES_256_GCM_SHA384,
+}
+
+var (
+ hasGCMAsmAMD64 = cpu.X86.HasAES && cpu.X86.HasPCLMULQDQ
+ hasGCMAsmARM64 = cpu.ARM64.HasAES && cpu.ARM64.HasPMULL
+ // Keep in sync with crypto/aes/cipher_s390x.go.
+ hasGCMAsmS390X = cpu.S390X.HasAES && cpu.S390X.HasAESCBC && cpu.S390X.HasAESCTR &&
+ (cpu.S390X.HasGHASH || cpu.S390X.HasAESGCM)
+
+ hasAESGCMHardwareSupport = runtime.GOARCH == "amd64" && hasGCMAsmAMD64 ||
+ runtime.GOARCH == "arm64" && hasGCMAsmARM64 ||
+ runtime.GOARCH == "s390x" && hasGCMAsmS390X
+)
+
+var aesgcmCiphers = map[uint16]bool{
+ // TLS 1.2
+ TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256: true,
+ TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384: true,
+ TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256: true,
+ TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384: true,
+ // TLS 1.3
+ TLS_AES_128_GCM_SHA256: true,
+ TLS_AES_256_GCM_SHA384: true,
+}
+
+// aesgcmPreferred returns whether the first known cipher in the preference list
+// is an AES-GCM cipher, implying the peer has hardware support for it.
+func aesgcmPreferred(ciphers []uint16) bool {
+ for _, cID := range ciphers {
+ if c := cipherSuiteByID(cID); c != nil {
+ return aesgcmCiphers[cID]
+ }
+ if c := cipherSuiteTLS13ByID(cID); c != nil {
+ return aesgcmCiphers[cID]
+ }
+ }
+ return false
+}
+
+func cipherRC4(key, iv []byte, isRead bool) any {
+ cipher, _ := rc4.NewCipher(key)
+ return cipher
+}
+
+func cipher3DES(key, iv []byte, isRead bool) any {
+ block, _ := des.NewTripleDESCipher(key)
+ if isRead {
+ return cipher.NewCBCDecrypter(block, iv)
+ }
+ return cipher.NewCBCEncrypter(block, iv)
+}
+
+func cipherAES(key, iv []byte, isRead bool) any {
+ block, _ := aes.NewCipher(key)
+ if isRead {
+ return cipher.NewCBCDecrypter(block, iv)
+ }
+ return cipher.NewCBCEncrypter(block, iv)
+}
+
+// macSHA1 returns a SHA-1 based constant time MAC.
+func macSHA1(key []byte) hash.Hash {
+ h := sha1.New
+ // The BoringCrypto SHA1 does not have a constant-time
+ // checksum function, so don't try to use it.
+ if !boring.Enabled {
+ h = newConstantTimeHash(h)
+ }
+ return hmac.New(h, key)
+}
+
+// macSHA256 returns a SHA-256 based MAC. This is only supported in TLS 1.2 and
+// is currently only used in disabled-by-default cipher suites.
+func macSHA256(key []byte) hash.Hash {
+ return hmac.New(sha256.New, key)
+}
+
+type aead interface {
+ cipher.AEAD
+
+ // explicitNonceLen returns the number of bytes of explicit nonce
+ // included in each record. This is eight for older AEADs and
+ // zero for modern ones.
+ explicitNonceLen() int
+}
+
+const (
+ aeadNonceLength = 12
+ noncePrefixLength = 4
+)
+
+// prefixNonceAEAD wraps an AEAD and prefixes a fixed portion of the nonce to
+// each call.
+type prefixNonceAEAD struct {
+ // nonce contains the fixed part of the nonce in the first four bytes.
+ nonce [aeadNonceLength]byte
+ aead cipher.AEAD
+}
+
+func (f *prefixNonceAEAD) NonceSize() int { return aeadNonceLength - noncePrefixLength }
+func (f *prefixNonceAEAD) Overhead() int { return f.aead.Overhead() }
+func (f *prefixNonceAEAD) explicitNonceLen() int { return f.NonceSize() }
+
+func (f *prefixNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte {
+ copy(f.nonce[4:], nonce)
+ return f.aead.Seal(out, f.nonce[:], plaintext, additionalData)
+}
+
+func (f *prefixNonceAEAD) Open(out, nonce, ciphertext, additionalData []byte) ([]byte, error) {
+ copy(f.nonce[4:], nonce)
+ return f.aead.Open(out, f.nonce[:], ciphertext, additionalData)
+}
+
+// xorNonceAEAD wraps an AEAD by XORing in a fixed pattern to the nonce
+// before each call.
+type xorNonceAEAD struct {
+ nonceMask [aeadNonceLength]byte
+ aead cipher.AEAD
+}
+
+func (f *xorNonceAEAD) NonceSize() int { return 8 } // 64-bit sequence number
+func (f *xorNonceAEAD) Overhead() int { return f.aead.Overhead() }
+func (f *xorNonceAEAD) explicitNonceLen() int { return 0 }
+
+func (f *xorNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte {
+ for i, b := range nonce {
+ f.nonceMask[4+i] ^= b
+ }
+ result := f.aead.Seal(out, f.nonceMask[:], plaintext, additionalData)
+ for i, b := range nonce {
+ f.nonceMask[4+i] ^= b
+ }
+
+ return result
+}
+
+func (f *xorNonceAEAD) Open(out, nonce, ciphertext, additionalData []byte) ([]byte, error) {
+ for i, b := range nonce {
+ f.nonceMask[4+i] ^= b
+ }
+ result, err := f.aead.Open(out, f.nonceMask[:], ciphertext, additionalData)
+ for i, b := range nonce {
+ f.nonceMask[4+i] ^= b
+ }
+
+ return result, err
+}
+
+func aeadAESGCM(key, noncePrefix []byte) aead {
+ if len(noncePrefix) != noncePrefixLength {
+ panic("tls: internal error: wrong nonce length")
+ }
+ aes, err := aes.NewCipher(key)
+ if err != nil {
+ panic(err)
+ }
+ var aead cipher.AEAD
+ if boring.Enabled {
+ aead, err = boring.NewGCMTLS(aes)
+ } else {
+ boring.Unreachable()
+ aead, err = cipher.NewGCM(aes)
+ }
+ if err != nil {
+ panic(err)
+ }
+
+ ret := &prefixNonceAEAD{aead: aead}
+ copy(ret.nonce[:], noncePrefix)
+ return ret
+}
+
+func aeadAESGCMTLS13(key, nonceMask []byte) aead {
+ if len(nonceMask) != aeadNonceLength {
+ panic("tls: internal error: wrong nonce length")
+ }
+ aes, err := aes.NewCipher(key)
+ if err != nil {
+ panic(err)
+ }
+ aead, err := cipher.NewGCM(aes)
+ if err != nil {
+ panic(err)
+ }
+
+ ret := &xorNonceAEAD{aead: aead}
+ copy(ret.nonceMask[:], nonceMask)
+ return ret
+}
+
+func aeadChaCha20Poly1305(key, nonceMask []byte) aead {
+ if len(nonceMask) != aeadNonceLength {
+ panic("tls: internal error: wrong nonce length")
+ }
+ aead, err := chacha20poly1305.New(key)
+ if err != nil {
+ panic(err)
+ }
+
+ ret := &xorNonceAEAD{aead: aead}
+ copy(ret.nonceMask[:], nonceMask)
+ return ret
+}
+
+type constantTimeHash interface {
+ hash.Hash
+ ConstantTimeSum(b []byte) []byte
+}
+
+// cthWrapper wraps any hash.Hash that implements ConstantTimeSum, and replaces
+// with that all calls to Sum. It's used to obtain a ConstantTimeSum-based HMAC.
+type cthWrapper struct {
+ h constantTimeHash
+}
+
+func (c *cthWrapper) Size() int { return c.h.Size() }
+func (c *cthWrapper) BlockSize() int { return c.h.BlockSize() }
+func (c *cthWrapper) Reset() { c.h.Reset() }
+func (c *cthWrapper) Write(p []byte) (int, error) { return c.h.Write(p) }
+func (c *cthWrapper) Sum(b []byte) []byte { return c.h.ConstantTimeSum(b) }
+
+func newConstantTimeHash(h func() hash.Hash) func() hash.Hash {
+ boring.Unreachable()
+ return func() hash.Hash {
+ return &cthWrapper{h().(constantTimeHash)}
+ }
+}
+
+// tls10MAC implements the TLS 1.0 MAC function. RFC 2246, Section 6.2.3.
+func tls10MAC(h hash.Hash, out, seq, header, data, extra []byte) []byte {
+ h.Reset()
+ h.Write(seq)
+ h.Write(header)
+ h.Write(data)
+ res := h.Sum(out)
+ if extra != nil {
+ h.Write(extra)
+ }
+ return res
+}
+
+func rsaKA(version uint16) keyAgreement {
+ return rsaKeyAgreement{}
+}
+
+func ecdheECDSAKA(version uint16) keyAgreement {
+ return &ecdheKeyAgreement{
+ isRSA: false,
+ version: version,
+ }
+}
+
+func ecdheRSAKA(version uint16) keyAgreement {
+ return &ecdheKeyAgreement{
+ isRSA: true,
+ version: version,
+ }
+}
+
+// mutualCipherSuite returns a cipherSuite given a list of supported
+// ciphersuites and the id requested by the peer.
+func mutualCipherSuite(have []uint16, want uint16) *cipherSuite {
+ for _, id := range have {
+ if id == want {
+ return cipherSuiteByID(id)
+ }
+ }
+ return nil
+}
+
+func cipherSuiteByID(id uint16) *cipherSuite {
+ for _, cipherSuite := range cipherSuites {
+ if cipherSuite.id == id {
+ return cipherSuite
+ }
+ }
+ return nil
+}
+
+func mutualCipherSuiteTLS13(have []uint16, want uint16) *cipherSuiteTLS13 {
+ for _, id := range have {
+ if id == want {
+ return cipherSuiteTLS13ByID(id)
+ }
+ }
+ return nil
+}
+
+func cipherSuiteTLS13ByID(id uint16) *cipherSuiteTLS13 {
+ for _, cipherSuite := range cipherSuitesTLS13 {
+ if cipherSuite.id == id {
+ return cipherSuite
+ }
+ }
+ return nil
+}
+
+// A list of cipher suite IDs that are, or have been, implemented by this
+// package.
+//
+// See https://www.iana.org/assignments/tls-parameters/tls-parameters.xml
+const (
+ // TLS 1.0 - 1.2 cipher suites.
+ TLS_RSA_WITH_RC4_128_SHA uint16 = 0x0005
+ TLS_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0x000a
+ TLS_RSA_WITH_AES_128_CBC_SHA uint16 = 0x002f
+ TLS_RSA_WITH_AES_256_CBC_SHA uint16 = 0x0035
+ TLS_RSA_WITH_AES_128_CBC_SHA256 uint16 = 0x003c
+ TLS_RSA_WITH_AES_128_GCM_SHA256 uint16 = 0x009c
+ TLS_RSA_WITH_AES_256_GCM_SHA384 uint16 = 0x009d
+ TLS_ECDHE_ECDSA_WITH_RC4_128_SHA uint16 = 0xc007
+ TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA uint16 = 0xc009
+ TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA uint16 = 0xc00a
+ TLS_ECDHE_RSA_WITH_RC4_128_SHA uint16 = 0xc011
+ TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA uint16 = 0xc012
+ TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA uint16 = 0xc013
+ TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA uint16 = 0xc014
+ TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 uint16 = 0xc023
+ TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 uint16 = 0xc027
+ TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 uint16 = 0xc02f
+ TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 uint16 = 0xc02b
+ TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 uint16 = 0xc030
+ TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 uint16 = 0xc02c
+ TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 uint16 = 0xcca8
+ TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 uint16 = 0xcca9
+
+ // TLS 1.3 cipher suites.
+ TLS_AES_128_GCM_SHA256 uint16 = 0x1301
+ TLS_AES_256_GCM_SHA384 uint16 = 0x1302
+ TLS_CHACHA20_POLY1305_SHA256 uint16 = 0x1303
+
+ // TLS_FALLBACK_SCSV isn't a standard cipher suite but an indicator
+ // that the client is doing version fallback. See RFC 7507.
+ TLS_FALLBACK_SCSV uint16 = 0x5600
+
+ // Legacy names for the corresponding cipher suites with the correct _SHA256
+ // suffix, retained for backward compatibility.
+ TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305 = TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
+ TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305 = TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
+)
diff --git a/contrib/go/_std_1.21/src/crypto/tls/common.go b/contrib/go/_std_1.21/src/crypto/tls/common.go
new file mode 100644
index 0000000000..e0885a0da9
--- /dev/null
+++ b/contrib/go/_std_1.21/src/crypto/tls/common.go
@@ -0,0 +1,1547 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package tls
+
+import (
+ "bytes"
+ "container/list"
+ "context"
+ "crypto"
+ "crypto/ecdsa"
+ "crypto/ed25519"
+ "crypto/elliptic"
+ "crypto/rand"
+ "crypto/rsa"
+ "crypto/sha512"
+ "crypto/x509"
+ "errors"
+ "fmt"
+ "io"
+ "net"
+ "strings"
+ "sync"
+ "time"
+)
+
+const (
+ VersionTLS10 = 0x0301
+ VersionTLS11 = 0x0302
+ VersionTLS12 = 0x0303
+ VersionTLS13 = 0x0304
+
+ // Deprecated: SSLv3 is cryptographically broken, and is no longer
+ // supported by this package. See golang.org/issue/32716.
+ VersionSSL30 = 0x0300
+)
+
+// VersionName returns the name for the provided TLS version number
+// (e.g. "TLS 1.3"), or a fallback representation of the value if the
+// version is not implemented by this package.
+func VersionName(version uint16) string {
+ switch version {
+ case VersionSSL30:
+ return "SSLv3"
+ case VersionTLS10:
+ return "TLS 1.0"
+ case VersionTLS11:
+ return "TLS 1.1"
+ case VersionTLS12:
+ return "TLS 1.2"
+ case VersionTLS13:
+ return "TLS 1.3"
+ default:
+ return fmt.Sprintf("0x%04X", version)
+ }
+}
+
+const (
+ maxPlaintext = 16384 // maximum plaintext payload length
+ maxCiphertext = 16384 + 2048 // maximum ciphertext payload length
+ maxCiphertextTLS13 = 16384 + 256 // maximum ciphertext length in TLS 1.3
+ recordHeaderLen = 5 // record header length
+ maxHandshake = 65536 // maximum handshake we support (protocol max is 16 MB)
+ maxUselessRecords = 16 // maximum number of consecutive non-advancing records
+)
+
+// TLS record types.
+type recordType uint8
+
+const (
+ recordTypeChangeCipherSpec recordType = 20
+ recordTypeAlert recordType = 21
+ recordTypeHandshake recordType = 22
+ recordTypeApplicationData recordType = 23
+)
+
+// TLS handshake message types.
+const (
+ typeHelloRequest uint8 = 0
+ typeClientHello uint8 = 1
+ typeServerHello uint8 = 2
+ typeNewSessionTicket uint8 = 4
+ typeEndOfEarlyData uint8 = 5
+ typeEncryptedExtensions uint8 = 8
+ typeCertificate uint8 = 11
+ typeServerKeyExchange uint8 = 12
+ typeCertificateRequest uint8 = 13
+ typeServerHelloDone uint8 = 14
+ typeCertificateVerify uint8 = 15
+ typeClientKeyExchange uint8 = 16
+ typeFinished uint8 = 20
+ typeCertificateStatus uint8 = 22
+ typeKeyUpdate uint8 = 24
+ typeNextProtocol uint8 = 67 // Not IANA assigned
+ typeMessageHash uint8 = 254 // synthetic message
+)
+
+// TLS compression types.
+const (
+ compressionNone uint8 = 0
+)
+
+// TLS extension numbers
+const (
+ extensionServerName uint16 = 0
+ extensionStatusRequest uint16 = 5
+ extensionSupportedCurves uint16 = 10 // supported_groups in TLS 1.3, see RFC 8446, Section 4.2.7
+ extensionSupportedPoints uint16 = 11
+ extensionSignatureAlgorithms uint16 = 13
+ extensionALPN uint16 = 16
+ extensionSCT uint16 = 18
+ extensionExtendedMasterSecret uint16 = 23
+ extensionSessionTicket uint16 = 35
+ extensionPreSharedKey uint16 = 41
+ extensionEarlyData uint16 = 42
+ extensionSupportedVersions uint16 = 43
+ extensionCookie uint16 = 44
+ extensionPSKModes uint16 = 45
+ extensionCertificateAuthorities uint16 = 47
+ extensionSignatureAlgorithmsCert uint16 = 50
+ extensionKeyShare uint16 = 51
+ extensionQUICTransportParameters uint16 = 57
+ extensionRenegotiationInfo uint16 = 0xff01
+)
+
+// TLS signaling cipher suite values
+const (
+ scsvRenegotiation uint16 = 0x00ff
+)
+
+// CurveID is the type of a TLS identifier for an elliptic curve. See
+// https://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-8.
+//
+// In TLS 1.3, this type is called NamedGroup, but at this time this library
+// only supports Elliptic Curve based groups. See RFC 8446, Section 4.2.7.
+type CurveID uint16
+
+const (
+ CurveP256 CurveID = 23
+ CurveP384 CurveID = 24
+ CurveP521 CurveID = 25
+ X25519 CurveID = 29
+)
+
+// TLS 1.3 Key Share. See RFC 8446, Section 4.2.8.
+type keyShare struct {
+ group CurveID
+ data []byte
+}
+
+// TLS 1.3 PSK Key Exchange Modes. See RFC 8446, Section 4.2.9.
+const (
+ pskModePlain uint8 = 0
+ pskModeDHE uint8 = 1
+)
+
+// TLS 1.3 PSK Identity. Can be a Session Ticket, or a reference to a saved
+// session. See RFC 8446, Section 4.2.11.
+type pskIdentity struct {
+ label []byte
+ obfuscatedTicketAge uint32
+}
+
+// TLS Elliptic Curve Point Formats
+// https://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-9
+const (
+ pointFormatUncompressed uint8 = 0
+)
+
+// TLS CertificateStatusType (RFC 3546)
+const (
+ statusTypeOCSP uint8 = 1
+)
+
+// Certificate types (for certificateRequestMsg)
+const (
+ certTypeRSASign = 1
+ certTypeECDSASign = 64 // ECDSA or EdDSA keys, see RFC 8422, Section 3.
+)
+
+// Signature algorithms (for internal signaling use). Starting at 225 to avoid overlap with
+// TLS 1.2 codepoints (RFC 5246, Appendix A.4.1), with which these have nothing to do.
+const (
+ signaturePKCS1v15 uint8 = iota + 225
+ signatureRSAPSS
+ signatureECDSA
+ signatureEd25519
+)
+
+// directSigning is a standard Hash value that signals that no pre-hashing
+// should be performed, and that the input should be signed directly. It is the
+// hash function associated with the Ed25519 signature scheme.
+var directSigning crypto.Hash = 0
+
+// defaultSupportedSignatureAlgorithms contains the signature and hash algorithms that
+// the code advertises as supported in a TLS 1.2+ ClientHello and in a TLS 1.2+
+// CertificateRequest. The two fields are merged to match with TLS 1.3.
+// Note that in TLS 1.2, the ECDSA algorithms are not constrained to P-256, etc.
+var defaultSupportedSignatureAlgorithms = []SignatureScheme{
+ PSSWithSHA256,
+ ECDSAWithP256AndSHA256,
+ Ed25519,
+ PSSWithSHA384,
+ PSSWithSHA512,
+ PKCS1WithSHA256,
+ PKCS1WithSHA384,
+ PKCS1WithSHA512,
+ ECDSAWithP384AndSHA384,
+ ECDSAWithP521AndSHA512,
+ PKCS1WithSHA1,
+ ECDSAWithSHA1,
+}
+
+// helloRetryRequestRandom is set as the Random value of a ServerHello
+// to signal that the message is actually a HelloRetryRequest.
+var helloRetryRequestRandom = []byte{ // See RFC 8446, Section 4.1.3.
+ 0xCF, 0x21, 0xAD, 0x74, 0xE5, 0x9A, 0x61, 0x11,
+ 0xBE, 0x1D, 0x8C, 0x02, 0x1E, 0x65, 0xB8, 0x91,
+ 0xC2, 0xA2, 0x11, 0x16, 0x7A, 0xBB, 0x8C, 0x5E,
+ 0x07, 0x9E, 0x09, 0xE2, 0xC8, 0xA8, 0x33, 0x9C,
+}
+
+const (
+ // downgradeCanaryTLS12 or downgradeCanaryTLS11 is embedded in the server
+ // random as a downgrade protection if the server would be capable of
+ // negotiating a higher version. See RFC 8446, Section 4.1.3.
+ downgradeCanaryTLS12 = "DOWNGRD\x01"
+ downgradeCanaryTLS11 = "DOWNGRD\x00"
+)
+
+// testingOnlyForceDowngradeCanary is set in tests to force the server side to
+// include downgrade canaries even if it's using its highers supported version.
+var testingOnlyForceDowngradeCanary bool
+
+// ConnectionState records basic TLS details about the connection.
+type ConnectionState struct {
+ // Version is the TLS version used by the connection (e.g. VersionTLS12).
+ Version uint16
+
+ // HandshakeComplete is true if the handshake has concluded.
+ HandshakeComplete bool
+
+ // DidResume is true if this connection was successfully resumed from a
+ // previous session with a session ticket or similar mechanism.
+ DidResume bool
+
+ // CipherSuite is the cipher suite negotiated for the connection (e.g.
+ // TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, TLS_AES_128_GCM_SHA256).
+ CipherSuite uint16
+
+ // NegotiatedProtocol is the application protocol negotiated with ALPN.
+ NegotiatedProtocol string
+
+ // NegotiatedProtocolIsMutual used to indicate a mutual NPN negotiation.
+ //
+ // Deprecated: this value is always true.
+ NegotiatedProtocolIsMutual bool
+
+ // ServerName is the value of the Server Name Indication extension sent by
+ // the client. It's available both on the server and on the client side.
+ ServerName string
+
+ // PeerCertificates are the parsed certificates sent by the peer, in the
+ // order in which they were sent. The first element is the leaf certificate
+ // that the connection is verified against.
+ //
+ // On the client side, it can't be empty. On the server side, it can be
+ // empty if Config.ClientAuth is not RequireAnyClientCert or
+ // RequireAndVerifyClientCert.
+ //
+ // PeerCertificates and its contents should not be modified.
+ PeerCertificates []*x509.Certificate
+
+ // VerifiedChains is a list of one or more chains where the first element is
+ // PeerCertificates[0] and the last element is from Config.RootCAs (on the
+ // client side) or Config.ClientCAs (on the server side).
+ //
+ // On the client side, it's set if Config.InsecureSkipVerify is false. On
+ // the server side, it's set if Config.ClientAuth is VerifyClientCertIfGiven
+ // (and the peer provided a certificate) or RequireAndVerifyClientCert.
+ //
+ // VerifiedChains and its contents should not be modified.
+ VerifiedChains [][]*x509.Certificate
+
+ // SignedCertificateTimestamps is a list of SCTs provided by the peer
+ // through the TLS handshake for the leaf certificate, if any.
+ SignedCertificateTimestamps [][]byte
+
+ // OCSPResponse is a stapled Online Certificate Status Protocol (OCSP)
+ // response provided by the peer for the leaf certificate, if any.
+ OCSPResponse []byte
+
+ // TLSUnique contains the "tls-unique" channel binding value (see RFC 5929,
+ // Section 3). This value will be nil for TLS 1.3 connections and for
+ // resumed connections that don't support Extended Master Secret (RFC 7627).
+ TLSUnique []byte
+
+ // ekm is a closure exposed via ExportKeyingMaterial.
+ ekm func(label string, context []byte, length int) ([]byte, error)
+}
+
+// ExportKeyingMaterial returns length bytes of exported key material in a new
+// slice as defined in RFC 5705. If context is nil, it is not used as part of
+// the seed. If the connection was set to allow renegotiation via
+// Config.Renegotiation, this function will return an error.
+//
+// There are conditions in which the returned values might not be unique to a
+// connection. See the Security Considerations sections of RFC 5705 and RFC 7627,
+// and https://mitls.org/pages/attacks/3SHAKE#channelbindings.
+func (cs *ConnectionState) ExportKeyingMaterial(label string, context []byte, length int) ([]byte, error) {
+ return cs.ekm(label, context, length)
+}
+
+// ClientAuthType declares the policy the server will follow for
+// TLS Client Authentication.
+type ClientAuthType int
+
+const (
+ // NoClientCert indicates that no client certificate should be requested
+ // during the handshake, and if any certificates are sent they will not
+ // be verified.
+ NoClientCert ClientAuthType = iota
+ // RequestClientCert indicates that a client certificate should be requested
+ // during the handshake, but does not require that the client send any
+ // certificates.
+ RequestClientCert
+ // RequireAnyClientCert indicates that a client certificate should be requested
+ // during the handshake, and that at least one certificate is required to be
+ // sent by the client, but that certificate is not required to be valid.
+ RequireAnyClientCert
+ // VerifyClientCertIfGiven indicates that a client certificate should be requested
+ // during the handshake, but does not require that the client sends a
+ // certificate. If the client does send a certificate it is required to be
+ // valid.
+ VerifyClientCertIfGiven
+ // RequireAndVerifyClientCert indicates that a client certificate should be requested
+ // during the handshake, and that at least one valid certificate is required
+ // to be sent by the client.
+ RequireAndVerifyClientCert
+)
+
+// requiresClientCert reports whether the ClientAuthType requires a client
+// certificate to be provided.
+func requiresClientCert(c ClientAuthType) bool {
+ switch c {
+ case RequireAnyClientCert, RequireAndVerifyClientCert:
+ return true
+ default:
+ return false
+ }
+}
+
+// ClientSessionCache is a cache of ClientSessionState objects that can be used
+// by a client to resume a TLS session with a given server. ClientSessionCache
+// implementations should expect to be called concurrently from different
+// goroutines. Up to TLS 1.2, only ticket-based resumption is supported, not
+// SessionID-based resumption. In TLS 1.3 they were merged into PSK modes, which
+// are supported via this interface.
+type ClientSessionCache interface {
+ // Get searches for a ClientSessionState associated with the given key.
+ // On return, ok is true if one was found.
+ Get(sessionKey string) (session *ClientSessionState, ok bool)
+
+ // Put adds the ClientSessionState to the cache with the given key. It might
+ // get called multiple times in a connection if a TLS 1.3 server provides
+ // more than one session ticket. If called with a nil *ClientSessionState,
+ // it should remove the cache entry.
+ Put(sessionKey string, cs *ClientSessionState)
+}
+
+//go:generate stringer -type=SignatureScheme,CurveID,ClientAuthType -output=common_string.go
+
+// SignatureScheme identifies a signature algorithm supported by TLS. See
+// RFC 8446, Section 4.2.3.
+type SignatureScheme uint16
+
+const (
+ // RSASSA-PKCS1-v1_5 algorithms.
+ PKCS1WithSHA256 SignatureScheme = 0x0401
+ PKCS1WithSHA384 SignatureScheme = 0x0501
+ PKCS1WithSHA512 SignatureScheme = 0x0601
+
+ // RSASSA-PSS algorithms with public key OID rsaEncryption.
+ PSSWithSHA256 SignatureScheme = 0x0804
+ PSSWithSHA384 SignatureScheme = 0x0805
+ PSSWithSHA512 SignatureScheme = 0x0806
+
+ // ECDSA algorithms. Only constrained to a specific curve in TLS 1.3.
+ ECDSAWithP256AndSHA256 SignatureScheme = 0x0403
+ ECDSAWithP384AndSHA384 SignatureScheme = 0x0503
+ ECDSAWithP521AndSHA512 SignatureScheme = 0x0603
+
+ // EdDSA algorithms.
+ Ed25519 SignatureScheme = 0x0807
+
+ // Legacy signature and hash algorithms for TLS 1.2.
+ PKCS1WithSHA1 SignatureScheme = 0x0201
+ ECDSAWithSHA1 SignatureScheme = 0x0203
+)
+
+// ClientHelloInfo contains information from a ClientHello message in order to
+// guide application logic in the GetCertificate and GetConfigForClient callbacks.
+type ClientHelloInfo struct {
+ // CipherSuites lists the CipherSuites supported by the client (e.g.
+ // TLS_AES_128_GCM_SHA256, TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256).
+ CipherSuites []uint16
+
+ // ServerName indicates the name of the server requested by the client
+ // in order to support virtual hosting. ServerName is only set if the
+ // client is using SNI (see RFC 4366, Section 3.1).
+ ServerName string
+
+ // SupportedCurves lists the elliptic curves supported by the client.
+ // SupportedCurves is set only if the Supported Elliptic Curves
+ // Extension is being used (see RFC 4492, Section 5.1.1).
+ SupportedCurves []CurveID
+
+ // SupportedPoints lists the point formats supported by the client.
+ // SupportedPoints is set only if the Supported Point Formats Extension
+ // is being used (see RFC 4492, Section 5.1.2).
+ SupportedPoints []uint8
+
+ // SignatureSchemes lists the signature and hash schemes that the client
+ // is willing to verify. SignatureSchemes is set only if the Signature
+ // Algorithms Extension is being used (see RFC 5246, Section 7.4.1.4.1).
+ SignatureSchemes []SignatureScheme
+
+ // SupportedProtos lists the application protocols supported by the client.
+ // SupportedProtos is set only if the Application-Layer Protocol
+ // Negotiation Extension is being used (see RFC 7301, Section 3.1).
+ //
+ // Servers can select a protocol by setting Config.NextProtos in a
+ // GetConfigForClient return value.
+ SupportedProtos []string
+
+ // SupportedVersions lists the TLS versions supported by the client.
+ // For TLS versions less than 1.3, this is extrapolated from the max
+ // version advertised by the client, so values other than the greatest
+ // might be rejected if used.
+ SupportedVersions []uint16
+
+ // Conn is the underlying net.Conn for the connection. Do not read
+ // from, or write to, this connection; that will cause the TLS
+ // connection to fail.
+ Conn net.Conn
+
+ // config is embedded by the GetCertificate or GetConfigForClient caller,
+ // for use with SupportsCertificate.
+ config *Config
+
+ // ctx is the context of the handshake that is in progress.
+ ctx context.Context
+}
+
+// Context returns the context of the handshake that is in progress.
+// This context is a child of the context passed to HandshakeContext,
+// if any, and is canceled when the handshake concludes.
+func (c *ClientHelloInfo) Context() context.Context {
+ return c.ctx
+}
+
+// CertificateRequestInfo contains information from a server's
+// CertificateRequest message, which is used to demand a certificate and proof
+// of control from a client.
+type CertificateRequestInfo struct {
+ // AcceptableCAs contains zero or more, DER-encoded, X.501
+ // Distinguished Names. These are the names of root or intermediate CAs
+ // that the server wishes the returned certificate to be signed by. An
+ // empty slice indicates that the server has no preference.
+ AcceptableCAs [][]byte
+
+ // SignatureSchemes lists the signature schemes that the server is
+ // willing to verify.
+ SignatureSchemes []SignatureScheme
+
+ // Version is the TLS version that was negotiated for this connection.
+ Version uint16
+
+ // ctx is the context of the handshake that is in progress.
+ ctx context.Context
+}
+
+// Context returns the context of the handshake that is in progress.
+// This context is a child of the context passed to HandshakeContext,
+// if any, and is canceled when the handshake concludes.
+func (c *CertificateRequestInfo) Context() context.Context {
+ return c.ctx
+}
+
+// RenegotiationSupport enumerates the different levels of support for TLS
+// renegotiation. TLS renegotiation is the act of performing subsequent
+// handshakes on a connection after the first. This significantly complicates
+// the state machine and has been the source of numerous, subtle security
+// issues. Initiating a renegotiation is not supported, but support for
+// accepting renegotiation requests may be enabled.
+//
+// Even when enabled, the server may not change its identity between handshakes
+// (i.e. the leaf certificate must be the same). Additionally, concurrent
+// handshake and application data flow is not permitted so renegotiation can
+// only be used with protocols that synchronise with the renegotiation, such as
+// HTTPS.
+//
+// Renegotiation is not defined in TLS 1.3.
+type RenegotiationSupport int
+
+const (
+ // RenegotiateNever disables renegotiation.
+ RenegotiateNever RenegotiationSupport = iota
+
+ // RenegotiateOnceAsClient allows a remote server to request
+ // renegotiation once per connection.
+ RenegotiateOnceAsClient
+
+ // RenegotiateFreelyAsClient allows a remote server to repeatedly
+ // request renegotiation.
+ RenegotiateFreelyAsClient
+)
+
+// A Config structure is used to configure a TLS client or server.
+// After one has been passed to a TLS function it must not be
+// modified. A Config may be reused; the tls package will also not
+// modify it.
+type Config struct {
+ // Rand provides the source of entropy for nonces and RSA blinding.
+ // If Rand is nil, TLS uses the cryptographic random reader in package
+ // crypto/rand.
+ // The Reader must be safe for use by multiple goroutines.
+ Rand io.Reader
+
+ // Time returns the current time as the number of seconds since the epoch.
+ // If Time is nil, TLS uses time.Now.
+ Time func() time.Time
+
+ // Certificates contains one or more certificate chains to present to the
+ // other side of the connection. The first certificate compatible with the
+ // peer's requirements is selected automatically.
+ //
+ // Server configurations must set one of Certificates, GetCertificate or
+ // GetConfigForClient. Clients doing client-authentication may set either
+ // Certificates or GetClientCertificate.
+ //
+ // Note: if there are multiple Certificates, and they don't have the
+ // optional field Leaf set, certificate selection will incur a significant
+ // per-handshake performance cost.
+ Certificates []Certificate
+
+ // NameToCertificate maps from a certificate name to an element of
+ // Certificates. Note that a certificate name can be of the form
+ // '*.example.com' and so doesn't have to be a domain name as such.
+ //
+ // Deprecated: NameToCertificate only allows associating a single
+ // certificate with a given name. Leave this field nil to let the library
+ // select the first compatible chain from Certificates.
+ NameToCertificate map[string]*Certificate
+
+ // GetCertificate returns a Certificate based on the given
+ // ClientHelloInfo. It will only be called if the client supplies SNI
+ // information or if Certificates is empty.
+ //
+ // If GetCertificate is nil or returns nil, then the certificate is
+ // retrieved from NameToCertificate. If NameToCertificate is nil, the
+ // best element of Certificates will be used.
+ //
+ // Once a Certificate is returned it should not be modified.
+ GetCertificate func(*ClientHelloInfo) (*Certificate, error)
+
+ // GetClientCertificate, if not nil, is called when a server requests a
+ // certificate from a client. If set, the contents of Certificates will
+ // be ignored.
+ //
+ // If GetClientCertificate returns an error, the handshake will be
+ // aborted and that error will be returned. Otherwise
+ // GetClientCertificate must return a non-nil Certificate. If
+ // Certificate.Certificate is empty then no certificate will be sent to
+ // the server. If this is unacceptable to the server then it may abort
+ // the handshake.
+ //
+ // GetClientCertificate may be called multiple times for the same
+ // connection if renegotiation occurs or if TLS 1.3 is in use.
+ //
+ // Once a Certificate is returned it should not be modified.
+ GetClientCertificate func(*CertificateRequestInfo) (*Certificate, error)
+
+ // GetConfigForClient, if not nil, is called after a ClientHello is
+ // received from a client. It may return a non-nil Config in order to
+ // change the Config that will be used to handle this connection. If
+ // the returned Config is nil, the original Config will be used. The
+ // Config returned by this callback may not be subsequently modified.
+ //
+ // If GetConfigForClient is nil, the Config passed to Server() will be
+ // used for all connections.
+ //
+ // If SessionTicketKey was explicitly set on the returned Config, or if
+ // SetSessionTicketKeys was called on the returned Config, those keys will
+ // be used. Otherwise, the original Config keys will be used (and possibly
+ // rotated if they are automatically managed).
+ GetConfigForClient func(*ClientHelloInfo) (*Config, error)
+
+ // VerifyPeerCertificate, if not nil, is called after normal
+ // certificate verification by either a TLS client or server. It
+ // receives the raw ASN.1 certificates provided by the peer and also
+ // any verified chains that normal processing found. If it returns a
+ // non-nil error, the handshake is aborted and that error results.
+ //
+ // If normal verification fails then the handshake will abort before
+ // considering this callback. If normal verification is disabled (on the
+ // client when InsecureSkipVerify is set, or on a server when ClientAuth is
+ // RequestClientCert or RequireAnyClientCert), then this callback will be
+ // considered but the verifiedChains argument will always be nil. When
+ // ClientAuth is NoClientCert, this callback is not called on the server.
+ // rawCerts may be empty on the server if ClientAuth is RequestClientCert or
+ // VerifyClientCertIfGiven.
+ //
+ // This callback is not invoked on resumed connections, as certificates are
+ // not re-verified on resumption.
+ //
+ // verifiedChains and its contents should not be modified.
+ VerifyPeerCertificate func(rawCerts [][]byte, verifiedChains [][]*x509.Certificate) error
+
+ // VerifyConnection, if not nil, is called after normal certificate
+ // verification and after VerifyPeerCertificate by either a TLS client
+ // or server. If it returns a non-nil error, the handshake is aborted
+ // and that error results.
+ //
+ // If normal verification fails then the handshake will abort before
+ // considering this callback. This callback will run for all connections,
+ // including resumptions, regardless of InsecureSkipVerify or ClientAuth
+ // settings.
+ VerifyConnection func(ConnectionState) error
+
+ // RootCAs defines the set of root certificate authorities
+ // that clients use when verifying server certificates.
+ // If RootCAs is nil, TLS uses the host's root CA set.
+ RootCAs *x509.CertPool
+
+ // NextProtos is a list of supported application level protocols, in
+ // order of preference. If both peers support ALPN, the selected
+ // protocol will be one from this list, and the connection will fail
+ // if there is no mutually supported protocol. If NextProtos is empty
+ // or the peer doesn't support ALPN, the connection will succeed and
+ // ConnectionState.NegotiatedProtocol will be empty.
+ NextProtos []string
+
+ // ServerName is used to verify the hostname on the returned
+ // certificates unless InsecureSkipVerify is given. It is also included
+ // in the client's handshake to support virtual hosting unless it is
+ // an IP address.
+ ServerName string
+
+ // ClientAuth determines the server's policy for
+ // TLS Client Authentication. The default is NoClientCert.
+ ClientAuth ClientAuthType
+
+ // ClientCAs defines the set of root certificate authorities
+ // that servers use if required to verify a client certificate
+ // by the policy in ClientAuth.
+ ClientCAs *x509.CertPool
+
+ // InsecureSkipVerify controls whether a client verifies the server's
+ // certificate chain and host name. If InsecureSkipVerify is true, crypto/tls
+ // accepts any certificate presented by the server and any host name in that
+ // certificate. In this mode, TLS is susceptible to machine-in-the-middle
+ // attacks unless custom verification is used. This should be used only for
+ // testing or in combination with VerifyConnection or VerifyPeerCertificate.
+ InsecureSkipVerify bool
+
+ // CipherSuites is a list of enabled TLS 1.0–1.2 cipher suites. The order of
+ // the list is ignored. Note that TLS 1.3 ciphersuites are not configurable.
+ //
+ // If CipherSuites is nil, a safe default list is used. The default cipher
+ // suites might change over time.
+ CipherSuites []uint16
+
+ // PreferServerCipherSuites is a legacy field and has no effect.
+ //
+ // It used to control whether the server would follow the client's or the
+ // server's preference. Servers now select the best mutually supported
+ // cipher suite based on logic that takes into account inferred client
+ // hardware, server hardware, and security.
+ //
+ // Deprecated: PreferServerCipherSuites is ignored.
+ PreferServerCipherSuites bool
+
+ // SessionTicketsDisabled may be set to true to disable session ticket and
+ // PSK (resumption) support. Note that on clients, session ticket support is
+ // also disabled if ClientSessionCache is nil.
+ SessionTicketsDisabled bool
+
+ // SessionTicketKey is used by TLS servers to provide session resumption.
+ // See RFC 5077 and the PSK mode of RFC 8446. If zero, it will be filled
+ // with random data before the first server handshake.
+ //
+ // Deprecated: if this field is left at zero, session ticket keys will be
+ // automatically rotated every day and dropped after seven days. For
+ // customizing the rotation schedule or synchronizing servers that are
+ // terminating connections for the same host, use SetSessionTicketKeys.
+ SessionTicketKey [32]byte
+
+ // ClientSessionCache is a cache of ClientSessionState entries for TLS
+ // session resumption. It is only used by clients.
+ ClientSessionCache ClientSessionCache
+
+ // UnwrapSession is called on the server to turn a ticket/identity
+ // previously produced by [WrapSession] into a usable session.
+ //
+ // UnwrapSession will usually either decrypt a session state in the ticket
+ // (for example with [Config.EncryptTicket]), or use the ticket as a handle
+ // to recover a previously stored state. It must use [ParseSessionState] to
+ // deserialize the session state.
+ //
+ // If UnwrapSession returns an error, the connection is terminated. If it
+ // returns (nil, nil), the session is ignored. crypto/tls may still choose
+ // not to resume the returned session.
+ UnwrapSession func(identity []byte, cs ConnectionState) (*SessionState, error)
+
+ // WrapSession is called on the server to produce a session ticket/identity.
+ //
+ // WrapSession must serialize the session state with [SessionState.Bytes].
+ // It may then encrypt the serialized state (for example with
+ // [Config.DecryptTicket]) and use it as the ticket, or store the state and
+ // return a handle for it.
+ //
+ // If WrapSession returns an error, the connection is terminated.
+ //
+ // Warning: the return value will be exposed on the wire and to clients in
+ // plaintext. The application is in charge of encrypting and authenticating
+ // it (and rotating keys) or returning high-entropy identifiers. Failing to
+ // do so correctly can compromise current, previous, and future connections
+ // depending on the protocol version.
+ WrapSession func(ConnectionState, *SessionState) ([]byte, error)
+
+ // MinVersion contains the minimum TLS version that is acceptable.
+ //
+ // By default, TLS 1.2 is currently used as the minimum when acting as a
+ // client, and TLS 1.0 when acting as a server. TLS 1.0 is the minimum
+ // supported by this package, both as a client and as a server.
+ //
+ // The client-side default can temporarily be reverted to TLS 1.0 by
+ // including the value "x509sha1=1" in the GODEBUG environment variable.
+ // Note that this option will be removed in Go 1.19 (but it will still be
+ // possible to set this field to VersionTLS10 explicitly).
+ MinVersion uint16
+
+ // MaxVersion contains the maximum TLS version that is acceptable.
+ //
+ // By default, the maximum version supported by this package is used,
+ // which is currently TLS 1.3.
+ MaxVersion uint16
+
+ // CurvePreferences contains the elliptic curves that will be used in
+ // an ECDHE handshake, in preference order. If empty, the default will
+ // be used. The client will use the first preference as the type for
+ // its key share in TLS 1.3. This may change in the future.
+ CurvePreferences []CurveID
+
+ // DynamicRecordSizingDisabled disables adaptive sizing of TLS records.
+ // When true, the largest possible TLS record size is always used. When
+ // false, the size of TLS records may be adjusted in an attempt to
+ // improve latency.
+ DynamicRecordSizingDisabled bool
+
+ // Renegotiation controls what types of renegotiation are supported.
+ // The default, none, is correct for the vast majority of applications.
+ Renegotiation RenegotiationSupport
+
+ // KeyLogWriter optionally specifies a destination for TLS master secrets
+ // in NSS key log format that can be used to allow external programs
+ // such as Wireshark to decrypt TLS connections.
+ // See https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format.
+ // Use of KeyLogWriter compromises security and should only be
+ // used for debugging.
+ KeyLogWriter io.Writer
+
+ // mutex protects sessionTicketKeys and autoSessionTicketKeys.
+ mutex sync.RWMutex
+ // sessionTicketKeys contains zero or more ticket keys. If set, it means
+ // the keys were set with SessionTicketKey or SetSessionTicketKeys. The
+ // first key is used for new tickets and any subsequent keys can be used to
+ // decrypt old tickets. The slice contents are not protected by the mutex
+ // and are immutable.
+ sessionTicketKeys []ticketKey
+ // autoSessionTicketKeys is like sessionTicketKeys but is owned by the
+ // auto-rotation logic. See Config.ticketKeys.
+ autoSessionTicketKeys []ticketKey
+}
+
+const (
+ // ticketKeyLifetime is how long a ticket key remains valid and can be used to
+ // resume a client connection.
+ ticketKeyLifetime = 7 * 24 * time.Hour // 7 days
+
+ // ticketKeyRotation is how often the server should rotate the session ticket key
+ // that is used for new tickets.
+ ticketKeyRotation = 24 * time.Hour
+)
+
+// ticketKey is the internal representation of a session ticket key.
+type ticketKey struct {
+ aesKey [16]byte
+ hmacKey [16]byte
+ // created is the time at which this ticket key was created. See Config.ticketKeys.
+ created time.Time
+}
+
+// ticketKeyFromBytes converts from the external representation of a session
+// ticket key to a ticketKey. Externally, session ticket keys are 32 random
+// bytes and this function expands that into sufficient name and key material.
+func (c *Config) ticketKeyFromBytes(b [32]byte) (key ticketKey) {
+ hashed := sha512.Sum512(b[:])
+ // The first 16 bytes of the hash used to be exposed on the wire as a ticket
+ // prefix. They MUST NOT be used as a secret. In the future, it would make
+ // sense to use a proper KDF here, like HKDF with a fixed salt.
+ const legacyTicketKeyNameLen = 16
+ copy(key.aesKey[:], hashed[legacyTicketKeyNameLen:])
+ copy(key.hmacKey[:], hashed[legacyTicketKeyNameLen+len(key.aesKey):])
+ key.created = c.time()
+ return key
+}
+
+// maxSessionTicketLifetime is the maximum allowed lifetime of a TLS 1.3 session
+// ticket, and the lifetime we set for all tickets we send.
+const maxSessionTicketLifetime = 7 * 24 * time.Hour
+
+// Clone returns a shallow clone of c or nil if c is nil. It is safe to clone a Config that is
+// being used concurrently by a TLS client or server.
+func (c *Config) Clone() *Config {
+ if c == nil {
+ return nil
+ }
+ c.mutex.RLock()
+ defer c.mutex.RUnlock()
+ return &Config{
+ Rand: c.Rand,
+ Time: c.Time,
+ Certificates: c.Certificates,
+ NameToCertificate: c.NameToCertificate,
+ GetCertificate: c.GetCertificate,
+ GetClientCertificate: c.GetClientCertificate,
+ GetConfigForClient: c.GetConfigForClient,
+ VerifyPeerCertificate: c.VerifyPeerCertificate,
+ VerifyConnection: c.VerifyConnection,
+ RootCAs: c.RootCAs,
+ NextProtos: c.NextProtos,
+ ServerName: c.ServerName,
+ ClientAuth: c.ClientAuth,
+ ClientCAs: c.ClientCAs,
+ InsecureSkipVerify: c.InsecureSkipVerify,
+ CipherSuites: c.CipherSuites,
+ PreferServerCipherSuites: c.PreferServerCipherSuites,
+ SessionTicketsDisabled: c.SessionTicketsDisabled,
+ SessionTicketKey: c.SessionTicketKey,
+ ClientSessionCache: c.ClientSessionCache,
+ UnwrapSession: c.UnwrapSession,
+ WrapSession: c.WrapSession,
+ MinVersion: c.MinVersion,
+ MaxVersion: c.MaxVersion,
+ CurvePreferences: c.CurvePreferences,
+ DynamicRecordSizingDisabled: c.DynamicRecordSizingDisabled,
+ Renegotiation: c.Renegotiation,
+ KeyLogWriter: c.KeyLogWriter,
+ sessionTicketKeys: c.sessionTicketKeys,
+ autoSessionTicketKeys: c.autoSessionTicketKeys,
+ }
+}
+
+// deprecatedSessionTicketKey is set as the prefix of SessionTicketKey if it was
+// randomized for backwards compatibility but is not in use.
+var deprecatedSessionTicketKey = []byte("DEPRECATED")
+
+// initLegacySessionTicketKeyRLocked ensures the legacy SessionTicketKey field is
+// randomized if empty, and that sessionTicketKeys is populated from it otherwise.
+func (c *Config) initLegacySessionTicketKeyRLocked() {
+ // Don't write if SessionTicketKey is already defined as our deprecated string,
+ // or if it is defined by the user but sessionTicketKeys is already set.
+ if c.SessionTicketKey != [32]byte{} &&
+ (bytes.HasPrefix(c.SessionTicketKey[:], deprecatedSessionTicketKey) || len(c.sessionTicketKeys) > 0) {
+ return
+ }
+
+ // We need to write some data, so get an exclusive lock and re-check any conditions.
+ c.mutex.RUnlock()
+ defer c.mutex.RLock()
+ c.mutex.Lock()
+ defer c.mutex.Unlock()
+ if c.SessionTicketKey == [32]byte{} {
+ if _, err := io.ReadFull(c.rand(), c.SessionTicketKey[:]); err != nil {
+ panic(fmt.Sprintf("tls: unable to generate random session ticket key: %v", err))
+ }
+ // Write the deprecated prefix at the beginning so we know we created
+ // it. This key with the DEPRECATED prefix isn't used as an actual
+ // session ticket key, and is only randomized in case the application
+ // reuses it for some reason.
+ copy(c.SessionTicketKey[:], deprecatedSessionTicketKey)
+ } else if !bytes.HasPrefix(c.SessionTicketKey[:], deprecatedSessionTicketKey) && len(c.sessionTicketKeys) == 0 {
+ c.sessionTicketKeys = []ticketKey{c.ticketKeyFromBytes(c.SessionTicketKey)}
+ }
+
+}
+
+// ticketKeys returns the ticketKeys for this connection.
+// If configForClient has explicitly set keys, those will
+// be returned. Otherwise, the keys on c will be used and
+// may be rotated if auto-managed.
+// During rotation, any expired session ticket keys are deleted from
+// c.sessionTicketKeys. If the session ticket key that is currently
+// encrypting tickets (ie. the first ticketKey in c.sessionTicketKeys)
+// is not fresh, then a new session ticket key will be
+// created and prepended to c.sessionTicketKeys.
+func (c *Config) ticketKeys(configForClient *Config) []ticketKey {
+ // If the ConfigForClient callback returned a Config with explicitly set
+ // keys, use those, otherwise just use the original Config.
+ if configForClient != nil {
+ configForClient.mutex.RLock()
+ if configForClient.SessionTicketsDisabled {
+ return nil
+ }
+ configForClient.initLegacySessionTicketKeyRLocked()
+ if len(configForClient.sessionTicketKeys) != 0 {
+ ret := configForClient.sessionTicketKeys
+ configForClient.mutex.RUnlock()
+ return ret
+ }
+ configForClient.mutex.RUnlock()
+ }
+
+ c.mutex.RLock()
+ defer c.mutex.RUnlock()
+ if c.SessionTicketsDisabled {
+ return nil
+ }
+ c.initLegacySessionTicketKeyRLocked()
+ if len(c.sessionTicketKeys) != 0 {
+ return c.sessionTicketKeys
+ }
+ // Fast path for the common case where the key is fresh enough.
+ if len(c.autoSessionTicketKeys) > 0 && c.time().Sub(c.autoSessionTicketKeys[0].created) < ticketKeyRotation {
+ return c.autoSessionTicketKeys
+ }
+
+ // autoSessionTicketKeys are managed by auto-rotation.
+ c.mutex.RUnlock()
+ defer c.mutex.RLock()
+ c.mutex.Lock()
+ defer c.mutex.Unlock()
+ // Re-check the condition in case it changed since obtaining the new lock.
+ if len(c.autoSessionTicketKeys) == 0 || c.time().Sub(c.autoSessionTicketKeys[0].created) >= ticketKeyRotation {
+ var newKey [32]byte
+ if _, err := io.ReadFull(c.rand(), newKey[:]); err != nil {
+ panic(fmt.Sprintf("unable to generate random session ticket key: %v", err))
+ }
+ valid := make([]ticketKey, 0, len(c.autoSessionTicketKeys)+1)
+ valid = append(valid, c.ticketKeyFromBytes(newKey))
+ for _, k := range c.autoSessionTicketKeys {
+ // While rotating the current key, also remove any expired ones.
+ if c.time().Sub(k.created) < ticketKeyLifetime {
+ valid = append(valid, k)
+ }
+ }
+ c.autoSessionTicketKeys = valid
+ }
+ return c.autoSessionTicketKeys
+}
+
+// SetSessionTicketKeys updates the session ticket keys for a server.
+//
+// The first key will be used when creating new tickets, while all keys can be
+// used for decrypting tickets. It is safe to call this function while the
+// server is running in order to rotate the session ticket keys. The function
+// will panic if keys is empty.
+//
+// Calling this function will turn off automatic session ticket key rotation.
+//
+// If multiple servers are terminating connections for the same host they should
+// all have the same session ticket keys. If the session ticket keys leaks,
+// previously recorded and future TLS connections using those keys might be
+// compromised.
+func (c *Config) SetSessionTicketKeys(keys [][32]byte) {
+ if len(keys) == 0 {
+ panic("tls: keys must have at least one key")
+ }
+
+ newKeys := make([]ticketKey, len(keys))
+ for i, bytes := range keys {
+ newKeys[i] = c.ticketKeyFromBytes(bytes)
+ }
+
+ c.mutex.Lock()
+ c.sessionTicketKeys = newKeys
+ c.mutex.Unlock()
+}
+
+func (c *Config) rand() io.Reader {
+ r := c.Rand
+ if r == nil {
+ return rand.Reader
+ }
+ return r
+}
+
+func (c *Config) time() time.Time {
+ t := c.Time
+ if t == nil {
+ t = time.Now
+ }
+ return t()
+}
+
+func (c *Config) cipherSuites() []uint16 {
+ if needFIPS() {
+ return fipsCipherSuites(c)
+ }
+ if c.CipherSuites != nil {
+ return c.CipherSuites
+ }
+ return defaultCipherSuites
+}
+
+var supportedVersions = []uint16{
+ VersionTLS13,
+ VersionTLS12,
+ VersionTLS11,
+ VersionTLS10,
+}
+
+// roleClient and roleServer are meant to call supportedVersions and parents
+// with more readability at the callsite.
+const roleClient = true
+const roleServer = false
+
+func (c *Config) supportedVersions(isClient bool) []uint16 {
+ versions := make([]uint16, 0, len(supportedVersions))
+ for _, v := range supportedVersions {
+ if needFIPS() && (v < fipsMinVersion(c) || v > fipsMaxVersion(c)) {
+ continue
+ }
+ if (c == nil || c.MinVersion == 0) &&
+ isClient && v < VersionTLS12 {
+ continue
+ }
+ if c != nil && c.MinVersion != 0 && v < c.MinVersion {
+ continue
+ }
+ if c != nil && c.MaxVersion != 0 && v > c.MaxVersion {
+ continue
+ }
+ versions = append(versions, v)
+ }
+ return versions
+}
+
+func (c *Config) maxSupportedVersion(isClient bool) uint16 {
+ supportedVersions := c.supportedVersions(isClient)
+ if len(supportedVersions) == 0 {
+ return 0
+ }
+ return supportedVersions[0]
+}
+
+// supportedVersionsFromMax returns a list of supported versions derived from a
+// legacy maximum version value. Note that only versions supported by this
+// library are returned. Any newer peer will use supportedVersions anyway.
+func supportedVersionsFromMax(maxVersion uint16) []uint16 {
+ versions := make([]uint16, 0, len(supportedVersions))
+ for _, v := range supportedVersions {
+ if v > maxVersion {
+ continue
+ }
+ versions = append(versions, v)
+ }
+ return versions
+}
+
+var defaultCurvePreferences = []CurveID{X25519, CurveP256, CurveP384, CurveP521}
+
+func (c *Config) curvePreferences() []CurveID {
+ if needFIPS() {
+ return fipsCurvePreferences(c)
+ }
+ if c == nil || len(c.CurvePreferences) == 0 {
+ return defaultCurvePreferences
+ }
+ return c.CurvePreferences
+}
+
+func (c *Config) supportsCurve(curve CurveID) bool {
+ for _, cc := range c.curvePreferences() {
+ if cc == curve {
+ return true
+ }
+ }
+ return false
+}
+
+// mutualVersion returns the protocol version to use given the advertised
+// versions of the peer. Priority is given to the peer preference order.
+func (c *Config) mutualVersion(isClient bool, peerVersions []uint16) (uint16, bool) {
+ supportedVersions := c.supportedVersions(isClient)
+ for _, peerVersion := range peerVersions {
+ for _, v := range supportedVersions {
+ if v == peerVersion {
+ return v, true
+ }
+ }
+ }
+ return 0, false
+}
+
+var errNoCertificates = errors.New("tls: no certificates configured")
+
+// getCertificate returns the best certificate for the given ClientHelloInfo,
+// defaulting to the first element of c.Certificates.
+func (c *Config) getCertificate(clientHello *ClientHelloInfo) (*Certificate, error) {
+ if c.GetCertificate != nil &&
+ (len(c.Certificates) == 0 || len(clientHello.ServerName) > 0) {
+ cert, err := c.GetCertificate(clientHello)
+ if cert != nil || err != nil {
+ return cert, err
+ }
+ }
+
+ if len(c.Certificates) == 0 {
+ return nil, errNoCertificates
+ }
+
+ if len(c.Certificates) == 1 {
+ // There's only one choice, so no point doing any work.
+ return &c.Certificates[0], nil
+ }
+
+ if c.NameToCertificate != nil {
+ name := strings.ToLower(clientHello.ServerName)
+ if cert, ok := c.NameToCertificate[name]; ok {
+ return cert, nil
+ }
+ if len(name) > 0 {
+ labels := strings.Split(name, ".")
+ labels[0] = "*"
+ wildcardName := strings.Join(labels, ".")
+ if cert, ok := c.NameToCertificate[wildcardName]; ok {
+ return cert, nil
+ }
+ }
+ }
+
+ for _, cert := range c.Certificates {
+ if err := clientHello.SupportsCertificate(&cert); err == nil {
+ return &cert, nil
+ }
+ }
+
+ // If nothing matches, return the first certificate.
+ return &c.Certificates[0], nil
+}
+
+// SupportsCertificate returns nil if the provided certificate is supported by
+// the client that sent the ClientHello. Otherwise, it returns an error
+// describing the reason for the incompatibility.
+//
+// If this ClientHelloInfo was passed to a GetConfigForClient or GetCertificate
+// callback, this method will take into account the associated Config. Note that
+// if GetConfigForClient returns a different Config, the change can't be
+// accounted for by this method.
+//
+// This function will call x509.ParseCertificate unless c.Leaf is set, which can
+// incur a significant performance cost.
+func (chi *ClientHelloInfo) SupportsCertificate(c *Certificate) error {
+ // Note we don't currently support certificate_authorities nor
+ // signature_algorithms_cert, and don't check the algorithms of the
+ // signatures on the chain (which anyway are a SHOULD, see RFC 8446,
+ // Section 4.4.2.2).
+
+ config := chi.config
+ if config == nil {
+ config = &Config{}
+ }
+ vers, ok := config.mutualVersion(roleServer, chi.SupportedVersions)
+ if !ok {
+ return errors.New("no mutually supported protocol versions")
+ }
+
+ // If the client specified the name they are trying to connect to, the
+ // certificate needs to be valid for it.
+ if chi.ServerName != "" {
+ x509Cert, err := c.leaf()
+ if err != nil {
+ return fmt.Errorf("failed to parse certificate: %w", err)
+ }
+ if err := x509Cert.VerifyHostname(chi.ServerName); err != nil {
+ return fmt.Errorf("certificate is not valid for requested server name: %w", err)
+ }
+ }
+
+ // supportsRSAFallback returns nil if the certificate and connection support
+ // the static RSA key exchange, and unsupported otherwise. The logic for
+ // supporting static RSA is completely disjoint from the logic for
+ // supporting signed key exchanges, so we just check it as a fallback.
+ supportsRSAFallback := func(unsupported error) error {
+ // TLS 1.3 dropped support for the static RSA key exchange.
+ if vers == VersionTLS13 {
+ return unsupported
+ }
+ // The static RSA key exchange works by decrypting a challenge with the
+ // RSA private key, not by signing, so check the PrivateKey implements
+ // crypto.Decrypter, like *rsa.PrivateKey does.
+ if priv, ok := c.PrivateKey.(crypto.Decrypter); ok {
+ if _, ok := priv.Public().(*rsa.PublicKey); !ok {
+ return unsupported
+ }
+ } else {
+ return unsupported
+ }
+ // Finally, there needs to be a mutual cipher suite that uses the static
+ // RSA key exchange instead of ECDHE.
+ rsaCipherSuite := selectCipherSuite(chi.CipherSuites, config.cipherSuites(), func(c *cipherSuite) bool {
+ if c.flags&suiteECDHE != 0 {
+ return false
+ }
+ if vers < VersionTLS12 && c.flags&suiteTLS12 != 0 {
+ return false
+ }
+ return true
+ })
+ if rsaCipherSuite == nil {
+ return unsupported
+ }
+ return nil
+ }
+
+ // If the client sent the signature_algorithms extension, ensure it supports
+ // schemes we can use with this certificate and TLS version.
+ if len(chi.SignatureSchemes) > 0 {
+ if _, err := selectSignatureScheme(vers, c, chi.SignatureSchemes); err != nil {
+ return supportsRSAFallback(err)
+ }
+ }
+
+ // In TLS 1.3 we are done because supported_groups is only relevant to the
+ // ECDHE computation, point format negotiation is removed, cipher suites are
+ // only relevant to the AEAD choice, and static RSA does not exist.
+ if vers == VersionTLS13 {
+ return nil
+ }
+
+ // The only signed key exchange we support is ECDHE.
+ if !supportsECDHE(config, chi.SupportedCurves, chi.SupportedPoints) {
+ return supportsRSAFallback(errors.New("client doesn't support ECDHE, can only use legacy RSA key exchange"))
+ }
+
+ var ecdsaCipherSuite bool
+ if priv, ok := c.PrivateKey.(crypto.Signer); ok {
+ switch pub := priv.Public().(type) {
+ case *ecdsa.PublicKey:
+ var curve CurveID
+ switch pub.Curve {
+ case elliptic.P256():
+ curve = CurveP256
+ case elliptic.P384():
+ curve = CurveP384
+ case elliptic.P521():
+ curve = CurveP521
+ default:
+ return supportsRSAFallback(unsupportedCertificateError(c))
+ }
+ var curveOk bool
+ for _, c := range chi.SupportedCurves {
+ if c == curve && config.supportsCurve(c) {
+ curveOk = true
+ break
+ }
+ }
+ if !curveOk {
+ return errors.New("client doesn't support certificate curve")
+ }
+ ecdsaCipherSuite = true
+ case ed25519.PublicKey:
+ if vers < VersionTLS12 || len(chi.SignatureSchemes) == 0 {
+ return errors.New("connection doesn't support Ed25519")
+ }
+ ecdsaCipherSuite = true
+ case *rsa.PublicKey:
+ default:
+ return supportsRSAFallback(unsupportedCertificateError(c))
+ }
+ } else {
+ return supportsRSAFallback(unsupportedCertificateError(c))
+ }
+
+ // Make sure that there is a mutually supported cipher suite that works with
+ // this certificate. Cipher suite selection will then apply the logic in
+ // reverse to pick it. See also serverHandshakeState.cipherSuiteOk.
+ cipherSuite := selectCipherSuite(chi.CipherSuites, config.cipherSuites(), func(c *cipherSuite) bool {
+ if c.flags&suiteECDHE == 0 {
+ return false
+ }
+ if c.flags&suiteECSign != 0 {
+ if !ecdsaCipherSuite {
+ return false
+ }
+ } else {
+ if ecdsaCipherSuite {
+ return false
+ }
+ }
+ if vers < VersionTLS12 && c.flags&suiteTLS12 != 0 {
+ return false
+ }
+ return true
+ })
+ if cipherSuite == nil {
+ return supportsRSAFallback(errors.New("client doesn't support any cipher suites compatible with the certificate"))
+ }
+
+ return nil
+}
+
+// SupportsCertificate returns nil if the provided certificate is supported by
+// the server that sent the CertificateRequest. Otherwise, it returns an error
+// describing the reason for the incompatibility.
+func (cri *CertificateRequestInfo) SupportsCertificate(c *Certificate) error {
+ if _, err := selectSignatureScheme(cri.Version, c, cri.SignatureSchemes); err != nil {
+ return err
+ }
+
+ if len(cri.AcceptableCAs) == 0 {
+ return nil
+ }
+
+ for j, cert := range c.Certificate {
+ x509Cert := c.Leaf
+ // Parse the certificate if this isn't the leaf node, or if
+ // chain.Leaf was nil.
+ if j != 0 || x509Cert == nil {
+ var err error
+ if x509Cert, err = x509.ParseCertificate(cert); err != nil {
+ return fmt.Errorf("failed to parse certificate #%d in the chain: %w", j, err)
+ }
+ }
+
+ for _, ca := range cri.AcceptableCAs {
+ if bytes.Equal(x509Cert.RawIssuer, ca) {
+ return nil
+ }
+ }
+ }
+ return errors.New("chain is not signed by an acceptable CA")
+}
+
+// BuildNameToCertificate parses c.Certificates and builds c.NameToCertificate
+// from the CommonName and SubjectAlternateName fields of each of the leaf
+// certificates.
+//
+// Deprecated: NameToCertificate only allows associating a single certificate
+// with a given name. Leave that field nil to let the library select the first
+// compatible chain from Certificates.
+func (c *Config) BuildNameToCertificate() {
+ c.NameToCertificate = make(map[string]*Certificate)
+ for i := range c.Certificates {
+ cert := &c.Certificates[i]
+ x509Cert, err := cert.leaf()
+ if err != nil {
+ continue
+ }
+ // If SANs are *not* present, some clients will consider the certificate
+ // valid for the name in the Common Name.
+ if x509Cert.Subject.CommonName != "" && len(x509Cert.DNSNames) == 0 {
+ c.NameToCertificate[x509Cert.Subject.CommonName] = cert
+ }
+ for _, san := range x509Cert.DNSNames {
+ c.NameToCertificate[san] = cert
+ }
+ }
+}
+
+const (
+ keyLogLabelTLS12 = "CLIENT_RANDOM"
+ keyLogLabelClientHandshake = "CLIENT_HANDSHAKE_TRAFFIC_SECRET"
+ keyLogLabelServerHandshake = "SERVER_HANDSHAKE_TRAFFIC_SECRET"
+ keyLogLabelClientTraffic = "CLIENT_TRAFFIC_SECRET_0"
+ keyLogLabelServerTraffic = "SERVER_TRAFFIC_SECRET_0"
+)
+
+func (c *Config) writeKeyLog(label string, clientRandom, secret []byte) error {
+ if c.KeyLogWriter == nil {
+ return nil
+ }
+
+ logLine := fmt.Appendf(nil, "%s %x %x\n", label, clientRandom, secret)
+
+ writerMutex.Lock()
+ _, err := c.KeyLogWriter.Write(logLine)
+ writerMutex.Unlock()
+
+ return err
+}
+
+// writerMutex protects all KeyLogWriters globally. It is rarely enabled,
+// and is only for debugging, so a global mutex saves space.
+var writerMutex sync.Mutex
+
+// A Certificate is a chain of one or more certificates, leaf first.
+type Certificate struct {
+ Certificate [][]byte
+ // PrivateKey contains the private key corresponding to the public key in
+ // Leaf. This must implement crypto.Signer with an RSA, ECDSA or Ed25519 PublicKey.
+ // For a server up to TLS 1.2, it can also implement crypto.Decrypter with
+ // an RSA PublicKey.
+ PrivateKey crypto.PrivateKey
+ // SupportedSignatureAlgorithms is an optional list restricting what
+ // signature algorithms the PrivateKey can be used for.
+ SupportedSignatureAlgorithms []SignatureScheme
+ // OCSPStaple contains an optional OCSP response which will be served
+ // to clients that request it.
+ OCSPStaple []byte
+ // SignedCertificateTimestamps contains an optional list of Signed
+ // Certificate Timestamps which will be served to clients that request it.
+ SignedCertificateTimestamps [][]byte
+ // Leaf is the parsed form of the leaf certificate, which may be initialized
+ // using x509.ParseCertificate to reduce per-handshake processing. If nil,
+ // the leaf certificate will be parsed as needed.
+ Leaf *x509.Certificate
+}
+
+// leaf returns the parsed leaf certificate, either from c.Leaf or by parsing
+// the corresponding c.Certificate[0].
+func (c *Certificate) leaf() (*x509.Certificate, error) {
+ if c.Leaf != nil {
+ return c.Leaf, nil
+ }
+ return x509.ParseCertificate(c.Certificate[0])
+}
+
+type handshakeMessage interface {
+ marshal() ([]byte, error)
+ unmarshal([]byte) bool
+}
+
+// lruSessionCache is a ClientSessionCache implementation that uses an LRU
+// caching strategy.
+type lruSessionCache struct {
+ sync.Mutex
+
+ m map[string]*list.Element
+ q *list.List
+ capacity int
+}
+
+type lruSessionCacheEntry struct {
+ sessionKey string
+ state *ClientSessionState
+}
+
+// NewLRUClientSessionCache returns a ClientSessionCache with the given
+// capacity that uses an LRU strategy. If capacity is < 1, a default capacity
+// is used instead.
+func NewLRUClientSessionCache(capacity int) ClientSessionCache {
+ const defaultSessionCacheCapacity = 64
+
+ if capacity < 1 {
+ capacity = defaultSessionCacheCapacity
+ }
+ return &lruSessionCache{
+ m: make(map[string]*list.Element),
+ q: list.New(),
+ capacity: capacity,
+ }
+}
+
+// Put adds the provided (sessionKey, cs) pair to the cache. If cs is nil, the entry
+// corresponding to sessionKey is removed from the cache instead.
+func (c *lruSessionCache) Put(sessionKey string, cs *ClientSessionState) {
+ c.Lock()
+ defer c.Unlock()
+
+ if elem, ok := c.m[sessionKey]; ok {
+ if cs == nil {
+ c.q.Remove(elem)
+ delete(c.m, sessionKey)
+ } else {
+ entry := elem.Value.(*lruSessionCacheEntry)
+ entry.state = cs
+ c.q.MoveToFront(elem)
+ }
+ return
+ }
+
+ if c.q.Len() < c.capacity {
+ entry := &lruSessionCacheEntry{sessionKey, cs}
+ c.m[sessionKey] = c.q.PushFront(entry)
+ return
+ }
+
+ elem := c.q.Back()
+ entry := elem.Value.(*lruSessionCacheEntry)
+ delete(c.m, entry.sessionKey)
+ entry.sessionKey = sessionKey
+ entry.state = cs
+ c.q.MoveToFront(elem)
+ c.m[sessionKey] = elem
+}
+
+// Get returns the ClientSessionState value associated with a given key. It
+// returns (nil, false) if no value is found.
+func (c *lruSessionCache) Get(sessionKey string) (*ClientSessionState, bool) {
+ c.Lock()
+ defer c.Unlock()
+
+ if elem, ok := c.m[sessionKey]; ok {
+ c.q.MoveToFront(elem)
+ return elem.Value.(*lruSessionCacheEntry).state, true
+ }
+ return nil, false
+}
+
+var emptyConfig Config
+
+func defaultConfig() *Config {
+ return &emptyConfig
+}
+
+func unexpectedMessageError(wanted, got any) error {
+ return fmt.Errorf("tls: received unexpected handshake message of type %T when waiting for %T", got, wanted)
+}
+
+func isSupportedSignatureAlgorithm(sigAlg SignatureScheme, supportedSignatureAlgorithms []SignatureScheme) bool {
+ for _, s := range supportedSignatureAlgorithms {
+ if s == sigAlg {
+ return true
+ }
+ }
+ return false
+}
+
+// CertificateVerificationError is returned when certificate verification fails during the handshake.
+type CertificateVerificationError struct {
+ // UnverifiedCertificates and its contents should not be modified.
+ UnverifiedCertificates []*x509.Certificate
+ Err error
+}
+
+func (e *CertificateVerificationError) Error() string {
+ return fmt.Sprintf("tls: failed to verify certificate: %s", e.Err)
+}
+
+func (e *CertificateVerificationError) Unwrap() error {
+ return e.Err
+}
diff --git a/contrib/go/_std_1.21/src/crypto/tls/common_string.go b/contrib/go/_std_1.21/src/crypto/tls/common_string.go
new file mode 100644
index 0000000000..238108811f
--- /dev/null
+++ b/contrib/go/_std_1.21/src/crypto/tls/common_string.go
@@ -0,0 +1,116 @@
+// Code generated by "stringer -type=SignatureScheme,CurveID,ClientAuthType -output=common_string.go"; DO NOT EDIT.
+
+package tls
+
+import "strconv"
+
+func _() {
+ // An "invalid array index" compiler error signifies that the constant values have changed.
+ // Re-run the stringer command to generate them again.
+ var x [1]struct{}
+ _ = x[PKCS1WithSHA256-1025]
+ _ = x[PKCS1WithSHA384-1281]
+ _ = x[PKCS1WithSHA512-1537]
+ _ = x[PSSWithSHA256-2052]
+ _ = x[PSSWithSHA384-2053]
+ _ = x[PSSWithSHA512-2054]
+ _ = x[ECDSAWithP256AndSHA256-1027]
+ _ = x[ECDSAWithP384AndSHA384-1283]
+ _ = x[ECDSAWithP521AndSHA512-1539]
+ _ = x[Ed25519-2055]
+ _ = x[PKCS1WithSHA1-513]
+ _ = x[ECDSAWithSHA1-515]
+}
+
+const (
+ _SignatureScheme_name_0 = "PKCS1WithSHA1"
+ _SignatureScheme_name_1 = "ECDSAWithSHA1"
+ _SignatureScheme_name_2 = "PKCS1WithSHA256"
+ _SignatureScheme_name_3 = "ECDSAWithP256AndSHA256"
+ _SignatureScheme_name_4 = "PKCS1WithSHA384"
+ _SignatureScheme_name_5 = "ECDSAWithP384AndSHA384"
+ _SignatureScheme_name_6 = "PKCS1WithSHA512"
+ _SignatureScheme_name_7 = "ECDSAWithP521AndSHA512"
+ _SignatureScheme_name_8 = "PSSWithSHA256PSSWithSHA384PSSWithSHA512Ed25519"
+)
+
+var (
+ _SignatureScheme_index_8 = [...]uint8{0, 13, 26, 39, 46}
+)
+
+func (i SignatureScheme) String() string {
+ switch {
+ case i == 513:
+ return _SignatureScheme_name_0
+ case i == 515:
+ return _SignatureScheme_name_1
+ case i == 1025:
+ return _SignatureScheme_name_2
+ case i == 1027:
+ return _SignatureScheme_name_3
+ case i == 1281:
+ return _SignatureScheme_name_4
+ case i == 1283:
+ return _SignatureScheme_name_5
+ case i == 1537:
+ return _SignatureScheme_name_6
+ case i == 1539:
+ return _SignatureScheme_name_7
+ case 2052 <= i && i <= 2055:
+ i -= 2052
+ return _SignatureScheme_name_8[_SignatureScheme_index_8[i]:_SignatureScheme_index_8[i+1]]
+ default:
+ return "SignatureScheme(" + strconv.FormatInt(int64(i), 10) + ")"
+ }
+}
+func _() {
+ // An "invalid array index" compiler error signifies that the constant values have changed.
+ // Re-run the stringer command to generate them again.
+ var x [1]struct{}
+ _ = x[CurveP256-23]
+ _ = x[CurveP384-24]
+ _ = x[CurveP521-25]
+ _ = x[X25519-29]
+}
+
+const (
+ _CurveID_name_0 = "CurveP256CurveP384CurveP521"
+ _CurveID_name_1 = "X25519"
+)
+
+var (
+ _CurveID_index_0 = [...]uint8{0, 9, 18, 27}
+)
+
+func (i CurveID) String() string {
+ switch {
+ case 23 <= i && i <= 25:
+ i -= 23
+ return _CurveID_name_0[_CurveID_index_0[i]:_CurveID_index_0[i+1]]
+ case i == 29:
+ return _CurveID_name_1
+ default:
+ return "CurveID(" + strconv.FormatInt(int64(i), 10) + ")"
+ }
+}
+func _() {
+ // An "invalid array index" compiler error signifies that the constant values have changed.
+ // Re-run the stringer command to generate them again.
+ var x [1]struct{}
+ _ = x[NoClientCert-0]
+ _ = x[RequestClientCert-1]
+ _ = x[RequireAnyClientCert-2]
+ _ = x[VerifyClientCertIfGiven-3]
+ _ = x[RequireAndVerifyClientCert-4]
+}
+
+const _ClientAuthType_name = "NoClientCertRequestClientCertRequireAnyClientCertVerifyClientCertIfGivenRequireAndVerifyClientCert"
+
+var _ClientAuthType_index = [...]uint8{0, 12, 29, 49, 72, 98}
+
+func (i ClientAuthType) String() string {
+ if i < 0 || i >= ClientAuthType(len(_ClientAuthType_index)-1) {
+ return "ClientAuthType(" + strconv.FormatInt(int64(i), 10) + ")"
+ }
+ return _ClientAuthType_name[_ClientAuthType_index[i]:_ClientAuthType_index[i+1]]
+}
diff --git a/contrib/go/_std_1.21/src/crypto/tls/conn.go b/contrib/go/_std_1.21/src/crypto/tls/conn.go
new file mode 100644
index 0000000000..c04bd48d6a
--- /dev/null
+++ b/contrib/go/_std_1.21/src/crypto/tls/conn.go
@@ -0,0 +1,1655 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// TLS low level connection and record layer
+
+package tls
+
+import (
+ "bytes"
+ "context"
+ "crypto/cipher"
+ "crypto/subtle"
+ "crypto/x509"
+ "errors"
+ "fmt"
+ "hash"
+ "io"
+ "net"
+ "sync"
+ "sync/atomic"
+ "time"
+)
+
+// A Conn represents a secured connection.
+// It implements the net.Conn interface.
+type Conn struct {
+ // constant
+ conn net.Conn
+ isClient bool
+ handshakeFn func(context.Context) error // (*Conn).clientHandshake or serverHandshake
+ quic *quicState // nil for non-QUIC connections
+
+ // isHandshakeComplete is true if the connection is currently transferring
+ // application data (i.e. is not currently processing a handshake).
+ // isHandshakeComplete is true implies handshakeErr == nil.
+ isHandshakeComplete atomic.Bool
+ // constant after handshake; protected by handshakeMutex
+ handshakeMutex sync.Mutex
+ handshakeErr error // error resulting from handshake
+ vers uint16 // TLS version
+ haveVers bool // version has been negotiated
+ config *Config // configuration passed to constructor
+ // handshakes counts the number of handshakes performed on the
+ // connection so far. If renegotiation is disabled then this is either
+ // zero or one.
+ handshakes int
+ extMasterSecret bool
+ didResume bool // whether this connection was a session resumption
+ cipherSuite uint16
+ ocspResponse []byte // stapled OCSP response
+ scts [][]byte // signed certificate timestamps from server
+ peerCertificates []*x509.Certificate
+ // activeCertHandles contains the cache handles to certificates in
+ // peerCertificates that are used to track active references.
+ activeCertHandles []*activeCert
+ // verifiedChains contains the certificate chains that we built, as
+ // opposed to the ones presented by the server.
+ verifiedChains [][]*x509.Certificate
+ // serverName contains the server name indicated by the client, if any.
+ serverName string
+ // secureRenegotiation is true if the server echoed the secure
+ // renegotiation extension. (This is meaningless as a server because
+ // renegotiation is not supported in that case.)
+ secureRenegotiation bool
+ // ekm is a closure for exporting keying material.
+ ekm func(label string, context []byte, length int) ([]byte, error)
+ // resumptionSecret is the resumption_master_secret for handling
+ // or sending NewSessionTicket messages.
+ resumptionSecret []byte
+
+ // ticketKeys is the set of active session ticket keys for this
+ // connection. The first one is used to encrypt new tickets and
+ // all are tried to decrypt tickets.
+ ticketKeys []ticketKey
+
+ // clientFinishedIsFirst is true if the client sent the first Finished
+ // message during the most recent handshake. This is recorded because
+ // the first transmitted Finished message is the tls-unique
+ // channel-binding value.
+ clientFinishedIsFirst bool
+
+ // closeNotifyErr is any error from sending the alertCloseNotify record.
+ closeNotifyErr error
+ // closeNotifySent is true if the Conn attempted to send an
+ // alertCloseNotify record.
+ closeNotifySent bool
+
+ // clientFinished and serverFinished contain the Finished message sent
+ // by the client or server in the most recent handshake. This is
+ // retained to support the renegotiation extension and tls-unique
+ // channel-binding.
+ clientFinished [12]byte
+ serverFinished [12]byte
+
+ // clientProtocol is the negotiated ALPN protocol.
+ clientProtocol string
+
+ // input/output
+ in, out halfConn
+ rawInput bytes.Buffer // raw input, starting with a record header
+ input bytes.Reader // application data waiting to be read, from rawInput.Next
+ hand bytes.Buffer // handshake data waiting to be read
+ buffering bool // whether records are buffered in sendBuf
+ sendBuf []byte // a buffer of records waiting to be sent
+
+ // bytesSent counts the bytes of application data sent.
+ // packetsSent counts packets.
+ bytesSent int64
+ packetsSent int64
+
+ // retryCount counts the number of consecutive non-advancing records
+ // received by Conn.readRecord. That is, records that neither advance the
+ // handshake, nor deliver application data. Protected by in.Mutex.
+ retryCount int
+
+ // activeCall indicates whether Close has been call in the low bit.
+ // the rest of the bits are the number of goroutines in Conn.Write.
+ activeCall atomic.Int32
+
+ tmp [16]byte
+}
+
+// Access to net.Conn methods.
+// Cannot just embed net.Conn because that would
+// export the struct field too.
+
+// LocalAddr returns the local network address.
+func (c *Conn) LocalAddr() net.Addr {
+ return c.conn.LocalAddr()
+}
+
+// RemoteAddr returns the remote network address.
+func (c *Conn) RemoteAddr() net.Addr {
+ return c.conn.RemoteAddr()
+}
+
+// SetDeadline sets the read and write deadlines associated with the connection.
+// A zero value for t means Read and Write will not time out.
+// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
+func (c *Conn) SetDeadline(t time.Time) error {
+ return c.conn.SetDeadline(t)
+}
+
+// SetReadDeadline sets the read deadline on the underlying connection.
+// A zero value for t means Read will not time out.
+func (c *Conn) SetReadDeadline(t time.Time) error {
+ return c.conn.SetReadDeadline(t)
+}
+
+// SetWriteDeadline sets the write deadline on the underlying connection.
+// A zero value for t means Write will not time out.
+// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
+func (c *Conn) SetWriteDeadline(t time.Time) error {
+ return c.conn.SetWriteDeadline(t)
+}
+
+// NetConn returns the underlying connection that is wrapped by c.
+// Note that writing to or reading from this connection directly will corrupt the
+// TLS session.
+func (c *Conn) NetConn() net.Conn {
+ return c.conn
+}
+
+// A halfConn represents one direction of the record layer
+// connection, either sending or receiving.
+type halfConn struct {
+ sync.Mutex
+
+ err error // first permanent error
+ version uint16 // protocol version
+ cipher any // cipher algorithm
+ mac hash.Hash
+ seq [8]byte // 64-bit sequence number
+
+ scratchBuf [13]byte // to avoid allocs; interface method args escape
+
+ nextCipher any // next encryption state
+ nextMac hash.Hash // next MAC algorithm
+
+ level QUICEncryptionLevel // current QUIC encryption level
+ trafficSecret []byte // current TLS 1.3 traffic secret
+}
+
+type permanentError struct {
+ err net.Error
+}
+
+func (e *permanentError) Error() string { return e.err.Error() }
+func (e *permanentError) Unwrap() error { return e.err }
+func (e *permanentError) Timeout() bool { return e.err.Timeout() }
+func (e *permanentError) Temporary() bool { return false }
+
+func (hc *halfConn) setErrorLocked(err error) error {
+ if e, ok := err.(net.Error); ok {
+ hc.err = &permanentError{err: e}
+ } else {
+ hc.err = err
+ }
+ return hc.err
+}
+
+// prepareCipherSpec sets the encryption and MAC states
+// that a subsequent changeCipherSpec will use.
+func (hc *halfConn) prepareCipherSpec(version uint16, cipher any, mac hash.Hash) {
+ hc.version = version
+ hc.nextCipher = cipher
+ hc.nextMac = mac
+}
+
+// changeCipherSpec changes the encryption and MAC states
+// to the ones previously passed to prepareCipherSpec.
+func (hc *halfConn) changeCipherSpec() error {
+ if hc.nextCipher == nil || hc.version == VersionTLS13 {
+ return alertInternalError
+ }
+ hc.cipher = hc.nextCipher
+ hc.mac = hc.nextMac
+ hc.nextCipher = nil
+ hc.nextMac = nil
+ for i := range hc.seq {
+ hc.seq[i] = 0
+ }
+ return nil
+}
+
+func (hc *halfConn) setTrafficSecret(suite *cipherSuiteTLS13, level QUICEncryptionLevel, secret []byte) {
+ hc.trafficSecret = secret
+ hc.level = level
+ key, iv := suite.trafficKey(secret)
+ hc.cipher = suite.aead(key, iv)
+ for i := range hc.seq {
+ hc.seq[i] = 0
+ }
+}
+
+// incSeq increments the sequence number.
+func (hc *halfConn) incSeq() {
+ for i := 7; i >= 0; i-- {
+ hc.seq[i]++
+ if hc.seq[i] != 0 {
+ return
+ }
+ }
+
+ // Not allowed to let sequence number wrap.
+ // Instead, must renegotiate before it does.
+ // Not likely enough to bother.
+ panic("TLS: sequence number wraparound")
+}
+
+// explicitNonceLen returns the number of bytes of explicit nonce or IV included
+// in each record. Explicit nonces are present only in CBC modes after TLS 1.0
+// and in certain AEAD modes in TLS 1.2.
+func (hc *halfConn) explicitNonceLen() int {
+ if hc.cipher == nil {
+ return 0
+ }
+
+ switch c := hc.cipher.(type) {
+ case cipher.Stream:
+ return 0
+ case aead:
+ return c.explicitNonceLen()
+ case cbcMode:
+ // TLS 1.1 introduced a per-record explicit IV to fix the BEAST attack.
+ if hc.version >= VersionTLS11 {
+ return c.BlockSize()
+ }
+ return 0
+ default:
+ panic("unknown cipher type")
+ }
+}
+
+// extractPadding returns, in constant time, the length of the padding to remove
+// from the end of payload. It also returns a byte which is equal to 255 if the
+// padding was valid and 0 otherwise. See RFC 2246, Section 6.2.3.2.
+func extractPadding(payload []byte) (toRemove int, good byte) {
+ if len(payload) < 1 {
+ return 0, 0
+ }
+
+ paddingLen := payload[len(payload)-1]
+ t := uint(len(payload)-1) - uint(paddingLen)
+ // if len(payload) >= (paddingLen - 1) then the MSB of t is zero
+ good = byte(int32(^t) >> 31)
+
+ // The maximum possible padding length plus the actual length field
+ toCheck := 256
+ // The length of the padded data is public, so we can use an if here
+ if toCheck > len(payload) {
+ toCheck = len(payload)
+ }
+
+ for i := 0; i < toCheck; i++ {
+ t := uint(paddingLen) - uint(i)
+ // if i <= paddingLen then the MSB of t is zero
+ mask := byte(int32(^t) >> 31)
+ b := payload[len(payload)-1-i]
+ good &^= mask&paddingLen ^ mask&b
+ }
+
+ // We AND together the bits of good and replicate the result across
+ // all the bits.
+ good &= good << 4
+ good &= good << 2
+ good &= good << 1
+ good = uint8(int8(good) >> 7)
+
+ // Zero the padding length on error. This ensures any unchecked bytes
+ // are included in the MAC. Otherwise, an attacker that could
+ // distinguish MAC failures from padding failures could mount an attack
+ // similar to POODLE in SSL 3.0: given a good ciphertext that uses a
+ // full block's worth of padding, replace the final block with another
+ // block. If the MAC check passed but the padding check failed, the
+ // last byte of that block decrypted to the block size.
+ //
+ // See also macAndPaddingGood logic below.
+ paddingLen &= good
+
+ toRemove = int(paddingLen) + 1
+ return
+}
+
+func roundUp(a, b int) int {
+ return a + (b-a%b)%b
+}
+
+// cbcMode is an interface for block ciphers using cipher block chaining.
+type cbcMode interface {
+ cipher.BlockMode
+ SetIV([]byte)
+}
+
+// decrypt authenticates and decrypts the record if protection is active at
+// this stage. The returned plaintext might overlap with the input.
+func (hc *halfConn) decrypt(record []byte) ([]byte, recordType, error) {
+ var plaintext []byte
+ typ := recordType(record[0])
+ payload := record[recordHeaderLen:]
+
+ // In TLS 1.3, change_cipher_spec messages are to be ignored without being
+ // decrypted. See RFC 8446, Appendix D.4.
+ if hc.version == VersionTLS13 && typ == recordTypeChangeCipherSpec {
+ return payload, typ, nil
+ }
+
+ paddingGood := byte(255)
+ paddingLen := 0
+
+ explicitNonceLen := hc.explicitNonceLen()
+
+ if hc.cipher != nil {
+ switch c := hc.cipher.(type) {
+ case cipher.Stream:
+ c.XORKeyStream(payload, payload)
+ case aead:
+ if len(payload) < explicitNonceLen {
+ return nil, 0, alertBadRecordMAC
+ }
+ nonce := payload[:explicitNonceLen]
+ if len(nonce) == 0 {
+ nonce = hc.seq[:]
+ }
+ payload = payload[explicitNonceLen:]
+
+ var additionalData []byte
+ if hc.version == VersionTLS13 {
+ additionalData = record[:recordHeaderLen]
+ } else {
+ additionalData = append(hc.scratchBuf[:0], hc.seq[:]...)
+ additionalData = append(additionalData, record[:3]...)
+ n := len(payload) - c.Overhead()
+ additionalData = append(additionalData, byte(n>>8), byte(n))
+ }
+
+ var err error
+ plaintext, err = c.Open(payload[:0], nonce, payload, additionalData)
+ if err != nil {
+ return nil, 0, alertBadRecordMAC
+ }
+ case cbcMode:
+ blockSize := c.BlockSize()
+ minPayload := explicitNonceLen + roundUp(hc.mac.Size()+1, blockSize)
+ if len(payload)%blockSize != 0 || len(payload) < minPayload {
+ return nil, 0, alertBadRecordMAC
+ }
+
+ if explicitNonceLen > 0 {
+ c.SetIV(payload[:explicitNonceLen])
+ payload = payload[explicitNonceLen:]
+ }
+ c.CryptBlocks(payload, payload)
+
+ // In a limited attempt to protect against CBC padding oracles like
+ // Lucky13, the data past paddingLen (which is secret) is passed to
+ // the MAC function as extra data, to be fed into the HMAC after
+ // computing the digest. This makes the MAC roughly constant time as
+ // long as the digest computation is constant time and does not
+ // affect the subsequent write, modulo cache effects.
+ paddingLen, paddingGood = extractPadding(payload)
+ default:
+ panic("unknown cipher type")
+ }
+
+ if hc.version == VersionTLS13 {
+ if typ != recordTypeApplicationData {
+ return nil, 0, alertUnexpectedMessage
+ }
+ if len(plaintext) > maxPlaintext+1 {
+ return nil, 0, alertRecordOverflow
+ }
+ // Remove padding and find the ContentType scanning from the end.
+ for i := len(plaintext) - 1; i >= 0; i-- {
+ if plaintext[i] != 0 {
+ typ = recordType(plaintext[i])
+ plaintext = plaintext[:i]
+ break
+ }
+ if i == 0 {
+ return nil, 0, alertUnexpectedMessage
+ }
+ }
+ }
+ } else {
+ plaintext = payload
+ }
+
+ if hc.mac != nil {
+ macSize := hc.mac.Size()
+ if len(payload) < macSize {
+ return nil, 0, alertBadRecordMAC
+ }
+
+ n := len(payload) - macSize - paddingLen
+ n = subtle.ConstantTimeSelect(int(uint32(n)>>31), 0, n) // if n < 0 { n = 0 }
+ record[3] = byte(n >> 8)
+ record[4] = byte(n)
+ remoteMAC := payload[n : n+macSize]
+ localMAC := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload[:n], payload[n+macSize:])
+
+ // This is equivalent to checking the MACs and paddingGood
+ // separately, but in constant-time to prevent distinguishing
+ // padding failures from MAC failures. Depending on what value
+ // of paddingLen was returned on bad padding, distinguishing
+ // bad MAC from bad padding can lead to an attack.
+ //
+ // See also the logic at the end of extractPadding.
+ macAndPaddingGood := subtle.ConstantTimeCompare(localMAC, remoteMAC) & int(paddingGood)
+ if macAndPaddingGood != 1 {
+ return nil, 0, alertBadRecordMAC
+ }
+
+ plaintext = payload[:n]
+ }
+
+ hc.incSeq()
+ return plaintext, typ, nil
+}
+
+// sliceForAppend extends the input slice by n bytes. head is the full extended
+// slice, while tail is the appended part. If the original slice has sufficient
+// capacity no allocation is performed.
+func sliceForAppend(in []byte, n int) (head, tail []byte) {
+ if total := len(in) + n; cap(in) >= total {
+ head = in[:total]
+ } else {
+ head = make([]byte, total)
+ copy(head, in)
+ }
+ tail = head[len(in):]
+ return
+}
+
+// encrypt encrypts payload, adding the appropriate nonce and/or MAC, and
+// appends it to record, which must already contain the record header.
+func (hc *halfConn) encrypt(record, payload []byte, rand io.Reader) ([]byte, error) {
+ if hc.cipher == nil {
+ return append(record, payload...), nil
+ }
+
+ var explicitNonce []byte
+ if explicitNonceLen := hc.explicitNonceLen(); explicitNonceLen > 0 {
+ record, explicitNonce = sliceForAppend(record, explicitNonceLen)
+ if _, isCBC := hc.cipher.(cbcMode); !isCBC && explicitNonceLen < 16 {
+ // The AES-GCM construction in TLS has an explicit nonce so that the
+ // nonce can be random. However, the nonce is only 8 bytes which is
+ // too small for a secure, random nonce. Therefore we use the
+ // sequence number as the nonce. The 3DES-CBC construction also has
+ // an 8 bytes nonce but its nonces must be unpredictable (see RFC
+ // 5246, Appendix F.3), forcing us to use randomness. That's not
+ // 3DES' biggest problem anyway because the birthday bound on block
+ // collision is reached first due to its similarly small block size
+ // (see the Sweet32 attack).
+ copy(explicitNonce, hc.seq[:])
+ } else {
+ if _, err := io.ReadFull(rand, explicitNonce); err != nil {
+ return nil, err
+ }
+ }
+ }
+
+ var dst []byte
+ switch c := hc.cipher.(type) {
+ case cipher.Stream:
+ mac := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload, nil)
+ record, dst = sliceForAppend(record, len(payload)+len(mac))
+ c.XORKeyStream(dst[:len(payload)], payload)
+ c.XORKeyStream(dst[len(payload):], mac)
+ case aead:
+ nonce := explicitNonce
+ if len(nonce) == 0 {
+ nonce = hc.seq[:]
+ }
+
+ if hc.version == VersionTLS13 {
+ record = append(record, payload...)
+
+ // Encrypt the actual ContentType and replace the plaintext one.
+ record = append(record, record[0])
+ record[0] = byte(recordTypeApplicationData)
+
+ n := len(payload) + 1 + c.Overhead()
+ record[3] = byte(n >> 8)
+ record[4] = byte(n)
+
+ record = c.Seal(record[:recordHeaderLen],
+ nonce, record[recordHeaderLen:], record[:recordHeaderLen])
+ } else {
+ additionalData := append(hc.scratchBuf[:0], hc.seq[:]...)
+ additionalData = append(additionalData, record[:recordHeaderLen]...)
+ record = c.Seal(record, nonce, payload, additionalData)
+ }
+ case cbcMode:
+ mac := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload, nil)
+ blockSize := c.BlockSize()
+ plaintextLen := len(payload) + len(mac)
+ paddingLen := blockSize - plaintextLen%blockSize
+ record, dst = sliceForAppend(record, plaintextLen+paddingLen)
+ copy(dst, payload)
+ copy(dst[len(payload):], mac)
+ for i := plaintextLen; i < len(dst); i++ {
+ dst[i] = byte(paddingLen - 1)
+ }
+ if len(explicitNonce) > 0 {
+ c.SetIV(explicitNonce)
+ }
+ c.CryptBlocks(dst, dst)
+ default:
+ panic("unknown cipher type")
+ }
+
+ // Update length to include nonce, MAC and any block padding needed.
+ n := len(record) - recordHeaderLen
+ record[3] = byte(n >> 8)
+ record[4] = byte(n)
+ hc.incSeq()
+
+ return record, nil
+}
+
+// RecordHeaderError is returned when a TLS record header is invalid.
+type RecordHeaderError struct {
+ // Msg contains a human readable string that describes the error.
+ Msg string
+ // RecordHeader contains the five bytes of TLS record header that
+ // triggered the error.
+ RecordHeader [5]byte
+ // Conn provides the underlying net.Conn in the case that a client
+ // sent an initial handshake that didn't look like TLS.
+ // It is nil if there's already been a handshake or a TLS alert has
+ // been written to the connection.
+ Conn net.Conn
+}
+
+func (e RecordHeaderError) Error() string { return "tls: " + e.Msg }
+
+func (c *Conn) newRecordHeaderError(conn net.Conn, msg string) (err RecordHeaderError) {
+ err.Msg = msg
+ err.Conn = conn
+ copy(err.RecordHeader[:], c.rawInput.Bytes())
+ return err
+}
+
+func (c *Conn) readRecord() error {
+ return c.readRecordOrCCS(false)
+}
+
+func (c *Conn) readChangeCipherSpec() error {
+ return c.readRecordOrCCS(true)
+}
+
+// readRecordOrCCS reads one or more TLS records from the connection and
+// updates the record layer state. Some invariants:
+// - c.in must be locked
+// - c.input must be empty
+//
+// During the handshake one and only one of the following will happen:
+// - c.hand grows
+// - c.in.changeCipherSpec is called
+// - an error is returned
+//
+// After the handshake one and only one of the following will happen:
+// - c.hand grows
+// - c.input is set
+// - an error is returned
+func (c *Conn) readRecordOrCCS(expectChangeCipherSpec bool) error {
+ if c.in.err != nil {
+ return c.in.err
+ }
+ handshakeComplete := c.isHandshakeComplete.Load()
+
+ // This function modifies c.rawInput, which owns the c.input memory.
+ if c.input.Len() != 0 {
+ return c.in.setErrorLocked(errors.New("tls: internal error: attempted to read record with pending application data"))
+ }
+ c.input.Reset(nil)
+
+ if c.quic != nil {
+ return c.in.setErrorLocked(errors.New("tls: internal error: attempted to read record with QUIC transport"))
+ }
+
+ // Read header, payload.
+ if err := c.readFromUntil(c.conn, recordHeaderLen); err != nil {
+ // RFC 8446, Section 6.1 suggests that EOF without an alertCloseNotify
+ // is an error, but popular web sites seem to do this, so we accept it
+ // if and only if at the record boundary.
+ if err == io.ErrUnexpectedEOF && c.rawInput.Len() == 0 {
+ err = io.EOF
+ }
+ if e, ok := err.(net.Error); !ok || !e.Temporary() {
+ c.in.setErrorLocked(err)
+ }
+ return err
+ }
+ hdr := c.rawInput.Bytes()[:recordHeaderLen]
+ typ := recordType(hdr[0])
+
+ // No valid TLS record has a type of 0x80, however SSLv2 handshakes
+ // start with a uint16 length where the MSB is set and the first record
+ // is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
+ // an SSLv2 client.
+ if !handshakeComplete && typ == 0x80 {
+ c.sendAlert(alertProtocolVersion)
+ return c.in.setErrorLocked(c.newRecordHeaderError(nil, "unsupported SSLv2 handshake received"))
+ }
+
+ vers := uint16(hdr[1])<<8 | uint16(hdr[2])
+ expectedVers := c.vers
+ if expectedVers == VersionTLS13 {
+ // All TLS 1.3 records are expected to have 0x0303 (1.2) after
+ // the initial hello (RFC 8446 Section 5.1).
+ expectedVers = VersionTLS12
+ }
+ n := int(hdr[3])<<8 | int(hdr[4])
+ if c.haveVers && vers != expectedVers {
+ c.sendAlert(alertProtocolVersion)
+ msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, expectedVers)
+ return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg))
+ }
+ if !c.haveVers {
+ // First message, be extra suspicious: this might not be a TLS
+ // client. Bail out before reading a full 'body', if possible.
+ // The current max version is 3.3 so if the version is >= 16.0,
+ // it's probably not real.
+ if (typ != recordTypeAlert && typ != recordTypeHandshake) || vers >= 0x1000 {
+ return c.in.setErrorLocked(c.newRecordHeaderError(c.conn, "first record does not look like a TLS handshake"))
+ }
+ }
+ if c.vers == VersionTLS13 && n > maxCiphertextTLS13 || n > maxCiphertext {
+ c.sendAlert(alertRecordOverflow)
+ msg := fmt.Sprintf("oversized record received with length %d", n)
+ return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg))
+ }
+ if err := c.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
+ if e, ok := err.(net.Error); !ok || !e.Temporary() {
+ c.in.setErrorLocked(err)
+ }
+ return err
+ }
+
+ // Process message.
+ record := c.rawInput.Next(recordHeaderLen + n)
+ data, typ, err := c.in.decrypt(record)
+ if err != nil {
+ return c.in.setErrorLocked(c.sendAlert(err.(alert)))
+ }
+ if len(data) > maxPlaintext {
+ return c.in.setErrorLocked(c.sendAlert(alertRecordOverflow))
+ }
+
+ // Application Data messages are always protected.
+ if c.in.cipher == nil && typ == recordTypeApplicationData {
+ return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+ }
+
+ if typ != recordTypeAlert && typ != recordTypeChangeCipherSpec && len(data) > 0 {
+ // This is a state-advancing message: reset the retry count.
+ c.retryCount = 0
+ }
+
+ // Handshake messages MUST NOT be interleaved with other record types in TLS 1.3.
+ if c.vers == VersionTLS13 && typ != recordTypeHandshake && c.hand.Len() > 0 {
+ return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+ }
+
+ switch typ {
+ default:
+ return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+
+ case recordTypeAlert:
+ if c.quic != nil {
+ return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+ }
+ if len(data) != 2 {
+ return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+ }
+ if alert(data[1]) == alertCloseNotify {
+ return c.in.setErrorLocked(io.EOF)
+ }
+ if c.vers == VersionTLS13 {
+ return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
+ }
+ switch data[0] {
+ case alertLevelWarning:
+ // Drop the record on the floor and retry.
+ return c.retryReadRecord(expectChangeCipherSpec)
+ case alertLevelError:
+ return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
+ default:
+ return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+ }
+
+ case recordTypeChangeCipherSpec:
+ if len(data) != 1 || data[0] != 1 {
+ return c.in.setErrorLocked(c.sendAlert(alertDecodeError))
+ }
+ // Handshake messages are not allowed to fragment across the CCS.
+ if c.hand.Len() > 0 {
+ return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+ }
+ // In TLS 1.3, change_cipher_spec records are ignored until the
+ // Finished. See RFC 8446, Appendix D.4. Note that according to Section
+ // 5, a server can send a ChangeCipherSpec before its ServerHello, when
+ // c.vers is still unset. That's not useful though and suspicious if the
+ // server then selects a lower protocol version, so don't allow that.
+ if c.vers == VersionTLS13 {
+ return c.retryReadRecord(expectChangeCipherSpec)
+ }
+ if !expectChangeCipherSpec {
+ return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+ }
+ if err := c.in.changeCipherSpec(); err != nil {
+ return c.in.setErrorLocked(c.sendAlert(err.(alert)))
+ }
+
+ case recordTypeApplicationData:
+ if !handshakeComplete || expectChangeCipherSpec {
+ return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+ }
+ // Some OpenSSL servers send empty records in order to randomize the
+ // CBC IV. Ignore a limited number of empty records.
+ if len(data) == 0 {
+ return c.retryReadRecord(expectChangeCipherSpec)
+ }
+ // Note that data is owned by c.rawInput, following the Next call above,
+ // to avoid copying the plaintext. This is safe because c.rawInput is
+ // not read from or written to until c.input is drained.
+ c.input.Reset(data)
+
+ case recordTypeHandshake:
+ if len(data) == 0 || expectChangeCipherSpec {
+ return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+ }
+ c.hand.Write(data)
+ }
+
+ return nil
+}
+
+// retryReadRecord recurs into readRecordOrCCS to drop a non-advancing record, like
+// a warning alert, empty application_data, or a change_cipher_spec in TLS 1.3.
+func (c *Conn) retryReadRecord(expectChangeCipherSpec bool) error {
+ c.retryCount++
+ if c.retryCount > maxUselessRecords {
+ c.sendAlert(alertUnexpectedMessage)
+ return c.in.setErrorLocked(errors.New("tls: too many ignored records"))
+ }
+ return c.readRecordOrCCS(expectChangeCipherSpec)
+}
+
+// atLeastReader reads from R, stopping with EOF once at least N bytes have been
+// read. It is different from an io.LimitedReader in that it doesn't cut short
+// the last Read call, and in that it considers an early EOF an error.
+type atLeastReader struct {
+ R io.Reader
+ N int64
+}
+
+func (r *atLeastReader) Read(p []byte) (int, error) {
+ if r.N <= 0 {
+ return 0, io.EOF
+ }
+ n, err := r.R.Read(p)
+ r.N -= int64(n) // won't underflow unless len(p) >= n > 9223372036854775809
+ if r.N > 0 && err == io.EOF {
+ return n, io.ErrUnexpectedEOF
+ }
+ if r.N <= 0 && err == nil {
+ return n, io.EOF
+ }
+ return n, err
+}
+
+// readFromUntil reads from r into c.rawInput until c.rawInput contains
+// at least n bytes or else returns an error.
+func (c *Conn) readFromUntil(r io.Reader, n int) error {
+ if c.rawInput.Len() >= n {
+ return nil
+ }
+ needs := n - c.rawInput.Len()
+ // There might be extra input waiting on the wire. Make a best effort
+ // attempt to fetch it so that it can be used in (*Conn).Read to
+ // "predict" closeNotify alerts.
+ c.rawInput.Grow(needs + bytes.MinRead)
+ _, err := c.rawInput.ReadFrom(&atLeastReader{r, int64(needs)})
+ return err
+}
+
+// sendAlertLocked sends a TLS alert message.
+func (c *Conn) sendAlertLocked(err alert) error {
+ if c.quic != nil {
+ return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
+ }
+
+ switch err {
+ case alertNoRenegotiation, alertCloseNotify:
+ c.tmp[0] = alertLevelWarning
+ default:
+ c.tmp[0] = alertLevelError
+ }
+ c.tmp[1] = byte(err)
+
+ _, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2])
+ if err == alertCloseNotify {
+ // closeNotify is a special case in that it isn't an error.
+ return writeErr
+ }
+
+ return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
+}
+
+// sendAlert sends a TLS alert message.
+func (c *Conn) sendAlert(err alert) error {
+ c.out.Lock()
+ defer c.out.Unlock()
+ return c.sendAlertLocked(err)
+}
+
+const (
+ // tcpMSSEstimate is a conservative estimate of the TCP maximum segment
+ // size (MSS). A constant is used, rather than querying the kernel for
+ // the actual MSS, to avoid complexity. The value here is the IPv6
+ // minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40
+ // bytes) and a TCP header with timestamps (32 bytes).
+ tcpMSSEstimate = 1208
+
+ // recordSizeBoostThreshold is the number of bytes of application data
+ // sent after which the TLS record size will be increased to the
+ // maximum.
+ recordSizeBoostThreshold = 128 * 1024
+)
+
+// maxPayloadSizeForWrite returns the maximum TLS payload size to use for the
+// next application data record. There is the following trade-off:
+//
+// - For latency-sensitive applications, such as web browsing, each TLS
+// record should fit in one TCP segment.
+// - For throughput-sensitive applications, such as large file transfers,
+// larger TLS records better amortize framing and encryption overheads.
+//
+// A simple heuristic that works well in practice is to use small records for
+// the first 1MB of data, then use larger records for subsequent data, and
+// reset back to smaller records after the connection becomes idle. See "High
+// Performance Web Networking", Chapter 4, or:
+// https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/
+//
+// In the interests of simplicity and determinism, this code does not attempt
+// to reset the record size once the connection is idle, however.
+func (c *Conn) maxPayloadSizeForWrite(typ recordType) int {
+ if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData {
+ return maxPlaintext
+ }
+
+ if c.bytesSent >= recordSizeBoostThreshold {
+ return maxPlaintext
+ }
+
+ // Subtract TLS overheads to get the maximum payload size.
+ payloadBytes := tcpMSSEstimate - recordHeaderLen - c.out.explicitNonceLen()
+ if c.out.cipher != nil {
+ switch ciph := c.out.cipher.(type) {
+ case cipher.Stream:
+ payloadBytes -= c.out.mac.Size()
+ case cipher.AEAD:
+ payloadBytes -= ciph.Overhead()
+ case cbcMode:
+ blockSize := ciph.BlockSize()
+ // The payload must fit in a multiple of blockSize, with
+ // room for at least one padding byte.
+ payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1
+ // The MAC is appended before padding so affects the
+ // payload size directly.
+ payloadBytes -= c.out.mac.Size()
+ default:
+ panic("unknown cipher type")
+ }
+ }
+ if c.vers == VersionTLS13 {
+ payloadBytes-- // encrypted ContentType
+ }
+
+ // Allow packet growth in arithmetic progression up to max.
+ pkt := c.packetsSent
+ c.packetsSent++
+ if pkt > 1000 {
+ return maxPlaintext // avoid overflow in multiply below
+ }
+
+ n := payloadBytes * int(pkt+1)
+ if n > maxPlaintext {
+ n = maxPlaintext
+ }
+ return n
+}
+
+func (c *Conn) write(data []byte) (int, error) {
+ if c.buffering {
+ c.sendBuf = append(c.sendBuf, data...)
+ return len(data), nil
+ }
+
+ n, err := c.conn.Write(data)
+ c.bytesSent += int64(n)
+ return n, err
+}
+
+func (c *Conn) flush() (int, error) {
+ if len(c.sendBuf) == 0 {
+ return 0, nil
+ }
+
+ n, err := c.conn.Write(c.sendBuf)
+ c.bytesSent += int64(n)
+ c.sendBuf = nil
+ c.buffering = false
+ return n, err
+}
+
+// outBufPool pools the record-sized scratch buffers used by writeRecordLocked.
+var outBufPool = sync.Pool{
+ New: func() any {
+ return new([]byte)
+ },
+}
+
+// writeRecordLocked writes a TLS record with the given type and payload to the
+// connection and updates the record layer state.
+func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) {
+ if c.quic != nil {
+ if typ != recordTypeHandshake {
+ return 0, errors.New("tls: internal error: sending non-handshake message to QUIC transport")
+ }
+ c.quicWriteCryptoData(c.out.level, data)
+ if !c.buffering {
+ if _, err := c.flush(); err != nil {
+ return 0, err
+ }
+ }
+ return len(data), nil
+ }
+
+ outBufPtr := outBufPool.Get().(*[]byte)
+ outBuf := *outBufPtr
+ defer func() {
+ // You might be tempted to simplify this by just passing &outBuf to Put,
+ // but that would make the local copy of the outBuf slice header escape
+ // to the heap, causing an allocation. Instead, we keep around the
+ // pointer to the slice header returned by Get, which is already on the
+ // heap, and overwrite and return that.
+ *outBufPtr = outBuf
+ outBufPool.Put(outBufPtr)
+ }()
+
+ var n int
+ for len(data) > 0 {
+ m := len(data)
+ if maxPayload := c.maxPayloadSizeForWrite(typ); m > maxPayload {
+ m = maxPayload
+ }
+
+ _, outBuf = sliceForAppend(outBuf[:0], recordHeaderLen)
+ outBuf[0] = byte(typ)
+ vers := c.vers
+ if vers == 0 {
+ // Some TLS servers fail if the record version is
+ // greater than TLS 1.0 for the initial ClientHello.
+ vers = VersionTLS10
+ } else if vers == VersionTLS13 {
+ // TLS 1.3 froze the record layer version to 1.2.
+ // See RFC 8446, Section 5.1.
+ vers = VersionTLS12
+ }
+ outBuf[1] = byte(vers >> 8)
+ outBuf[2] = byte(vers)
+ outBuf[3] = byte(m >> 8)
+ outBuf[4] = byte(m)
+
+ var err error
+ outBuf, err = c.out.encrypt(outBuf, data[:m], c.config.rand())
+ if err != nil {
+ return n, err
+ }
+ if _, err := c.write(outBuf); err != nil {
+ return n, err
+ }
+ n += m
+ data = data[m:]
+ }
+
+ if typ == recordTypeChangeCipherSpec && c.vers != VersionTLS13 {
+ if err := c.out.changeCipherSpec(); err != nil {
+ return n, c.sendAlertLocked(err.(alert))
+ }
+ }
+
+ return n, nil
+}
+
+// writeHandshakeRecord writes a handshake message to the connection and updates
+// the record layer state. If transcript is non-nil the marshalled message is
+// written to it.
+func (c *Conn) writeHandshakeRecord(msg handshakeMessage, transcript transcriptHash) (int, error) {
+ c.out.Lock()
+ defer c.out.Unlock()
+
+ data, err := msg.marshal()
+ if err != nil {
+ return 0, err
+ }
+ if transcript != nil {
+ transcript.Write(data)
+ }
+
+ return c.writeRecordLocked(recordTypeHandshake, data)
+}
+
+// writeChangeCipherRecord writes a ChangeCipherSpec message to the connection and
+// updates the record layer state.
+func (c *Conn) writeChangeCipherRecord() error {
+ c.out.Lock()
+ defer c.out.Unlock()
+ _, err := c.writeRecordLocked(recordTypeChangeCipherSpec, []byte{1})
+ return err
+}
+
+// readHandshakeBytes reads handshake data until c.hand contains at least n bytes.
+func (c *Conn) readHandshakeBytes(n int) error {
+ if c.quic != nil {
+ return c.quicReadHandshakeBytes(n)
+ }
+ for c.hand.Len() < n {
+ if err := c.readRecord(); err != nil {
+ return err
+ }
+ }
+ return nil
+}
+
+// readHandshake reads the next handshake message from
+// the record layer. If transcript is non-nil, the message
+// is written to the passed transcriptHash.
+func (c *Conn) readHandshake(transcript transcriptHash) (any, error) {
+ if err := c.readHandshakeBytes(4); err != nil {
+ return nil, err
+ }
+ data := c.hand.Bytes()
+ n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
+ if n > maxHandshake {
+ c.sendAlertLocked(alertInternalError)
+ return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake))
+ }
+ if err := c.readHandshakeBytes(4 + n); err != nil {
+ return nil, err
+ }
+ data = c.hand.Next(4 + n)
+ return c.unmarshalHandshakeMessage(data, transcript)
+}
+
+func (c *Conn) unmarshalHandshakeMessage(data []byte, transcript transcriptHash) (handshakeMessage, error) {
+ var m handshakeMessage
+ switch data[0] {
+ case typeHelloRequest:
+ m = new(helloRequestMsg)
+ case typeClientHello:
+ m = new(clientHelloMsg)
+ case typeServerHello:
+ m = new(serverHelloMsg)
+ case typeNewSessionTicket:
+ if c.vers == VersionTLS13 {
+ m = new(newSessionTicketMsgTLS13)
+ } else {
+ m = new(newSessionTicketMsg)
+ }
+ case typeCertificate:
+ if c.vers == VersionTLS13 {
+ m = new(certificateMsgTLS13)
+ } else {
+ m = new(certificateMsg)
+ }
+ case typeCertificateRequest:
+ if c.vers == VersionTLS13 {
+ m = new(certificateRequestMsgTLS13)
+ } else {
+ m = &certificateRequestMsg{
+ hasSignatureAlgorithm: c.vers >= VersionTLS12,
+ }
+ }
+ case typeCertificateStatus:
+ m = new(certificateStatusMsg)
+ case typeServerKeyExchange:
+ m = new(serverKeyExchangeMsg)
+ case typeServerHelloDone:
+ m = new(serverHelloDoneMsg)
+ case typeClientKeyExchange:
+ m = new(clientKeyExchangeMsg)
+ case typeCertificateVerify:
+ m = &certificateVerifyMsg{
+ hasSignatureAlgorithm: c.vers >= VersionTLS12,
+ }
+ case typeFinished:
+ m = new(finishedMsg)
+ case typeEncryptedExtensions:
+ m = new(encryptedExtensionsMsg)
+ case typeEndOfEarlyData:
+ m = new(endOfEarlyDataMsg)
+ case typeKeyUpdate:
+ m = new(keyUpdateMsg)
+ default:
+ return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+ }
+
+ // The handshake message unmarshalers
+ // expect to be able to keep references to data,
+ // so pass in a fresh copy that won't be overwritten.
+ data = append([]byte(nil), data...)
+
+ if !m.unmarshal(data) {
+ return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
+ }
+
+ if transcript != nil {
+ transcript.Write(data)
+ }
+
+ return m, nil
+}
+
+var (
+ errShutdown = errors.New("tls: protocol is shutdown")
+)
+
+// Write writes data to the connection.
+//
+// As Write calls Handshake, in order to prevent indefinite blocking a deadline
+// must be set for both Read and Write before Write is called when the handshake
+// has not yet completed. See SetDeadline, SetReadDeadline, and
+// SetWriteDeadline.
+func (c *Conn) Write(b []byte) (int, error) {
+ // interlock with Close below
+ for {
+ x := c.activeCall.Load()
+ if x&1 != 0 {
+ return 0, net.ErrClosed
+ }
+ if c.activeCall.CompareAndSwap(x, x+2) {
+ break
+ }
+ }
+ defer c.activeCall.Add(-2)
+
+ if err := c.Handshake(); err != nil {
+ return 0, err
+ }
+
+ c.out.Lock()
+ defer c.out.Unlock()
+
+ if err := c.out.err; err != nil {
+ return 0, err
+ }
+
+ if !c.isHandshakeComplete.Load() {
+ return 0, alertInternalError
+ }
+
+ if c.closeNotifySent {
+ return 0, errShutdown
+ }
+
+ // TLS 1.0 is susceptible to a chosen-plaintext
+ // attack when using block mode ciphers due to predictable IVs.
+ // This can be prevented by splitting each Application Data
+ // record into two records, effectively randomizing the IV.
+ //
+ // https://www.openssl.org/~bodo/tls-cbc.txt
+ // https://bugzilla.mozilla.org/show_bug.cgi?id=665814
+ // https://www.imperialviolet.org/2012/01/15/beastfollowup.html
+
+ var m int
+ if len(b) > 1 && c.vers == VersionTLS10 {
+ if _, ok := c.out.cipher.(cipher.BlockMode); ok {
+ n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1])
+ if err != nil {
+ return n, c.out.setErrorLocked(err)
+ }
+ m, b = 1, b[1:]
+ }
+ }
+
+ n, err := c.writeRecordLocked(recordTypeApplicationData, b)
+ return n + m, c.out.setErrorLocked(err)
+}
+
+// handleRenegotiation processes a HelloRequest handshake message.
+func (c *Conn) handleRenegotiation() error {
+ if c.vers == VersionTLS13 {
+ return errors.New("tls: internal error: unexpected renegotiation")
+ }
+
+ msg, err := c.readHandshake(nil)
+ if err != nil {
+ return err
+ }
+
+ helloReq, ok := msg.(*helloRequestMsg)
+ if !ok {
+ c.sendAlert(alertUnexpectedMessage)
+ return unexpectedMessageError(helloReq, msg)
+ }
+
+ if !c.isClient {
+ return c.sendAlert(alertNoRenegotiation)
+ }
+
+ switch c.config.Renegotiation {
+ case RenegotiateNever:
+ return c.sendAlert(alertNoRenegotiation)
+ case RenegotiateOnceAsClient:
+ if c.handshakes > 1 {
+ return c.sendAlert(alertNoRenegotiation)
+ }
+ case RenegotiateFreelyAsClient:
+ // Ok.
+ default:
+ c.sendAlert(alertInternalError)
+ return errors.New("tls: unknown Renegotiation value")
+ }
+
+ c.handshakeMutex.Lock()
+ defer c.handshakeMutex.Unlock()
+
+ c.isHandshakeComplete.Store(false)
+ if c.handshakeErr = c.clientHandshake(context.Background()); c.handshakeErr == nil {
+ c.handshakes++
+ }
+ return c.handshakeErr
+}
+
+// handlePostHandshakeMessage processes a handshake message arrived after the
+// handshake is complete. Up to TLS 1.2, it indicates the start of a renegotiation.
+func (c *Conn) handlePostHandshakeMessage() error {
+ if c.vers != VersionTLS13 {
+ return c.handleRenegotiation()
+ }
+
+ msg, err := c.readHandshake(nil)
+ if err != nil {
+ return err
+ }
+ c.retryCount++
+ if c.retryCount > maxUselessRecords {
+ c.sendAlert(alertUnexpectedMessage)
+ return c.in.setErrorLocked(errors.New("tls: too many non-advancing records"))
+ }
+
+ switch msg := msg.(type) {
+ case *newSessionTicketMsgTLS13:
+ return c.handleNewSessionTicket(msg)
+ case *keyUpdateMsg:
+ return c.handleKeyUpdate(msg)
+ }
+ // The QUIC layer is supposed to treat an unexpected post-handshake CertificateRequest
+ // as a QUIC-level PROTOCOL_VIOLATION error (RFC 9001, Section 4.4). Returning an
+ // unexpected_message alert here doesn't provide it with enough information to distinguish
+ // this condition from other unexpected messages. This is probably fine.
+ c.sendAlert(alertUnexpectedMessage)
+ return fmt.Errorf("tls: received unexpected handshake message of type %T", msg)
+}
+
+func (c *Conn) handleKeyUpdate(keyUpdate *keyUpdateMsg) error {
+ if c.quic != nil {
+ c.sendAlert(alertUnexpectedMessage)
+ return c.in.setErrorLocked(errors.New("tls: received unexpected key update message"))
+ }
+
+ cipherSuite := cipherSuiteTLS13ByID(c.cipherSuite)
+ if cipherSuite == nil {
+ return c.in.setErrorLocked(c.sendAlert(alertInternalError))
+ }
+
+ newSecret := cipherSuite.nextTrafficSecret(c.in.trafficSecret)
+ c.in.setTrafficSecret(cipherSuite, QUICEncryptionLevelInitial, newSecret)
+
+ if keyUpdate.updateRequested {
+ c.out.Lock()
+ defer c.out.Unlock()
+
+ msg := &keyUpdateMsg{}
+ msgBytes, err := msg.marshal()
+ if err != nil {
+ return err
+ }
+ _, err = c.writeRecordLocked(recordTypeHandshake, msgBytes)
+ if err != nil {
+ // Surface the error at the next write.
+ c.out.setErrorLocked(err)
+ return nil
+ }
+
+ newSecret := cipherSuite.nextTrafficSecret(c.out.trafficSecret)
+ c.out.setTrafficSecret(cipherSuite, QUICEncryptionLevelInitial, newSecret)
+ }
+
+ return nil
+}
+
+// Read reads data from the connection.
+//
+// As Read calls Handshake, in order to prevent indefinite blocking a deadline
+// must be set for both Read and Write before Read is called when the handshake
+// has not yet completed. See SetDeadline, SetReadDeadline, and
+// SetWriteDeadline.
+func (c *Conn) Read(b []byte) (int, error) {
+ if err := c.Handshake(); err != nil {
+ return 0, err
+ }
+ if len(b) == 0 {
+ // Put this after Handshake, in case people were calling
+ // Read(nil) for the side effect of the Handshake.
+ return 0, nil
+ }
+
+ c.in.Lock()
+ defer c.in.Unlock()
+
+ for c.input.Len() == 0 {
+ if err := c.readRecord(); err != nil {
+ return 0, err
+ }
+ for c.hand.Len() > 0 {
+ if err := c.handlePostHandshakeMessage(); err != nil {
+ return 0, err
+ }
+ }
+ }
+
+ n, _ := c.input.Read(b)
+
+ // If a close-notify alert is waiting, read it so that we can return (n,
+ // EOF) instead of (n, nil), to signal to the HTTP response reading
+ // goroutine that the connection is now closed. This eliminates a race
+ // where the HTTP response reading goroutine would otherwise not observe
+ // the EOF until its next read, by which time a client goroutine might
+ // have already tried to reuse the HTTP connection for a new request.
+ // See https://golang.org/cl/76400046 and https://golang.org/issue/3514
+ if n != 0 && c.input.Len() == 0 && c.rawInput.Len() > 0 &&
+ recordType(c.rawInput.Bytes()[0]) == recordTypeAlert {
+ if err := c.readRecord(); err != nil {
+ return n, err // will be io.EOF on closeNotify
+ }
+ }
+
+ return n, nil
+}
+
+// Close closes the connection.
+func (c *Conn) Close() error {
+ // Interlock with Conn.Write above.
+ var x int32
+ for {
+ x = c.activeCall.Load()
+ if x&1 != 0 {
+ return net.ErrClosed
+ }
+ if c.activeCall.CompareAndSwap(x, x|1) {
+ break
+ }
+ }
+ if x != 0 {
+ // io.Writer and io.Closer should not be used concurrently.
+ // If Close is called while a Write is currently in-flight,
+ // interpret that as a sign that this Close is really just
+ // being used to break the Write and/or clean up resources and
+ // avoid sending the alertCloseNotify, which may block
+ // waiting on handshakeMutex or the c.out mutex.
+ return c.conn.Close()
+ }
+
+ var alertErr error
+ if c.isHandshakeComplete.Load() {
+ if err := c.closeNotify(); err != nil {
+ alertErr = fmt.Errorf("tls: failed to send closeNotify alert (but connection was closed anyway): %w", err)
+ }
+ }
+
+ if err := c.conn.Close(); err != nil {
+ return err
+ }
+ return alertErr
+}
+
+var errEarlyCloseWrite = errors.New("tls: CloseWrite called before handshake complete")
+
+// CloseWrite shuts down the writing side of the connection. It should only be
+// called once the handshake has completed and does not call CloseWrite on the
+// underlying connection. Most callers should just use Close.
+func (c *Conn) CloseWrite() error {
+ if !c.isHandshakeComplete.Load() {
+ return errEarlyCloseWrite
+ }
+
+ return c.closeNotify()
+}
+
+func (c *Conn) closeNotify() error {
+ c.out.Lock()
+ defer c.out.Unlock()
+
+ if !c.closeNotifySent {
+ // Set a Write Deadline to prevent possibly blocking forever.
+ c.SetWriteDeadline(time.Now().Add(time.Second * 5))
+ c.closeNotifyErr = c.sendAlertLocked(alertCloseNotify)
+ c.closeNotifySent = true
+ // Any subsequent writes will fail.
+ c.SetWriteDeadline(time.Now())
+ }
+ return c.closeNotifyErr
+}
+
+// Handshake runs the client or server handshake
+// protocol if it has not yet been run.
+//
+// Most uses of this package need not call Handshake explicitly: the
+// first Read or Write will call it automatically.
+//
+// For control over canceling or setting a timeout on a handshake, use
+// HandshakeContext or the Dialer's DialContext method instead.
+//
+// In order to avoid denial of service attacks, the maximum RSA key size allowed
+// in certificates sent by either the TLS server or client is limited to 8192
+// bits. This limit can be overridden by setting tlsmaxrsasize in the GODEBUG
+// environment variable (e.g. GODEBUG=tlsmaxrsasize=4096).
+func (c *Conn) Handshake() error {
+ return c.HandshakeContext(context.Background())
+}
+
+// HandshakeContext runs the client or server handshake
+// protocol if it has not yet been run.
+//
+// The provided Context must be non-nil. If the context is canceled before
+// the handshake is complete, the handshake is interrupted and an error is returned.
+// Once the handshake has completed, cancellation of the context will not affect the
+// connection.
+//
+// Most uses of this package need not call HandshakeContext explicitly: the
+// first Read or Write will call it automatically.
+func (c *Conn) HandshakeContext(ctx context.Context) error {
+ // Delegate to unexported method for named return
+ // without confusing documented signature.
+ return c.handshakeContext(ctx)
+}
+
+func (c *Conn) handshakeContext(ctx context.Context) (ret error) {
+ // Fast sync/atomic-based exit if there is no handshake in flight and the
+ // last one succeeded without an error. Avoids the expensive context setup
+ // and mutex for most Read and Write calls.
+ if c.isHandshakeComplete.Load() {
+ return nil
+ }
+
+ handshakeCtx, cancel := context.WithCancel(ctx)
+ // Note: defer this before starting the "interrupter" goroutine
+ // so that we can tell the difference between the input being canceled and
+ // this cancellation. In the former case, we need to close the connection.
+ defer cancel()
+
+ if c.quic != nil {
+ c.quic.cancelc = handshakeCtx.Done()
+ c.quic.cancel = cancel
+ } else if ctx.Done() != nil {
+ // Start the "interrupter" goroutine, if this context might be canceled.
+ // (The background context cannot).
+ //
+ // The interrupter goroutine waits for the input context to be done and
+ // closes the connection if this happens before the function returns.
+ done := make(chan struct{})
+ interruptRes := make(chan error, 1)
+ defer func() {
+ close(done)
+ if ctxErr := <-interruptRes; ctxErr != nil {
+ // Return context error to user.
+ ret = ctxErr
+ }
+ }()
+ go func() {
+ select {
+ case <-handshakeCtx.Done():
+ // Close the connection, discarding the error
+ _ = c.conn.Close()
+ interruptRes <- handshakeCtx.Err()
+ case <-done:
+ interruptRes <- nil
+ }
+ }()
+ }
+
+ c.handshakeMutex.Lock()
+ defer c.handshakeMutex.Unlock()
+
+ if err := c.handshakeErr; err != nil {
+ return err
+ }
+ if c.isHandshakeComplete.Load() {
+ return nil
+ }
+
+ c.in.Lock()
+ defer c.in.Unlock()
+
+ c.handshakeErr = c.handshakeFn(handshakeCtx)
+ if c.handshakeErr == nil {
+ c.handshakes++
+ } else {
+ // If an error occurred during the handshake try to flush the
+ // alert that might be left in the buffer.
+ c.flush()
+ }
+
+ if c.handshakeErr == nil && !c.isHandshakeComplete.Load() {
+ c.handshakeErr = errors.New("tls: internal error: handshake should have had a result")
+ }
+ if c.handshakeErr != nil && c.isHandshakeComplete.Load() {
+ panic("tls: internal error: handshake returned an error but is marked successful")
+ }
+
+ if c.quic != nil {
+ if c.handshakeErr == nil {
+ c.quicHandshakeComplete()
+ // Provide the 1-RTT read secret now that the handshake is complete.
+ // The QUIC layer MUST NOT decrypt 1-RTT packets prior to completing
+ // the handshake (RFC 9001, Section 5.7).
+ c.quicSetReadSecret(QUICEncryptionLevelApplication, c.cipherSuite, c.in.trafficSecret)
+ } else {
+ var a alert
+ c.out.Lock()
+ if !errors.As(c.out.err, &a) {
+ a = alertInternalError
+ }
+ c.out.Unlock()
+ // Return an error which wraps both the handshake error and
+ // any alert error we may have sent, or alertInternalError
+ // if we didn't send an alert.
+ // Truncate the text of the alert to 0 characters.
+ c.handshakeErr = fmt.Errorf("%w%.0w", c.handshakeErr, AlertError(a))
+ }
+ close(c.quic.blockedc)
+ close(c.quic.signalc)
+ }
+
+ return c.handshakeErr
+}
+
+// ConnectionState returns basic TLS details about the connection.
+func (c *Conn) ConnectionState() ConnectionState {
+ c.handshakeMutex.Lock()
+ defer c.handshakeMutex.Unlock()
+ return c.connectionStateLocked()
+}
+
+func (c *Conn) connectionStateLocked() ConnectionState {
+ var state ConnectionState
+ state.HandshakeComplete = c.isHandshakeComplete.Load()
+ state.Version = c.vers
+ state.NegotiatedProtocol = c.clientProtocol
+ state.DidResume = c.didResume
+ state.NegotiatedProtocolIsMutual = true
+ state.ServerName = c.serverName
+ state.CipherSuite = c.cipherSuite
+ state.PeerCertificates = c.peerCertificates
+ state.VerifiedChains = c.verifiedChains
+ state.SignedCertificateTimestamps = c.scts
+ state.OCSPResponse = c.ocspResponse
+ if (!c.didResume || c.extMasterSecret) && c.vers != VersionTLS13 {
+ if c.clientFinishedIsFirst {
+ state.TLSUnique = c.clientFinished[:]
+ } else {
+ state.TLSUnique = c.serverFinished[:]
+ }
+ }
+ if c.config.Renegotiation != RenegotiateNever {
+ state.ekm = noExportedKeyingMaterial
+ } else {
+ state.ekm = c.ekm
+ }
+ return state
+}
+
+// OCSPResponse returns the stapled OCSP response from the TLS server, if
+// any. (Only valid for client connections.)
+func (c *Conn) OCSPResponse() []byte {
+ c.handshakeMutex.Lock()
+ defer c.handshakeMutex.Unlock()
+
+ return c.ocspResponse
+}
+
+// VerifyHostname checks that the peer certificate chain is valid for
+// connecting to host. If so, it returns nil; if not, it returns an error
+// describing the problem.
+func (c *Conn) VerifyHostname(host string) error {
+ c.handshakeMutex.Lock()
+ defer c.handshakeMutex.Unlock()
+ if !c.isClient {
+ return errors.New("tls: VerifyHostname called on TLS server connection")
+ }
+ if !c.isHandshakeComplete.Load() {
+ return errors.New("tls: handshake has not yet been performed")
+ }
+ if len(c.verifiedChains) == 0 {
+ return errors.New("tls: handshake did not verify certificate chain")
+ }
+ return c.peerCertificates[0].VerifyHostname(host)
+}
diff --git a/contrib/go/_std_1.21/src/crypto/tls/handshake_client.go b/contrib/go/_std_1.21/src/crypto/tls/handshake_client.go
new file mode 100644
index 0000000000..4649f36dea
--- /dev/null
+++ b/contrib/go/_std_1.21/src/crypto/tls/handshake_client.go
@@ -0,0 +1,1140 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package tls
+
+import (
+ "bytes"
+ "context"
+ "crypto"
+ "crypto/ecdh"
+ "crypto/ecdsa"
+ "crypto/ed25519"
+ "crypto/rsa"
+ "crypto/subtle"
+ "crypto/x509"
+ "errors"
+ "fmt"
+ "hash"
+ "internal/godebug"
+ "io"
+ "net"
+ "strconv"
+ "strings"
+ "time"
+)
+
+type clientHandshakeState struct {
+ c *Conn
+ ctx context.Context
+ serverHello *serverHelloMsg
+ hello *clientHelloMsg
+ suite *cipherSuite
+ finishedHash finishedHash
+ masterSecret []byte
+ session *SessionState // the session being resumed
+ ticket []byte // a fresh ticket received during this handshake
+}
+
+var testingOnlyForceClientHelloSignatureAlgorithms []SignatureScheme
+
+func (c *Conn) makeClientHello() (*clientHelloMsg, *ecdh.PrivateKey, error) {
+ config := c.config
+ if len(config.ServerName) == 0 && !config.InsecureSkipVerify {
+ return nil, nil, errors.New("tls: either ServerName or InsecureSkipVerify must be specified in the tls.Config")
+ }
+
+ nextProtosLength := 0
+ for _, proto := range config.NextProtos {
+ if l := len(proto); l == 0 || l > 255 {
+ return nil, nil, errors.New("tls: invalid NextProtos value")
+ } else {
+ nextProtosLength += 1 + l
+ }
+ }
+ if nextProtosLength > 0xffff {
+ return nil, nil, errors.New("tls: NextProtos values too large")
+ }
+
+ supportedVersions := config.supportedVersions(roleClient)
+ if len(supportedVersions) == 0 {
+ return nil, nil, errors.New("tls: no supported versions satisfy MinVersion and MaxVersion")
+ }
+
+ clientHelloVersion := config.maxSupportedVersion(roleClient)
+ // The version at the beginning of the ClientHello was capped at TLS 1.2
+ // for compatibility reasons. The supported_versions extension is used
+ // to negotiate versions now. See RFC 8446, Section 4.2.1.
+ if clientHelloVersion > VersionTLS12 {
+ clientHelloVersion = VersionTLS12
+ }
+
+ hello := &clientHelloMsg{
+ vers: clientHelloVersion,
+ compressionMethods: []uint8{compressionNone},
+ random: make([]byte, 32),
+ extendedMasterSecret: true,
+ ocspStapling: true,
+ scts: true,
+ serverName: hostnameInSNI(config.ServerName),
+ supportedCurves: config.curvePreferences(),
+ supportedPoints: []uint8{pointFormatUncompressed},
+ secureRenegotiationSupported: true,
+ alpnProtocols: config.NextProtos,
+ supportedVersions: supportedVersions,
+ }
+
+ if c.handshakes > 0 {
+ hello.secureRenegotiation = c.clientFinished[:]
+ }
+
+ preferenceOrder := cipherSuitesPreferenceOrder
+ if !hasAESGCMHardwareSupport {
+ preferenceOrder = cipherSuitesPreferenceOrderNoAES
+ }
+ configCipherSuites := config.cipherSuites()
+ hello.cipherSuites = make([]uint16, 0, len(configCipherSuites))
+
+ for _, suiteId := range preferenceOrder {
+ suite := mutualCipherSuite(configCipherSuites, suiteId)
+ if suite == nil {
+ continue
+ }
+ // Don't advertise TLS 1.2-only cipher suites unless
+ // we're attempting TLS 1.2.
+ if hello.vers < VersionTLS12 && suite.flags&suiteTLS12 != 0 {
+ continue
+ }
+ hello.cipherSuites = append(hello.cipherSuites, suiteId)
+ }
+
+ _, err := io.ReadFull(config.rand(), hello.random)
+ if err != nil {
+ return nil, nil, errors.New("tls: short read from Rand: " + err.Error())
+ }
+
+ // A random session ID is used to detect when the server accepted a ticket
+ // and is resuming a session (see RFC 5077). In TLS 1.3, it's always set as
+ // a compatibility measure (see RFC 8446, Section 4.1.2).
+ //
+ // The session ID is not set for QUIC connections (see RFC 9001, Section 8.4).
+ if c.quic == nil {
+ hello.sessionId = make([]byte, 32)
+ if _, err := io.ReadFull(config.rand(), hello.sessionId); err != nil {
+ return nil, nil, errors.New("tls: short read from Rand: " + err.Error())
+ }
+ }
+
+ if hello.vers >= VersionTLS12 {
+ hello.supportedSignatureAlgorithms = supportedSignatureAlgorithms()
+ }
+ if testingOnlyForceClientHelloSignatureAlgorithms != nil {
+ hello.supportedSignatureAlgorithms = testingOnlyForceClientHelloSignatureAlgorithms
+ }
+
+ var key *ecdh.PrivateKey
+ if hello.supportedVersions[0] == VersionTLS13 {
+ // Reset the list of ciphers when the client only supports TLS 1.3.
+ if len(hello.supportedVersions) == 1 {
+ hello.cipherSuites = nil
+ }
+ if hasAESGCMHardwareSupport {
+ hello.cipherSuites = append(hello.cipherSuites, defaultCipherSuitesTLS13...)
+ } else {
+ hello.cipherSuites = append(hello.cipherSuites, defaultCipherSuitesTLS13NoAES...)
+ }
+
+ curveID := config.curvePreferences()[0]
+ if _, ok := curveForCurveID(curveID); !ok {
+ return nil, nil, errors.New("tls: CurvePreferences includes unsupported curve")
+ }
+ key, err = generateECDHEKey(config.rand(), curveID)
+ if err != nil {
+ return nil, nil, err
+ }
+ hello.keyShares = []keyShare{{group: curveID, data: key.PublicKey().Bytes()}}
+ }
+
+ if c.quic != nil {
+ p, err := c.quicGetTransportParameters()
+ if err != nil {
+ return nil, nil, err
+ }
+ if p == nil {
+ p = []byte{}
+ }
+ hello.quicTransportParameters = p
+ }
+
+ return hello, key, nil
+}
+
+func (c *Conn) clientHandshake(ctx context.Context) (err error) {
+ if c.config == nil {
+ c.config = defaultConfig()
+ }
+
+ // This may be a renegotiation handshake, in which case some fields
+ // need to be reset.
+ c.didResume = false
+
+ hello, ecdheKey, err := c.makeClientHello()
+ if err != nil {
+ return err
+ }
+ c.serverName = hello.serverName
+
+ session, earlySecret, binderKey, err := c.loadSession(hello)
+ if err != nil {
+ return err
+ }
+ if session != nil {
+ defer func() {
+ // If we got a handshake failure when resuming a session, throw away
+ // the session ticket. See RFC 5077, Section 3.2.
+ //
+ // RFC 8446 makes no mention of dropping tickets on failure, but it
+ // does require servers to abort on invalid binders, so we need to
+ // delete tickets to recover from a corrupted PSK.
+ if err != nil {
+ if cacheKey := c.clientSessionCacheKey(); cacheKey != "" {
+ c.config.ClientSessionCache.Put(cacheKey, nil)
+ }
+ }
+ }()
+ }
+
+ if _, err := c.writeHandshakeRecord(hello, nil); err != nil {
+ return err
+ }
+
+ if hello.earlyData {
+ suite := cipherSuiteTLS13ByID(session.cipherSuite)
+ transcript := suite.hash.New()
+ if err := transcriptMsg(hello, transcript); err != nil {
+ return err
+ }
+ earlyTrafficSecret := suite.deriveSecret(earlySecret, clientEarlyTrafficLabel, transcript)
+ c.quicSetWriteSecret(QUICEncryptionLevelEarly, suite.id, earlyTrafficSecret)
+ }
+
+ // serverHelloMsg is not included in the transcript
+ msg, err := c.readHandshake(nil)
+ if err != nil {
+ return err
+ }
+
+ serverHello, ok := msg.(*serverHelloMsg)
+ if !ok {
+ c.sendAlert(alertUnexpectedMessage)
+ return unexpectedMessageError(serverHello, msg)
+ }
+
+ if err := c.pickTLSVersion(serverHello); err != nil {
+ return err
+ }
+
+ // If we are negotiating a protocol version that's lower than what we
+ // support, check for the server downgrade canaries.
+ // See RFC 8446, Section 4.1.3.
+ maxVers := c.config.maxSupportedVersion(roleClient)
+ tls12Downgrade := string(serverHello.random[24:]) == downgradeCanaryTLS12
+ tls11Downgrade := string(serverHello.random[24:]) == downgradeCanaryTLS11
+ if maxVers == VersionTLS13 && c.vers <= VersionTLS12 && (tls12Downgrade || tls11Downgrade) ||
+ maxVers == VersionTLS12 && c.vers <= VersionTLS11 && tls11Downgrade {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: downgrade attempt detected, possibly due to a MitM attack or a broken middlebox")
+ }
+
+ if c.vers == VersionTLS13 {
+ hs := &clientHandshakeStateTLS13{
+ c: c,
+ ctx: ctx,
+ serverHello: serverHello,
+ hello: hello,
+ ecdheKey: ecdheKey,
+ session: session,
+ earlySecret: earlySecret,
+ binderKey: binderKey,
+ }
+
+ // In TLS 1.3, session tickets are delivered after the handshake.
+ return hs.handshake()
+ }
+
+ hs := &clientHandshakeState{
+ c: c,
+ ctx: ctx,
+ serverHello: serverHello,
+ hello: hello,
+ session: session,
+ }
+
+ if err := hs.handshake(); err != nil {
+ return err
+ }
+
+ return nil
+}
+
+func (c *Conn) loadSession(hello *clientHelloMsg) (
+ session *SessionState, earlySecret, binderKey []byte, err error) {
+ if c.config.SessionTicketsDisabled || c.config.ClientSessionCache == nil {
+ return nil, nil, nil, nil
+ }
+
+ hello.ticketSupported = true
+
+ if hello.supportedVersions[0] == VersionTLS13 {
+ // Require DHE on resumption as it guarantees forward secrecy against
+ // compromise of the session ticket key. See RFC 8446, Section 4.2.9.
+ hello.pskModes = []uint8{pskModeDHE}
+ }
+
+ // Session resumption is not allowed if renegotiating because
+ // renegotiation is primarily used to allow a client to send a client
+ // certificate, which would be skipped if session resumption occurred.
+ if c.handshakes != 0 {
+ return nil, nil, nil, nil
+ }
+
+ // Try to resume a previously negotiated TLS session, if available.
+ cacheKey := c.clientSessionCacheKey()
+ if cacheKey == "" {
+ return nil, nil, nil, nil
+ }
+ cs, ok := c.config.ClientSessionCache.Get(cacheKey)
+ if !ok || cs == nil {
+ return nil, nil, nil, nil
+ }
+ session = cs.session
+
+ // Check that version used for the previous session is still valid.
+ versOk := false
+ for _, v := range hello.supportedVersions {
+ if v == session.version {
+ versOk = true
+ break
+ }
+ }
+ if !versOk {
+ return nil, nil, nil, nil
+ }
+
+ // Check that the cached server certificate is not expired, and that it's
+ // valid for the ServerName. This should be ensured by the cache key, but
+ // protect the application from a faulty ClientSessionCache implementation.
+ if c.config.time().After(session.peerCertificates[0].NotAfter) {
+ // Expired certificate, delete the entry.
+ c.config.ClientSessionCache.Put(cacheKey, nil)
+ return nil, nil, nil, nil
+ }
+ if !c.config.InsecureSkipVerify {
+ if len(session.verifiedChains) == 0 {
+ // The original connection had InsecureSkipVerify, while this doesn't.
+ return nil, nil, nil, nil
+ }
+ if err := session.peerCertificates[0].VerifyHostname(c.config.ServerName); err != nil {
+ return nil, nil, nil, nil
+ }
+ }
+
+ if session.version != VersionTLS13 {
+ // In TLS 1.2 the cipher suite must match the resumed session. Ensure we
+ // are still offering it.
+ if mutualCipherSuite(hello.cipherSuites, session.cipherSuite) == nil {
+ return nil, nil, nil, nil
+ }
+
+ hello.sessionTicket = cs.ticket
+ return
+ }
+
+ // Check that the session ticket is not expired.
+ if c.config.time().After(time.Unix(int64(session.useBy), 0)) {
+ c.config.ClientSessionCache.Put(cacheKey, nil)
+ return nil, nil, nil, nil
+ }
+
+ // In TLS 1.3 the KDF hash must match the resumed session. Ensure we
+ // offer at least one cipher suite with that hash.
+ cipherSuite := cipherSuiteTLS13ByID(session.cipherSuite)
+ if cipherSuite == nil {
+ return nil, nil, nil, nil
+ }
+ cipherSuiteOk := false
+ for _, offeredID := range hello.cipherSuites {
+ offeredSuite := cipherSuiteTLS13ByID(offeredID)
+ if offeredSuite != nil && offeredSuite.hash == cipherSuite.hash {
+ cipherSuiteOk = true
+ break
+ }
+ }
+ if !cipherSuiteOk {
+ return nil, nil, nil, nil
+ }
+
+ if c.quic != nil && session.EarlyData {
+ // For 0-RTT, the cipher suite has to match exactly, and we need to be
+ // offering the same ALPN.
+ if mutualCipherSuiteTLS13(hello.cipherSuites, session.cipherSuite) != nil {
+ for _, alpn := range hello.alpnProtocols {
+ if alpn == session.alpnProtocol {
+ hello.earlyData = true
+ break
+ }
+ }
+ }
+ }
+
+ // Set the pre_shared_key extension. See RFC 8446, Section 4.2.11.1.
+ ticketAge := c.config.time().Sub(time.Unix(int64(session.createdAt), 0))
+ identity := pskIdentity{
+ label: cs.ticket,
+ obfuscatedTicketAge: uint32(ticketAge/time.Millisecond) + session.ageAdd,
+ }
+ hello.pskIdentities = []pskIdentity{identity}
+ hello.pskBinders = [][]byte{make([]byte, cipherSuite.hash.Size())}
+
+ // Compute the PSK binders. See RFC 8446, Section 4.2.11.2.
+ earlySecret = cipherSuite.extract(session.secret, nil)
+ binderKey = cipherSuite.deriveSecret(earlySecret, resumptionBinderLabel, nil)
+ transcript := cipherSuite.hash.New()
+ helloBytes, err := hello.marshalWithoutBinders()
+ if err != nil {
+ return nil, nil, nil, err
+ }
+ transcript.Write(helloBytes)
+ pskBinders := [][]byte{cipherSuite.finishedHash(binderKey, transcript)}
+ if err := hello.updateBinders(pskBinders); err != nil {
+ return nil, nil, nil, err
+ }
+
+ return
+}
+
+func (c *Conn) pickTLSVersion(serverHello *serverHelloMsg) error {
+ peerVersion := serverHello.vers
+ if serverHello.supportedVersion != 0 {
+ peerVersion = serverHello.supportedVersion
+ }
+
+ vers, ok := c.config.mutualVersion(roleClient, []uint16{peerVersion})
+ if !ok {
+ c.sendAlert(alertProtocolVersion)
+ return fmt.Errorf("tls: server selected unsupported protocol version %x", peerVersion)
+ }
+
+ c.vers = vers
+ c.haveVers = true
+ c.in.version = vers
+ c.out.version = vers
+
+ return nil
+}
+
+// Does the handshake, either a full one or resumes old session. Requires hs.c,
+// hs.hello, hs.serverHello, and, optionally, hs.session to be set.
+func (hs *clientHandshakeState) handshake() error {
+ c := hs.c
+
+ isResume, err := hs.processServerHello()
+ if err != nil {
+ return err
+ }
+
+ hs.finishedHash = newFinishedHash(c.vers, hs.suite)
+
+ // No signatures of the handshake are needed in a resumption.
+ // Otherwise, in a full handshake, if we don't have any certificates
+ // configured then we will never send a CertificateVerify message and
+ // thus no signatures are needed in that case either.
+ if isResume || (len(c.config.Certificates) == 0 && c.config.GetClientCertificate == nil) {
+ hs.finishedHash.discardHandshakeBuffer()
+ }
+
+ if err := transcriptMsg(hs.hello, &hs.finishedHash); err != nil {
+ return err
+ }
+ if err := transcriptMsg(hs.serverHello, &hs.finishedHash); err != nil {
+ return err
+ }
+
+ c.buffering = true
+ c.didResume = isResume
+ if isResume {
+ if err := hs.establishKeys(); err != nil {
+ return err
+ }
+ if err := hs.readSessionTicket(); err != nil {
+ return err
+ }
+ if err := hs.readFinished(c.serverFinished[:]); err != nil {
+ return err
+ }
+ c.clientFinishedIsFirst = false
+ // Make sure the connection is still being verified whether or not this
+ // is a resumption. Resumptions currently don't reverify certificates so
+ // they don't call verifyServerCertificate. See Issue 31641.
+ if c.config.VerifyConnection != nil {
+ if err := c.config.VerifyConnection(c.connectionStateLocked()); err != nil {
+ c.sendAlert(alertBadCertificate)
+ return err
+ }
+ }
+ if err := hs.sendFinished(c.clientFinished[:]); err != nil {
+ return err
+ }
+ if _, err := c.flush(); err != nil {
+ return err
+ }
+ } else {
+ if err := hs.doFullHandshake(); err != nil {
+ return err
+ }
+ if err := hs.establishKeys(); err != nil {
+ return err
+ }
+ if err := hs.sendFinished(c.clientFinished[:]); err != nil {
+ return err
+ }
+ if _, err := c.flush(); err != nil {
+ return err
+ }
+ c.clientFinishedIsFirst = true
+ if err := hs.readSessionTicket(); err != nil {
+ return err
+ }
+ if err := hs.readFinished(c.serverFinished[:]); err != nil {
+ return err
+ }
+ }
+ if err := hs.saveSessionTicket(); err != nil {
+ return err
+ }
+
+ c.ekm = ekmFromMasterSecret(c.vers, hs.suite, hs.masterSecret, hs.hello.random, hs.serverHello.random)
+ c.isHandshakeComplete.Store(true)
+
+ return nil
+}
+
+func (hs *clientHandshakeState) pickCipherSuite() error {
+ if hs.suite = mutualCipherSuite(hs.hello.cipherSuites, hs.serverHello.cipherSuite); hs.suite == nil {
+ hs.c.sendAlert(alertHandshakeFailure)
+ return errors.New("tls: server chose an unconfigured cipher suite")
+ }
+
+ hs.c.cipherSuite = hs.suite.id
+ return nil
+}
+
+func (hs *clientHandshakeState) doFullHandshake() error {
+ c := hs.c
+
+ msg, err := c.readHandshake(&hs.finishedHash)
+ if err != nil {
+ return err
+ }
+ certMsg, ok := msg.(*certificateMsg)
+ if !ok || len(certMsg.certificates) == 0 {
+ c.sendAlert(alertUnexpectedMessage)
+ return unexpectedMessageError(certMsg, msg)
+ }
+
+ msg, err = c.readHandshake(&hs.finishedHash)
+ if err != nil {
+ return err
+ }
+
+ cs, ok := msg.(*certificateStatusMsg)
+ if ok {
+ // RFC4366 on Certificate Status Request:
+ // The server MAY return a "certificate_status" message.
+
+ if !hs.serverHello.ocspStapling {
+ // If a server returns a "CertificateStatus" message, then the
+ // server MUST have included an extension of type "status_request"
+ // with empty "extension_data" in the extended server hello.
+
+ c.sendAlert(alertUnexpectedMessage)
+ return errors.New("tls: received unexpected CertificateStatus message")
+ }
+
+ c.ocspResponse = cs.response
+
+ msg, err = c.readHandshake(&hs.finishedHash)
+ if err != nil {
+ return err
+ }
+ }
+
+ if c.handshakes == 0 {
+ // If this is the first handshake on a connection, process and
+ // (optionally) verify the server's certificates.
+ if err := c.verifyServerCertificate(certMsg.certificates); err != nil {
+ return err
+ }
+ } else {
+ // This is a renegotiation handshake. We require that the
+ // server's identity (i.e. leaf certificate) is unchanged and
+ // thus any previous trust decision is still valid.
+ //
+ // See https://mitls.org/pages/attacks/3SHAKE for the
+ // motivation behind this requirement.
+ if !bytes.Equal(c.peerCertificates[0].Raw, certMsg.certificates[0]) {
+ c.sendAlert(alertBadCertificate)
+ return errors.New("tls: server's identity changed during renegotiation")
+ }
+ }
+
+ keyAgreement := hs.suite.ka(c.vers)
+
+ skx, ok := msg.(*serverKeyExchangeMsg)
+ if ok {
+ err = keyAgreement.processServerKeyExchange(c.config, hs.hello, hs.serverHello, c.peerCertificates[0], skx)
+ if err != nil {
+ c.sendAlert(alertUnexpectedMessage)
+ return err
+ }
+
+ msg, err = c.readHandshake(&hs.finishedHash)
+ if err != nil {
+ return err
+ }
+ }
+
+ var chainToSend *Certificate
+ var certRequested bool
+ certReq, ok := msg.(*certificateRequestMsg)
+ if ok {
+ certRequested = true
+
+ cri := certificateRequestInfoFromMsg(hs.ctx, c.vers, certReq)
+ if chainToSend, err = c.getClientCertificate(cri); err != nil {
+ c.sendAlert(alertInternalError)
+ return err
+ }
+
+ msg, err = c.readHandshake(&hs.finishedHash)
+ if err != nil {
+ return err
+ }
+ }
+
+ shd, ok := msg.(*serverHelloDoneMsg)
+ if !ok {
+ c.sendAlert(alertUnexpectedMessage)
+ return unexpectedMessageError(shd, msg)
+ }
+
+ // If the server requested a certificate then we have to send a
+ // Certificate message, even if it's empty because we don't have a
+ // certificate to send.
+ if certRequested {
+ certMsg = new(certificateMsg)
+ certMsg.certificates = chainToSend.Certificate
+ if _, err := hs.c.writeHandshakeRecord(certMsg, &hs.finishedHash); err != nil {
+ return err
+ }
+ }
+
+ preMasterSecret, ckx, err := keyAgreement.generateClientKeyExchange(c.config, hs.hello, c.peerCertificates[0])
+ if err != nil {
+ c.sendAlert(alertInternalError)
+ return err
+ }
+ if ckx != nil {
+ if _, err := hs.c.writeHandshakeRecord(ckx, &hs.finishedHash); err != nil {
+ return err
+ }
+ }
+
+ if hs.serverHello.extendedMasterSecret {
+ c.extMasterSecret = true
+ hs.masterSecret = extMasterFromPreMasterSecret(c.vers, hs.suite, preMasterSecret,
+ hs.finishedHash.Sum())
+ } else {
+ hs.masterSecret = masterFromPreMasterSecret(c.vers, hs.suite, preMasterSecret,
+ hs.hello.random, hs.serverHello.random)
+ }
+ if err := c.config.writeKeyLog(keyLogLabelTLS12, hs.hello.random, hs.masterSecret); err != nil {
+ c.sendAlert(alertInternalError)
+ return errors.New("tls: failed to write to key log: " + err.Error())
+ }
+
+ if chainToSend != nil && len(chainToSend.Certificate) > 0 {
+ certVerify := &certificateVerifyMsg{}
+
+ key, ok := chainToSend.PrivateKey.(crypto.Signer)
+ if !ok {
+ c.sendAlert(alertInternalError)
+ return fmt.Errorf("tls: client certificate private key of type %T does not implement crypto.Signer", chainToSend.PrivateKey)
+ }
+
+ var sigType uint8
+ var sigHash crypto.Hash
+ if c.vers >= VersionTLS12 {
+ signatureAlgorithm, err := selectSignatureScheme(c.vers, chainToSend, certReq.supportedSignatureAlgorithms)
+ if err != nil {
+ c.sendAlert(alertIllegalParameter)
+ return err
+ }
+ sigType, sigHash, err = typeAndHashFromSignatureScheme(signatureAlgorithm)
+ if err != nil {
+ return c.sendAlert(alertInternalError)
+ }
+ certVerify.hasSignatureAlgorithm = true
+ certVerify.signatureAlgorithm = signatureAlgorithm
+ } else {
+ sigType, sigHash, err = legacyTypeAndHashFromPublicKey(key.Public())
+ if err != nil {
+ c.sendAlert(alertIllegalParameter)
+ return err
+ }
+ }
+
+ signed := hs.finishedHash.hashForClientCertificate(sigType, sigHash)
+ signOpts := crypto.SignerOpts(sigHash)
+ if sigType == signatureRSAPSS {
+ signOpts = &rsa.PSSOptions{SaltLength: rsa.PSSSaltLengthEqualsHash, Hash: sigHash}
+ }
+ certVerify.signature, err = key.Sign(c.config.rand(), signed, signOpts)
+ if err != nil {
+ c.sendAlert(alertInternalError)
+ return err
+ }
+
+ if _, err := hs.c.writeHandshakeRecord(certVerify, &hs.finishedHash); err != nil {
+ return err
+ }
+ }
+
+ hs.finishedHash.discardHandshakeBuffer()
+
+ return nil
+}
+
+func (hs *clientHandshakeState) establishKeys() error {
+ c := hs.c
+
+ clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV :=
+ keysFromMasterSecret(c.vers, hs.suite, hs.masterSecret, hs.hello.random, hs.serverHello.random, hs.suite.macLen, hs.suite.keyLen, hs.suite.ivLen)
+ var clientCipher, serverCipher any
+ var clientHash, serverHash hash.Hash
+ if hs.suite.cipher != nil {
+ clientCipher = hs.suite.cipher(clientKey, clientIV, false /* not for reading */)
+ clientHash = hs.suite.mac(clientMAC)
+ serverCipher = hs.suite.cipher(serverKey, serverIV, true /* for reading */)
+ serverHash = hs.suite.mac(serverMAC)
+ } else {
+ clientCipher = hs.suite.aead(clientKey, clientIV)
+ serverCipher = hs.suite.aead(serverKey, serverIV)
+ }
+
+ c.in.prepareCipherSpec(c.vers, serverCipher, serverHash)
+ c.out.prepareCipherSpec(c.vers, clientCipher, clientHash)
+ return nil
+}
+
+func (hs *clientHandshakeState) serverResumedSession() bool {
+ // If the server responded with the same sessionId then it means the
+ // sessionTicket is being used to resume a TLS session.
+ return hs.session != nil && hs.hello.sessionId != nil &&
+ bytes.Equal(hs.serverHello.sessionId, hs.hello.sessionId)
+}
+
+func (hs *clientHandshakeState) processServerHello() (bool, error) {
+ c := hs.c
+
+ if err := hs.pickCipherSuite(); err != nil {
+ return false, err
+ }
+
+ if hs.serverHello.compressionMethod != compressionNone {
+ c.sendAlert(alertUnexpectedMessage)
+ return false, errors.New("tls: server selected unsupported compression format")
+ }
+
+ if c.handshakes == 0 && hs.serverHello.secureRenegotiationSupported {
+ c.secureRenegotiation = true
+ if len(hs.serverHello.secureRenegotiation) != 0 {
+ c.sendAlert(alertHandshakeFailure)
+ return false, errors.New("tls: initial handshake had non-empty renegotiation extension")
+ }
+ }
+
+ if c.handshakes > 0 && c.secureRenegotiation {
+ var expectedSecureRenegotiation [24]byte
+ copy(expectedSecureRenegotiation[:], c.clientFinished[:])
+ copy(expectedSecureRenegotiation[12:], c.serverFinished[:])
+ if !bytes.Equal(hs.serverHello.secureRenegotiation, expectedSecureRenegotiation[:]) {
+ c.sendAlert(alertHandshakeFailure)
+ return false, errors.New("tls: incorrect renegotiation extension contents")
+ }
+ }
+
+ if err := checkALPN(hs.hello.alpnProtocols, hs.serverHello.alpnProtocol, false); err != nil {
+ c.sendAlert(alertUnsupportedExtension)
+ return false, err
+ }
+ c.clientProtocol = hs.serverHello.alpnProtocol
+
+ c.scts = hs.serverHello.scts
+
+ if !hs.serverResumedSession() {
+ return false, nil
+ }
+
+ if hs.session.version != c.vers {
+ c.sendAlert(alertHandshakeFailure)
+ return false, errors.New("tls: server resumed a session with a different version")
+ }
+
+ if hs.session.cipherSuite != hs.suite.id {
+ c.sendAlert(alertHandshakeFailure)
+ return false, errors.New("tls: server resumed a session with a different cipher suite")
+ }
+
+ // RFC 7627, Section 5.3
+ if hs.session.extMasterSecret != hs.serverHello.extendedMasterSecret {
+ c.sendAlert(alertHandshakeFailure)
+ return false, errors.New("tls: server resumed a session with a different EMS extension")
+ }
+
+ // Restore master secret and certificates from previous state
+ hs.masterSecret = hs.session.secret
+ c.extMasterSecret = hs.session.extMasterSecret
+ c.peerCertificates = hs.session.peerCertificates
+ c.activeCertHandles = hs.c.activeCertHandles
+ c.verifiedChains = hs.session.verifiedChains
+ c.ocspResponse = hs.session.ocspResponse
+ // Let the ServerHello SCTs override the session SCTs from the original
+ // connection, if any are provided
+ if len(c.scts) == 0 && len(hs.session.scts) != 0 {
+ c.scts = hs.session.scts
+ }
+
+ return true, nil
+}
+
+// checkALPN ensure that the server's choice of ALPN protocol is compatible with
+// the protocols that we advertised in the Client Hello.
+func checkALPN(clientProtos []string, serverProto string, quic bool) error {
+ if serverProto == "" {
+ if quic && len(clientProtos) > 0 {
+ // RFC 9001, Section 8.1
+ return errors.New("tls: server did not select an ALPN protocol")
+ }
+ return nil
+ }
+ if len(clientProtos) == 0 {
+ return errors.New("tls: server advertised unrequested ALPN extension")
+ }
+ for _, proto := range clientProtos {
+ if proto == serverProto {
+ return nil
+ }
+ }
+ return errors.New("tls: server selected unadvertised ALPN protocol")
+}
+
+func (hs *clientHandshakeState) readFinished(out []byte) error {
+ c := hs.c
+
+ if err := c.readChangeCipherSpec(); err != nil {
+ return err
+ }
+
+ // finishedMsg is included in the transcript, but not until after we
+ // check the client version, since the state before this message was
+ // sent is used during verification.
+ msg, err := c.readHandshake(nil)
+ if err != nil {
+ return err
+ }
+ serverFinished, ok := msg.(*finishedMsg)
+ if !ok {
+ c.sendAlert(alertUnexpectedMessage)
+ return unexpectedMessageError(serverFinished, msg)
+ }
+
+ verify := hs.finishedHash.serverSum(hs.masterSecret)
+ if len(verify) != len(serverFinished.verifyData) ||
+ subtle.ConstantTimeCompare(verify, serverFinished.verifyData) != 1 {
+ c.sendAlert(alertHandshakeFailure)
+ return errors.New("tls: server's Finished message was incorrect")
+ }
+
+ if err := transcriptMsg(serverFinished, &hs.finishedHash); err != nil {
+ return err
+ }
+
+ copy(out, verify)
+ return nil
+}
+
+func (hs *clientHandshakeState) readSessionTicket() error {
+ if !hs.serverHello.ticketSupported {
+ return nil
+ }
+ c := hs.c
+
+ if !hs.hello.ticketSupported {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: server sent unrequested session ticket")
+ }
+
+ msg, err := c.readHandshake(&hs.finishedHash)
+ if err != nil {
+ return err
+ }
+ sessionTicketMsg, ok := msg.(*newSessionTicketMsg)
+ if !ok {
+ c.sendAlert(alertUnexpectedMessage)
+ return unexpectedMessageError(sessionTicketMsg, msg)
+ }
+
+ hs.ticket = sessionTicketMsg.ticket
+ return nil
+}
+
+func (hs *clientHandshakeState) saveSessionTicket() error {
+ if hs.ticket == nil {
+ return nil
+ }
+ c := hs.c
+
+ cacheKey := c.clientSessionCacheKey()
+ if cacheKey == "" {
+ return nil
+ }
+
+ session, err := c.sessionState()
+ if err != nil {
+ return err
+ }
+ session.secret = hs.masterSecret
+
+ cs := &ClientSessionState{ticket: hs.ticket, session: session}
+ c.config.ClientSessionCache.Put(cacheKey, cs)
+ return nil
+}
+
+func (hs *clientHandshakeState) sendFinished(out []byte) error {
+ c := hs.c
+
+ if err := c.writeChangeCipherRecord(); err != nil {
+ return err
+ }
+
+ finished := new(finishedMsg)
+ finished.verifyData = hs.finishedHash.clientSum(hs.masterSecret)
+ if _, err := hs.c.writeHandshakeRecord(finished, &hs.finishedHash); err != nil {
+ return err
+ }
+ copy(out, finished.verifyData)
+ return nil
+}
+
+// defaultMaxRSAKeySize is the maximum RSA key size in bits that we are willing
+// to verify the signatures of during a TLS handshake.
+const defaultMaxRSAKeySize = 8192
+
+var tlsmaxrsasize = godebug.New("tlsmaxrsasize")
+
+func checkKeySize(n int) (max int, ok bool) {
+ if v := tlsmaxrsasize.Value(); v != "" {
+ if max, err := strconv.Atoi(v); err == nil {
+ if (n <= max) != (n <= defaultMaxRSAKeySize) {
+ tlsmaxrsasize.IncNonDefault()
+ }
+ return max, n <= max
+ }
+ }
+ return defaultMaxRSAKeySize, n <= defaultMaxRSAKeySize
+}
+
+// verifyServerCertificate parses and verifies the provided chain, setting
+// c.verifiedChains and c.peerCertificates or sending the appropriate alert.
+func (c *Conn) verifyServerCertificate(certificates [][]byte) error {
+ activeHandles := make([]*activeCert, len(certificates))
+ certs := make([]*x509.Certificate, len(certificates))
+ for i, asn1Data := range certificates {
+ cert, err := globalCertCache.newCert(asn1Data)
+ if err != nil {
+ c.sendAlert(alertBadCertificate)
+ return errors.New("tls: failed to parse certificate from server: " + err.Error())
+ }
+ if cert.cert.PublicKeyAlgorithm == x509.RSA {
+ n := cert.cert.PublicKey.(*rsa.PublicKey).N.BitLen()
+ if max, ok := checkKeySize(n); !ok {
+ c.sendAlert(alertBadCertificate)
+ return fmt.Errorf("tls: server sent certificate containing RSA key larger than %d bits", max)
+ }
+ }
+ activeHandles[i] = cert
+ certs[i] = cert.cert
+ }
+
+ if !c.config.InsecureSkipVerify {
+ opts := x509.VerifyOptions{
+ Roots: c.config.RootCAs,
+ CurrentTime: c.config.time(),
+ DNSName: c.config.ServerName,
+ Intermediates: x509.NewCertPool(),
+ }
+
+ for _, cert := range certs[1:] {
+ opts.Intermediates.AddCert(cert)
+ }
+ var err error
+ c.verifiedChains, err = certs[0].Verify(opts)
+ if err != nil {
+ c.sendAlert(alertBadCertificate)
+ return &CertificateVerificationError{UnverifiedCertificates: certs, Err: err}
+ }
+ }
+
+ switch certs[0].PublicKey.(type) {
+ case *rsa.PublicKey, *ecdsa.PublicKey, ed25519.PublicKey:
+ break
+ default:
+ c.sendAlert(alertUnsupportedCertificate)
+ return fmt.Errorf("tls: server's certificate contains an unsupported type of public key: %T", certs[0].PublicKey)
+ }
+
+ c.activeCertHandles = activeHandles
+ c.peerCertificates = certs
+
+ if c.config.VerifyPeerCertificate != nil {
+ if err := c.config.VerifyPeerCertificate(certificates, c.verifiedChains); err != nil {
+ c.sendAlert(alertBadCertificate)
+ return err
+ }
+ }
+
+ if c.config.VerifyConnection != nil {
+ if err := c.config.VerifyConnection(c.connectionStateLocked()); err != nil {
+ c.sendAlert(alertBadCertificate)
+ return err
+ }
+ }
+
+ return nil
+}
+
+// certificateRequestInfoFromMsg generates a CertificateRequestInfo from a TLS
+// <= 1.2 CertificateRequest, making an effort to fill in missing information.
+func certificateRequestInfoFromMsg(ctx context.Context, vers uint16, certReq *certificateRequestMsg) *CertificateRequestInfo {
+ cri := &CertificateRequestInfo{
+ AcceptableCAs: certReq.certificateAuthorities,
+ Version: vers,
+ ctx: ctx,
+ }
+
+ var rsaAvail, ecAvail bool
+ for _, certType := range certReq.certificateTypes {
+ switch certType {
+ case certTypeRSASign:
+ rsaAvail = true
+ case certTypeECDSASign:
+ ecAvail = true
+ }
+ }
+
+ if !certReq.hasSignatureAlgorithm {
+ // Prior to TLS 1.2, signature schemes did not exist. In this case we
+ // make up a list based on the acceptable certificate types, to help
+ // GetClientCertificate and SupportsCertificate select the right certificate.
+ // The hash part of the SignatureScheme is a lie here, because
+ // TLS 1.0 and 1.1 always use MD5+SHA1 for RSA and SHA1 for ECDSA.
+ switch {
+ case rsaAvail && ecAvail:
+ cri.SignatureSchemes = []SignatureScheme{
+ ECDSAWithP256AndSHA256, ECDSAWithP384AndSHA384, ECDSAWithP521AndSHA512,
+ PKCS1WithSHA256, PKCS1WithSHA384, PKCS1WithSHA512, PKCS1WithSHA1,
+ }
+ case rsaAvail:
+ cri.SignatureSchemes = []SignatureScheme{
+ PKCS1WithSHA256, PKCS1WithSHA384, PKCS1WithSHA512, PKCS1WithSHA1,
+ }
+ case ecAvail:
+ cri.SignatureSchemes = []SignatureScheme{
+ ECDSAWithP256AndSHA256, ECDSAWithP384AndSHA384, ECDSAWithP521AndSHA512,
+ }
+ }
+ return cri
+ }
+
+ // Filter the signature schemes based on the certificate types.
+ // See RFC 5246, Section 7.4.4 (where it calls this "somewhat complicated").
+ cri.SignatureSchemes = make([]SignatureScheme, 0, len(certReq.supportedSignatureAlgorithms))
+ for _, sigScheme := range certReq.supportedSignatureAlgorithms {
+ sigType, _, err := typeAndHashFromSignatureScheme(sigScheme)
+ if err != nil {
+ continue
+ }
+ switch sigType {
+ case signatureECDSA, signatureEd25519:
+ if ecAvail {
+ cri.SignatureSchemes = append(cri.SignatureSchemes, sigScheme)
+ }
+ case signatureRSAPSS, signaturePKCS1v15:
+ if rsaAvail {
+ cri.SignatureSchemes = append(cri.SignatureSchemes, sigScheme)
+ }
+ }
+ }
+
+ return cri
+}
+
+func (c *Conn) getClientCertificate(cri *CertificateRequestInfo) (*Certificate, error) {
+ if c.config.GetClientCertificate != nil {
+ return c.config.GetClientCertificate(cri)
+ }
+
+ for _, chain := range c.config.Certificates {
+ if err := cri.SupportsCertificate(&chain); err != nil {
+ continue
+ }
+ return &chain, nil
+ }
+
+ // No acceptable certificate found. Don't send a certificate.
+ return new(Certificate), nil
+}
+
+// clientSessionCacheKey returns a key used to cache sessionTickets that could
+// be used to resume previously negotiated TLS sessions with a server.
+func (c *Conn) clientSessionCacheKey() string {
+ if len(c.config.ServerName) > 0 {
+ return c.config.ServerName
+ }
+ if c.conn != nil {
+ return c.conn.RemoteAddr().String()
+ }
+ return ""
+}
+
+// hostnameInSNI converts name into an appropriate hostname for SNI.
+// Literal IP addresses and absolute FQDNs are not permitted as SNI values.
+// See RFC 6066, Section 3.
+func hostnameInSNI(name string) string {
+ host := name
+ if len(host) > 0 && host[0] == '[' && host[len(host)-1] == ']' {
+ host = host[1 : len(host)-1]
+ }
+ if i := strings.LastIndex(host, "%"); i > 0 {
+ host = host[:i]
+ }
+ if net.ParseIP(host) != nil {
+ return ""
+ }
+ for len(name) > 0 && name[len(name)-1] == '.' {
+ name = name[:len(name)-1]
+ }
+ return name
+}
diff --git a/contrib/go/_std_1.21/src/crypto/tls/handshake_client_tls13.go b/contrib/go/_std_1.21/src/crypto/tls/handshake_client_tls13.go
new file mode 100644
index 0000000000..2f59f6888c
--- /dev/null
+++ b/contrib/go/_std_1.21/src/crypto/tls/handshake_client_tls13.go
@@ -0,0 +1,772 @@
+// Copyright 2018 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package tls
+
+import (
+ "bytes"
+ "context"
+ "crypto"
+ "crypto/ecdh"
+ "crypto/hmac"
+ "crypto/rsa"
+ "errors"
+ "hash"
+ "time"
+)
+
+type clientHandshakeStateTLS13 struct {
+ c *Conn
+ ctx context.Context
+ serverHello *serverHelloMsg
+ hello *clientHelloMsg
+ ecdheKey *ecdh.PrivateKey
+
+ session *SessionState
+ earlySecret []byte
+ binderKey []byte
+
+ certReq *certificateRequestMsgTLS13
+ usingPSK bool
+ sentDummyCCS bool
+ suite *cipherSuiteTLS13
+ transcript hash.Hash
+ masterSecret []byte
+ trafficSecret []byte // client_application_traffic_secret_0
+}
+
+// handshake requires hs.c, hs.hello, hs.serverHello, hs.ecdheKey, and,
+// optionally, hs.session, hs.earlySecret and hs.binderKey to be set.
+func (hs *clientHandshakeStateTLS13) handshake() error {
+ c := hs.c
+
+ if needFIPS() {
+ return errors.New("tls: internal error: TLS 1.3 reached in FIPS mode")
+ }
+
+ // The server must not select TLS 1.3 in a renegotiation. See RFC 8446,
+ // sections 4.1.2 and 4.1.3.
+ if c.handshakes > 0 {
+ c.sendAlert(alertProtocolVersion)
+ return errors.New("tls: server selected TLS 1.3 in a renegotiation")
+ }
+
+ // Consistency check on the presence of a keyShare and its parameters.
+ if hs.ecdheKey == nil || len(hs.hello.keyShares) != 1 {
+ return c.sendAlert(alertInternalError)
+ }
+
+ if err := hs.checkServerHelloOrHRR(); err != nil {
+ return err
+ }
+
+ hs.transcript = hs.suite.hash.New()
+
+ if err := transcriptMsg(hs.hello, hs.transcript); err != nil {
+ return err
+ }
+
+ if bytes.Equal(hs.serverHello.random, helloRetryRequestRandom) {
+ if err := hs.sendDummyChangeCipherSpec(); err != nil {
+ return err
+ }
+ if err := hs.processHelloRetryRequest(); err != nil {
+ return err
+ }
+ }
+
+ if err := transcriptMsg(hs.serverHello, hs.transcript); err != nil {
+ return err
+ }
+
+ c.buffering = true
+ if err := hs.processServerHello(); err != nil {
+ return err
+ }
+ if err := hs.sendDummyChangeCipherSpec(); err != nil {
+ return err
+ }
+ if err := hs.establishHandshakeKeys(); err != nil {
+ return err
+ }
+ if err := hs.readServerParameters(); err != nil {
+ return err
+ }
+ if err := hs.readServerCertificate(); err != nil {
+ return err
+ }
+ if err := hs.readServerFinished(); err != nil {
+ return err
+ }
+ if err := hs.sendClientCertificate(); err != nil {
+ return err
+ }
+ if err := hs.sendClientFinished(); err != nil {
+ return err
+ }
+ if _, err := c.flush(); err != nil {
+ return err
+ }
+
+ c.isHandshakeComplete.Store(true)
+
+ return nil
+}
+
+// checkServerHelloOrHRR does validity checks that apply to both ServerHello and
+// HelloRetryRequest messages. It sets hs.suite.
+func (hs *clientHandshakeStateTLS13) checkServerHelloOrHRR() error {
+ c := hs.c
+
+ if hs.serverHello.supportedVersion == 0 {
+ c.sendAlert(alertMissingExtension)
+ return errors.New("tls: server selected TLS 1.3 using the legacy version field")
+ }
+
+ if hs.serverHello.supportedVersion != VersionTLS13 {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: server selected an invalid version after a HelloRetryRequest")
+ }
+
+ if hs.serverHello.vers != VersionTLS12 {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: server sent an incorrect legacy version")
+ }
+
+ if hs.serverHello.ocspStapling ||
+ hs.serverHello.ticketSupported ||
+ hs.serverHello.extendedMasterSecret ||
+ hs.serverHello.secureRenegotiationSupported ||
+ len(hs.serverHello.secureRenegotiation) != 0 ||
+ len(hs.serverHello.alpnProtocol) != 0 ||
+ len(hs.serverHello.scts) != 0 {
+ c.sendAlert(alertUnsupportedExtension)
+ return errors.New("tls: server sent a ServerHello extension forbidden in TLS 1.3")
+ }
+
+ if !bytes.Equal(hs.hello.sessionId, hs.serverHello.sessionId) {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: server did not echo the legacy session ID")
+ }
+
+ if hs.serverHello.compressionMethod != compressionNone {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: server selected unsupported compression format")
+ }
+
+ selectedSuite := mutualCipherSuiteTLS13(hs.hello.cipherSuites, hs.serverHello.cipherSuite)
+ if hs.suite != nil && selectedSuite != hs.suite {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: server changed cipher suite after a HelloRetryRequest")
+ }
+ if selectedSuite == nil {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: server chose an unconfigured cipher suite")
+ }
+ hs.suite = selectedSuite
+ c.cipherSuite = hs.suite.id
+
+ return nil
+}
+
+// sendDummyChangeCipherSpec sends a ChangeCipherSpec record for compatibility
+// with middleboxes that didn't implement TLS correctly. See RFC 8446, Appendix D.4.
+func (hs *clientHandshakeStateTLS13) sendDummyChangeCipherSpec() error {
+ if hs.c.quic != nil {
+ return nil
+ }
+ if hs.sentDummyCCS {
+ return nil
+ }
+ hs.sentDummyCCS = true
+
+ return hs.c.writeChangeCipherRecord()
+}
+
+// processHelloRetryRequest handles the HRR in hs.serverHello, modifies and
+// resends hs.hello, and reads the new ServerHello into hs.serverHello.
+func (hs *clientHandshakeStateTLS13) processHelloRetryRequest() error {
+ c := hs.c
+
+ // The first ClientHello gets double-hashed into the transcript upon a
+ // HelloRetryRequest. (The idea is that the server might offload transcript
+ // storage to the client in the cookie.) See RFC 8446, Section 4.4.1.
+ chHash := hs.transcript.Sum(nil)
+ hs.transcript.Reset()
+ hs.transcript.Write([]byte{typeMessageHash, 0, 0, uint8(len(chHash))})
+ hs.transcript.Write(chHash)
+ if err := transcriptMsg(hs.serverHello, hs.transcript); err != nil {
+ return err
+ }
+
+ // The only HelloRetryRequest extensions we support are key_share and
+ // cookie, and clients must abort the handshake if the HRR would not result
+ // in any change in the ClientHello.
+ if hs.serverHello.selectedGroup == 0 && hs.serverHello.cookie == nil {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: server sent an unnecessary HelloRetryRequest message")
+ }
+
+ if hs.serverHello.cookie != nil {
+ hs.hello.cookie = hs.serverHello.cookie
+ }
+
+ if hs.serverHello.serverShare.group != 0 {
+ c.sendAlert(alertDecodeError)
+ return errors.New("tls: received malformed key_share extension")
+ }
+
+ // If the server sent a key_share extension selecting a group, ensure it's
+ // a group we advertised but did not send a key share for, and send a key
+ // share for it this time.
+ if curveID := hs.serverHello.selectedGroup; curveID != 0 {
+ curveOK := false
+ for _, id := range hs.hello.supportedCurves {
+ if id == curveID {
+ curveOK = true
+ break
+ }
+ }
+ if !curveOK {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: server selected unsupported group")
+ }
+ if sentID, _ := curveIDForCurve(hs.ecdheKey.Curve()); sentID == curveID {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: server sent an unnecessary HelloRetryRequest key_share")
+ }
+ if _, ok := curveForCurveID(curveID); !ok {
+ c.sendAlert(alertInternalError)
+ return errors.New("tls: CurvePreferences includes unsupported curve")
+ }
+ key, err := generateECDHEKey(c.config.rand(), curveID)
+ if err != nil {
+ c.sendAlert(alertInternalError)
+ return err
+ }
+ hs.ecdheKey = key
+ hs.hello.keyShares = []keyShare{{group: curveID, data: key.PublicKey().Bytes()}}
+ }
+
+ hs.hello.raw = nil
+ if len(hs.hello.pskIdentities) > 0 {
+ pskSuite := cipherSuiteTLS13ByID(hs.session.cipherSuite)
+ if pskSuite == nil {
+ return c.sendAlert(alertInternalError)
+ }
+ if pskSuite.hash == hs.suite.hash {
+ // Update binders and obfuscated_ticket_age.
+ ticketAge := c.config.time().Sub(time.Unix(int64(hs.session.createdAt), 0))
+ hs.hello.pskIdentities[0].obfuscatedTicketAge = uint32(ticketAge/time.Millisecond) + hs.session.ageAdd
+
+ transcript := hs.suite.hash.New()
+ transcript.Write([]byte{typeMessageHash, 0, 0, uint8(len(chHash))})
+ transcript.Write(chHash)
+ if err := transcriptMsg(hs.serverHello, transcript); err != nil {
+ return err
+ }
+ helloBytes, err := hs.hello.marshalWithoutBinders()
+ if err != nil {
+ return err
+ }
+ transcript.Write(helloBytes)
+ pskBinders := [][]byte{hs.suite.finishedHash(hs.binderKey, transcript)}
+ if err := hs.hello.updateBinders(pskBinders); err != nil {
+ return err
+ }
+ } else {
+ // Server selected a cipher suite incompatible with the PSK.
+ hs.hello.pskIdentities = nil
+ hs.hello.pskBinders = nil
+ }
+ }
+
+ if hs.hello.earlyData {
+ hs.hello.earlyData = false
+ c.quicRejectedEarlyData()
+ }
+
+ if _, err := hs.c.writeHandshakeRecord(hs.hello, hs.transcript); err != nil {
+ return err
+ }
+
+ // serverHelloMsg is not included in the transcript
+ msg, err := c.readHandshake(nil)
+ if err != nil {
+ return err
+ }
+
+ serverHello, ok := msg.(*serverHelloMsg)
+ if !ok {
+ c.sendAlert(alertUnexpectedMessage)
+ return unexpectedMessageError(serverHello, msg)
+ }
+ hs.serverHello = serverHello
+
+ if err := hs.checkServerHelloOrHRR(); err != nil {
+ return err
+ }
+
+ return nil
+}
+
+func (hs *clientHandshakeStateTLS13) processServerHello() error {
+ c := hs.c
+
+ if bytes.Equal(hs.serverHello.random, helloRetryRequestRandom) {
+ c.sendAlert(alertUnexpectedMessage)
+ return errors.New("tls: server sent two HelloRetryRequest messages")
+ }
+
+ if len(hs.serverHello.cookie) != 0 {
+ c.sendAlert(alertUnsupportedExtension)
+ return errors.New("tls: server sent a cookie in a normal ServerHello")
+ }
+
+ if hs.serverHello.selectedGroup != 0 {
+ c.sendAlert(alertDecodeError)
+ return errors.New("tls: malformed key_share extension")
+ }
+
+ if hs.serverHello.serverShare.group == 0 {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: server did not send a key share")
+ }
+ if sentID, _ := curveIDForCurve(hs.ecdheKey.Curve()); hs.serverHello.serverShare.group != sentID {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: server selected unsupported group")
+ }
+
+ if !hs.serverHello.selectedIdentityPresent {
+ return nil
+ }
+
+ if int(hs.serverHello.selectedIdentity) >= len(hs.hello.pskIdentities) {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: server selected an invalid PSK")
+ }
+
+ if len(hs.hello.pskIdentities) != 1 || hs.session == nil {
+ return c.sendAlert(alertInternalError)
+ }
+ pskSuite := cipherSuiteTLS13ByID(hs.session.cipherSuite)
+ if pskSuite == nil {
+ return c.sendAlert(alertInternalError)
+ }
+ if pskSuite.hash != hs.suite.hash {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: server selected an invalid PSK and cipher suite pair")
+ }
+
+ hs.usingPSK = true
+ c.didResume = true
+ c.peerCertificates = hs.session.peerCertificates
+ c.activeCertHandles = hs.session.activeCertHandles
+ c.verifiedChains = hs.session.verifiedChains
+ c.ocspResponse = hs.session.ocspResponse
+ c.scts = hs.session.scts
+ return nil
+}
+
+func (hs *clientHandshakeStateTLS13) establishHandshakeKeys() error {
+ c := hs.c
+
+ peerKey, err := hs.ecdheKey.Curve().NewPublicKey(hs.serverHello.serverShare.data)
+ if err != nil {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: invalid server key share")
+ }
+ sharedKey, err := hs.ecdheKey.ECDH(peerKey)
+ if err != nil {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: invalid server key share")
+ }
+
+ earlySecret := hs.earlySecret
+ if !hs.usingPSK {
+ earlySecret = hs.suite.extract(nil, nil)
+ }
+
+ handshakeSecret := hs.suite.extract(sharedKey,
+ hs.suite.deriveSecret(earlySecret, "derived", nil))
+
+ clientSecret := hs.suite.deriveSecret(handshakeSecret,
+ clientHandshakeTrafficLabel, hs.transcript)
+ c.out.setTrafficSecret(hs.suite, QUICEncryptionLevelHandshake, clientSecret)
+ serverSecret := hs.suite.deriveSecret(handshakeSecret,
+ serverHandshakeTrafficLabel, hs.transcript)
+ c.in.setTrafficSecret(hs.suite, QUICEncryptionLevelHandshake, serverSecret)
+
+ if c.quic != nil {
+ if c.hand.Len() != 0 {
+ c.sendAlert(alertUnexpectedMessage)
+ }
+ c.quicSetWriteSecret(QUICEncryptionLevelHandshake, hs.suite.id, clientSecret)
+ c.quicSetReadSecret(QUICEncryptionLevelHandshake, hs.suite.id, serverSecret)
+ }
+
+ err = c.config.writeKeyLog(keyLogLabelClientHandshake, hs.hello.random, clientSecret)
+ if err != nil {
+ c.sendAlert(alertInternalError)
+ return err
+ }
+ err = c.config.writeKeyLog(keyLogLabelServerHandshake, hs.hello.random, serverSecret)
+ if err != nil {
+ c.sendAlert(alertInternalError)
+ return err
+ }
+
+ hs.masterSecret = hs.suite.extract(nil,
+ hs.suite.deriveSecret(handshakeSecret, "derived", nil))
+
+ return nil
+}
+
+func (hs *clientHandshakeStateTLS13) readServerParameters() error {
+ c := hs.c
+
+ msg, err := c.readHandshake(hs.transcript)
+ if err != nil {
+ return err
+ }
+
+ encryptedExtensions, ok := msg.(*encryptedExtensionsMsg)
+ if !ok {
+ c.sendAlert(alertUnexpectedMessage)
+ return unexpectedMessageError(encryptedExtensions, msg)
+ }
+
+ if err := checkALPN(hs.hello.alpnProtocols, encryptedExtensions.alpnProtocol, c.quic != nil); err != nil {
+ // RFC 8446 specifies that no_application_protocol is sent by servers, but
+ // does not specify how clients handle the selection of an incompatible protocol.
+ // RFC 9001 Section 8.1 specifies that QUIC clients send no_application_protocol
+ // in this case. Always sending no_application_protocol seems reasonable.
+ c.sendAlert(alertNoApplicationProtocol)
+ return err
+ }
+ c.clientProtocol = encryptedExtensions.alpnProtocol
+
+ if c.quic != nil {
+ if encryptedExtensions.quicTransportParameters == nil {
+ // RFC 9001 Section 8.2.
+ c.sendAlert(alertMissingExtension)
+ return errors.New("tls: server did not send a quic_transport_parameters extension")
+ }
+ c.quicSetTransportParameters(encryptedExtensions.quicTransportParameters)
+ } else {
+ if encryptedExtensions.quicTransportParameters != nil {
+ c.sendAlert(alertUnsupportedExtension)
+ return errors.New("tls: server sent an unexpected quic_transport_parameters extension")
+ }
+ }
+
+ if !hs.hello.earlyData && encryptedExtensions.earlyData {
+ c.sendAlert(alertUnsupportedExtension)
+ return errors.New("tls: server sent an unexpected early_data extension")
+ }
+ if hs.hello.earlyData && !encryptedExtensions.earlyData {
+ c.quicRejectedEarlyData()
+ }
+ if encryptedExtensions.earlyData {
+ if hs.session.cipherSuite != c.cipherSuite {
+ c.sendAlert(alertHandshakeFailure)
+ return errors.New("tls: server accepted 0-RTT with the wrong cipher suite")
+ }
+ if hs.session.alpnProtocol != c.clientProtocol {
+ c.sendAlert(alertHandshakeFailure)
+ return errors.New("tls: server accepted 0-RTT with the wrong ALPN")
+ }
+ }
+
+ return nil
+}
+
+func (hs *clientHandshakeStateTLS13) readServerCertificate() error {
+ c := hs.c
+
+ // Either a PSK or a certificate is always used, but not both.
+ // See RFC 8446, Section 4.1.1.
+ if hs.usingPSK {
+ // Make sure the connection is still being verified whether or not this
+ // is a resumption. Resumptions currently don't reverify certificates so
+ // they don't call verifyServerCertificate. See Issue 31641.
+ if c.config.VerifyConnection != nil {
+ if err := c.config.VerifyConnection(c.connectionStateLocked()); err != nil {
+ c.sendAlert(alertBadCertificate)
+ return err
+ }
+ }
+ return nil
+ }
+
+ msg, err := c.readHandshake(hs.transcript)
+ if err != nil {
+ return err
+ }
+
+ certReq, ok := msg.(*certificateRequestMsgTLS13)
+ if ok {
+ hs.certReq = certReq
+
+ msg, err = c.readHandshake(hs.transcript)
+ if err != nil {
+ return err
+ }
+ }
+
+ certMsg, ok := msg.(*certificateMsgTLS13)
+ if !ok {
+ c.sendAlert(alertUnexpectedMessage)
+ return unexpectedMessageError(certMsg, msg)
+ }
+ if len(certMsg.certificate.Certificate) == 0 {
+ c.sendAlert(alertDecodeError)
+ return errors.New("tls: received empty certificates message")
+ }
+
+ c.scts = certMsg.certificate.SignedCertificateTimestamps
+ c.ocspResponse = certMsg.certificate.OCSPStaple
+
+ if err := c.verifyServerCertificate(certMsg.certificate.Certificate); err != nil {
+ return err
+ }
+
+ // certificateVerifyMsg is included in the transcript, but not until
+ // after we verify the handshake signature, since the state before
+ // this message was sent is used.
+ msg, err = c.readHandshake(nil)
+ if err != nil {
+ return err
+ }
+
+ certVerify, ok := msg.(*certificateVerifyMsg)
+ if !ok {
+ c.sendAlert(alertUnexpectedMessage)
+ return unexpectedMessageError(certVerify, msg)
+ }
+
+ // See RFC 8446, Section 4.4.3.
+ if !isSupportedSignatureAlgorithm(certVerify.signatureAlgorithm, supportedSignatureAlgorithms()) {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: certificate used with invalid signature algorithm")
+ }
+ sigType, sigHash, err := typeAndHashFromSignatureScheme(certVerify.signatureAlgorithm)
+ if err != nil {
+ return c.sendAlert(alertInternalError)
+ }
+ if sigType == signaturePKCS1v15 || sigHash == crypto.SHA1 {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: certificate used with invalid signature algorithm")
+ }
+ signed := signedMessage(sigHash, serverSignatureContext, hs.transcript)
+ if err := verifyHandshakeSignature(sigType, c.peerCertificates[0].PublicKey,
+ sigHash, signed, certVerify.signature); err != nil {
+ c.sendAlert(alertDecryptError)
+ return errors.New("tls: invalid signature by the server certificate: " + err.Error())
+ }
+
+ if err := transcriptMsg(certVerify, hs.transcript); err != nil {
+ return err
+ }
+
+ return nil
+}
+
+func (hs *clientHandshakeStateTLS13) readServerFinished() error {
+ c := hs.c
+
+ // finishedMsg is included in the transcript, but not until after we
+ // check the client version, since the state before this message was
+ // sent is used during verification.
+ msg, err := c.readHandshake(nil)
+ if err != nil {
+ return err
+ }
+
+ finished, ok := msg.(*finishedMsg)
+ if !ok {
+ c.sendAlert(alertUnexpectedMessage)
+ return unexpectedMessageError(finished, msg)
+ }
+
+ expectedMAC := hs.suite.finishedHash(c.in.trafficSecret, hs.transcript)
+ if !hmac.Equal(expectedMAC, finished.verifyData) {
+ c.sendAlert(alertDecryptError)
+ return errors.New("tls: invalid server finished hash")
+ }
+
+ if err := transcriptMsg(finished, hs.transcript); err != nil {
+ return err
+ }
+
+ // Derive secrets that take context through the server Finished.
+
+ hs.trafficSecret = hs.suite.deriveSecret(hs.masterSecret,
+ clientApplicationTrafficLabel, hs.transcript)
+ serverSecret := hs.suite.deriveSecret(hs.masterSecret,
+ serverApplicationTrafficLabel, hs.transcript)
+ c.in.setTrafficSecret(hs.suite, QUICEncryptionLevelApplication, serverSecret)
+
+ err = c.config.writeKeyLog(keyLogLabelClientTraffic, hs.hello.random, hs.trafficSecret)
+ if err != nil {
+ c.sendAlert(alertInternalError)
+ return err
+ }
+ err = c.config.writeKeyLog(keyLogLabelServerTraffic, hs.hello.random, serverSecret)
+ if err != nil {
+ c.sendAlert(alertInternalError)
+ return err
+ }
+
+ c.ekm = hs.suite.exportKeyingMaterial(hs.masterSecret, hs.transcript)
+
+ return nil
+}
+
+func (hs *clientHandshakeStateTLS13) sendClientCertificate() error {
+ c := hs.c
+
+ if hs.certReq == nil {
+ return nil
+ }
+
+ cert, err := c.getClientCertificate(&CertificateRequestInfo{
+ AcceptableCAs: hs.certReq.certificateAuthorities,
+ SignatureSchemes: hs.certReq.supportedSignatureAlgorithms,
+ Version: c.vers,
+ ctx: hs.ctx,
+ })
+ if err != nil {
+ return err
+ }
+
+ certMsg := new(certificateMsgTLS13)
+
+ certMsg.certificate = *cert
+ certMsg.scts = hs.certReq.scts && len(cert.SignedCertificateTimestamps) > 0
+ certMsg.ocspStapling = hs.certReq.ocspStapling && len(cert.OCSPStaple) > 0
+
+ if _, err := hs.c.writeHandshakeRecord(certMsg, hs.transcript); err != nil {
+ return err
+ }
+
+ // If we sent an empty certificate message, skip the CertificateVerify.
+ if len(cert.Certificate) == 0 {
+ return nil
+ }
+
+ certVerifyMsg := new(certificateVerifyMsg)
+ certVerifyMsg.hasSignatureAlgorithm = true
+
+ certVerifyMsg.signatureAlgorithm, err = selectSignatureScheme(c.vers, cert, hs.certReq.supportedSignatureAlgorithms)
+ if err != nil {
+ // getClientCertificate returned a certificate incompatible with the
+ // CertificateRequestInfo supported signature algorithms.
+ c.sendAlert(alertHandshakeFailure)
+ return err
+ }
+
+ sigType, sigHash, err := typeAndHashFromSignatureScheme(certVerifyMsg.signatureAlgorithm)
+ if err != nil {
+ return c.sendAlert(alertInternalError)
+ }
+
+ signed := signedMessage(sigHash, clientSignatureContext, hs.transcript)
+ signOpts := crypto.SignerOpts(sigHash)
+ if sigType == signatureRSAPSS {
+ signOpts = &rsa.PSSOptions{SaltLength: rsa.PSSSaltLengthEqualsHash, Hash: sigHash}
+ }
+ sig, err := cert.PrivateKey.(crypto.Signer).Sign(c.config.rand(), signed, signOpts)
+ if err != nil {
+ c.sendAlert(alertInternalError)
+ return errors.New("tls: failed to sign handshake: " + err.Error())
+ }
+ certVerifyMsg.signature = sig
+
+ if _, err := hs.c.writeHandshakeRecord(certVerifyMsg, hs.transcript); err != nil {
+ return err
+ }
+
+ return nil
+}
+
+func (hs *clientHandshakeStateTLS13) sendClientFinished() error {
+ c := hs.c
+
+ finished := &finishedMsg{
+ verifyData: hs.suite.finishedHash(c.out.trafficSecret, hs.transcript),
+ }
+
+ if _, err := hs.c.writeHandshakeRecord(finished, hs.transcript); err != nil {
+ return err
+ }
+
+ c.out.setTrafficSecret(hs.suite, QUICEncryptionLevelApplication, hs.trafficSecret)
+
+ if !c.config.SessionTicketsDisabled && c.config.ClientSessionCache != nil {
+ c.resumptionSecret = hs.suite.deriveSecret(hs.masterSecret,
+ resumptionLabel, hs.transcript)
+ }
+
+ if c.quic != nil {
+ if c.hand.Len() != 0 {
+ c.sendAlert(alertUnexpectedMessage)
+ }
+ c.quicSetWriteSecret(QUICEncryptionLevelApplication, hs.suite.id, hs.trafficSecret)
+ }
+
+ return nil
+}
+
+func (c *Conn) handleNewSessionTicket(msg *newSessionTicketMsgTLS13) error {
+ if !c.isClient {
+ c.sendAlert(alertUnexpectedMessage)
+ return errors.New("tls: received new session ticket from a client")
+ }
+
+ if c.config.SessionTicketsDisabled || c.config.ClientSessionCache == nil {
+ return nil
+ }
+
+ // See RFC 8446, Section 4.6.1.
+ if msg.lifetime == 0 {
+ return nil
+ }
+ lifetime := time.Duration(msg.lifetime) * time.Second
+ if lifetime > maxSessionTicketLifetime {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: received a session ticket with invalid lifetime")
+ }
+
+ // RFC 9001, Section 4.6.1
+ if c.quic != nil && msg.maxEarlyData != 0 && msg.maxEarlyData != 0xffffffff {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: invalid early data for QUIC connection")
+ }
+
+ cipherSuite := cipherSuiteTLS13ByID(c.cipherSuite)
+ if cipherSuite == nil || c.resumptionSecret == nil {
+ return c.sendAlert(alertInternalError)
+ }
+
+ psk := cipherSuite.expandLabel(c.resumptionSecret, "resumption",
+ msg.nonce, cipherSuite.hash.Size())
+
+ session, err := c.sessionState()
+ if err != nil {
+ c.sendAlert(alertInternalError)
+ return err
+ }
+ session.secret = psk
+ session.useBy = uint64(c.config.time().Add(lifetime).Unix())
+ session.ageAdd = msg.ageAdd
+ session.EarlyData = c.quic != nil && msg.maxEarlyData == 0xffffffff // RFC 9001, Section 4.6.1
+ cs := &ClientSessionState{ticket: msg.label, session: session}
+
+ if cacheKey := c.clientSessionCacheKey(); cacheKey != "" {
+ c.config.ClientSessionCache.Put(cacheKey, cs)
+ }
+
+ return nil
+}
diff --git a/contrib/go/_std_1.21/src/crypto/tls/handshake_messages.go b/contrib/go/_std_1.21/src/crypto/tls/handshake_messages.go
new file mode 100644
index 0000000000..a86055a060
--- /dev/null
+++ b/contrib/go/_std_1.21/src/crypto/tls/handshake_messages.go
@@ -0,0 +1,1903 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package tls
+
+import (
+ "errors"
+ "fmt"
+ "strings"
+
+ "golang.org/x/crypto/cryptobyte"
+)
+
+// The marshalingFunction type is an adapter to allow the use of ordinary
+// functions as cryptobyte.MarshalingValue.
+type marshalingFunction func(b *cryptobyte.Builder) error
+
+func (f marshalingFunction) Marshal(b *cryptobyte.Builder) error {
+ return f(b)
+}
+
+// addBytesWithLength appends a sequence of bytes to the cryptobyte.Builder. If
+// the length of the sequence is not the value specified, it produces an error.
+func addBytesWithLength(b *cryptobyte.Builder, v []byte, n int) {
+ b.AddValue(marshalingFunction(func(b *cryptobyte.Builder) error {
+ if len(v) != n {
+ return fmt.Errorf("invalid value length: expected %d, got %d", n, len(v))
+ }
+ b.AddBytes(v)
+ return nil
+ }))
+}
+
+// addUint64 appends a big-endian, 64-bit value to the cryptobyte.Builder.
+func addUint64(b *cryptobyte.Builder, v uint64) {
+ b.AddUint32(uint32(v >> 32))
+ b.AddUint32(uint32(v))
+}
+
+// readUint64 decodes a big-endian, 64-bit value into out and advances over it.
+// It reports whether the read was successful.
+func readUint64(s *cryptobyte.String, out *uint64) bool {
+ var hi, lo uint32
+ if !s.ReadUint32(&hi) || !s.ReadUint32(&lo) {
+ return false
+ }
+ *out = uint64(hi)<<32 | uint64(lo)
+ return true
+}
+
+// readUint8LengthPrefixed acts like s.ReadUint8LengthPrefixed, but targets a
+// []byte instead of a cryptobyte.String.
+func readUint8LengthPrefixed(s *cryptobyte.String, out *[]byte) bool {
+ return s.ReadUint8LengthPrefixed((*cryptobyte.String)(out))
+}
+
+// readUint16LengthPrefixed acts like s.ReadUint16LengthPrefixed, but targets a
+// []byte instead of a cryptobyte.String.
+func readUint16LengthPrefixed(s *cryptobyte.String, out *[]byte) bool {
+ return s.ReadUint16LengthPrefixed((*cryptobyte.String)(out))
+}
+
+// readUint24LengthPrefixed acts like s.ReadUint24LengthPrefixed, but targets a
+// []byte instead of a cryptobyte.String.
+func readUint24LengthPrefixed(s *cryptobyte.String, out *[]byte) bool {
+ return s.ReadUint24LengthPrefixed((*cryptobyte.String)(out))
+}
+
+type clientHelloMsg struct {
+ raw []byte
+ vers uint16
+ random []byte
+ sessionId []byte
+ cipherSuites []uint16
+ compressionMethods []uint8
+ serverName string
+ ocspStapling bool
+ supportedCurves []CurveID
+ supportedPoints []uint8
+ ticketSupported bool
+ sessionTicket []uint8
+ supportedSignatureAlgorithms []SignatureScheme
+ supportedSignatureAlgorithmsCert []SignatureScheme
+ secureRenegotiationSupported bool
+ secureRenegotiation []byte
+ extendedMasterSecret bool
+ alpnProtocols []string
+ scts bool
+ supportedVersions []uint16
+ cookie []byte
+ keyShares []keyShare
+ earlyData bool
+ pskModes []uint8
+ pskIdentities []pskIdentity
+ pskBinders [][]byte
+ quicTransportParameters []byte
+}
+
+func (m *clientHelloMsg) marshal() ([]byte, error) {
+ if m.raw != nil {
+ return m.raw, nil
+ }
+
+ var exts cryptobyte.Builder
+ if len(m.serverName) > 0 {
+ // RFC 6066, Section 3
+ exts.AddUint16(extensionServerName)
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddUint8(0) // name_type = host_name
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddBytes([]byte(m.serverName))
+ })
+ })
+ })
+ }
+ if m.ocspStapling {
+ // RFC 4366, Section 3.6
+ exts.AddUint16(extensionStatusRequest)
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddUint8(1) // status_type = ocsp
+ exts.AddUint16(0) // empty responder_id_list
+ exts.AddUint16(0) // empty request_extensions
+ })
+ }
+ if len(m.supportedCurves) > 0 {
+ // RFC 4492, sections 5.1.1 and RFC 8446, Section 4.2.7
+ exts.AddUint16(extensionSupportedCurves)
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ for _, curve := range m.supportedCurves {
+ exts.AddUint16(uint16(curve))
+ }
+ })
+ })
+ }
+ if len(m.supportedPoints) > 0 {
+ // RFC 4492, Section 5.1.2
+ exts.AddUint16(extensionSupportedPoints)
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddUint8LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddBytes(m.supportedPoints)
+ })
+ })
+ }
+ if m.ticketSupported {
+ // RFC 5077, Section 3.2
+ exts.AddUint16(extensionSessionTicket)
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddBytes(m.sessionTicket)
+ })
+ }
+ if len(m.supportedSignatureAlgorithms) > 0 {
+ // RFC 5246, Section 7.4.1.4.1
+ exts.AddUint16(extensionSignatureAlgorithms)
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ for _, sigAlgo := range m.supportedSignatureAlgorithms {
+ exts.AddUint16(uint16(sigAlgo))
+ }
+ })
+ })
+ }
+ if len(m.supportedSignatureAlgorithmsCert) > 0 {
+ // RFC 8446, Section 4.2.3
+ exts.AddUint16(extensionSignatureAlgorithmsCert)
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ for _, sigAlgo := range m.supportedSignatureAlgorithmsCert {
+ exts.AddUint16(uint16(sigAlgo))
+ }
+ })
+ })
+ }
+ if m.secureRenegotiationSupported {
+ // RFC 5746, Section 3.2
+ exts.AddUint16(extensionRenegotiationInfo)
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddUint8LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddBytes(m.secureRenegotiation)
+ })
+ })
+ }
+ if m.extendedMasterSecret {
+ // RFC 7627
+ exts.AddUint16(extensionExtendedMasterSecret)
+ exts.AddUint16(0) // empty extension_data
+ }
+ if len(m.alpnProtocols) > 0 {
+ // RFC 7301, Section 3.1
+ exts.AddUint16(extensionALPN)
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ for _, proto := range m.alpnProtocols {
+ exts.AddUint8LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddBytes([]byte(proto))
+ })
+ }
+ })
+ })
+ }
+ if m.scts {
+ // RFC 6962, Section 3.3.1
+ exts.AddUint16(extensionSCT)
+ exts.AddUint16(0) // empty extension_data
+ }
+ if len(m.supportedVersions) > 0 {
+ // RFC 8446, Section 4.2.1
+ exts.AddUint16(extensionSupportedVersions)
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddUint8LengthPrefixed(func(exts *cryptobyte.Builder) {
+ for _, vers := range m.supportedVersions {
+ exts.AddUint16(vers)
+ }
+ })
+ })
+ }
+ if len(m.cookie) > 0 {
+ // RFC 8446, Section 4.2.2
+ exts.AddUint16(extensionCookie)
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddBytes(m.cookie)
+ })
+ })
+ }
+ if len(m.keyShares) > 0 {
+ // RFC 8446, Section 4.2.8
+ exts.AddUint16(extensionKeyShare)
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ for _, ks := range m.keyShares {
+ exts.AddUint16(uint16(ks.group))
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddBytes(ks.data)
+ })
+ }
+ })
+ })
+ }
+ if m.earlyData {
+ // RFC 8446, Section 4.2.10
+ exts.AddUint16(extensionEarlyData)
+ exts.AddUint16(0) // empty extension_data
+ }
+ if len(m.pskModes) > 0 {
+ // RFC 8446, Section 4.2.9
+ exts.AddUint16(extensionPSKModes)
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddUint8LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddBytes(m.pskModes)
+ })
+ })
+ }
+ if m.quicTransportParameters != nil { // marshal zero-length parameters when present
+ // RFC 9001, Section 8.2
+ exts.AddUint16(extensionQUICTransportParameters)
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddBytes(m.quicTransportParameters)
+ })
+ }
+ if len(m.pskIdentities) > 0 { // pre_shared_key must be the last extension
+ // RFC 8446, Section 4.2.11
+ exts.AddUint16(extensionPreSharedKey)
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ for _, psk := range m.pskIdentities {
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddBytes(psk.label)
+ })
+ exts.AddUint32(psk.obfuscatedTicketAge)
+ }
+ })
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ for _, binder := range m.pskBinders {
+ exts.AddUint8LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddBytes(binder)
+ })
+ }
+ })
+ })
+ }
+ extBytes, err := exts.Bytes()
+ if err != nil {
+ return nil, err
+ }
+
+ var b cryptobyte.Builder
+ b.AddUint8(typeClientHello)
+ b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddUint16(m.vers)
+ addBytesWithLength(b, m.random, 32)
+ b.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddBytes(m.sessionId)
+ })
+ b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
+ for _, suite := range m.cipherSuites {
+ b.AddUint16(suite)
+ }
+ })
+ b.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddBytes(m.compressionMethods)
+ })
+
+ if len(extBytes) > 0 {
+ b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddBytes(extBytes)
+ })
+ }
+ })
+
+ m.raw, err = b.Bytes()
+ return m.raw, err
+}
+
+// marshalWithoutBinders returns the ClientHello through the
+// PreSharedKeyExtension.identities field, according to RFC 8446, Section
+// 4.2.11.2. Note that m.pskBinders must be set to slices of the correct length.
+func (m *clientHelloMsg) marshalWithoutBinders() ([]byte, error) {
+ bindersLen := 2 // uint16 length prefix
+ for _, binder := range m.pskBinders {
+ bindersLen += 1 // uint8 length prefix
+ bindersLen += len(binder)
+ }
+
+ fullMessage, err := m.marshal()
+ if err != nil {
+ return nil, err
+ }
+ return fullMessage[:len(fullMessage)-bindersLen], nil
+}
+
+// updateBinders updates the m.pskBinders field, if necessary updating the
+// cached marshaled representation. The supplied binders must have the same
+// length as the current m.pskBinders.
+func (m *clientHelloMsg) updateBinders(pskBinders [][]byte) error {
+ if len(pskBinders) != len(m.pskBinders) {
+ return errors.New("tls: internal error: pskBinders length mismatch")
+ }
+ for i := range m.pskBinders {
+ if len(pskBinders[i]) != len(m.pskBinders[i]) {
+ return errors.New("tls: internal error: pskBinders length mismatch")
+ }
+ }
+ m.pskBinders = pskBinders
+ if m.raw != nil {
+ helloBytes, err := m.marshalWithoutBinders()
+ if err != nil {
+ return err
+ }
+ lenWithoutBinders := len(helloBytes)
+ b := cryptobyte.NewFixedBuilder(m.raw[:lenWithoutBinders])
+ b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
+ for _, binder := range m.pskBinders {
+ b.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddBytes(binder)
+ })
+ }
+ })
+ if out, err := b.Bytes(); err != nil || len(out) != len(m.raw) {
+ return errors.New("tls: internal error: failed to update binders")
+ }
+ }
+
+ return nil
+}
+
+func (m *clientHelloMsg) unmarshal(data []byte) bool {
+ *m = clientHelloMsg{raw: data}
+ s := cryptobyte.String(data)
+
+ if !s.Skip(4) || // message type and uint24 length field
+ !s.ReadUint16(&m.vers) || !s.ReadBytes(&m.random, 32) ||
+ !readUint8LengthPrefixed(&s, &m.sessionId) {
+ return false
+ }
+
+ var cipherSuites cryptobyte.String
+ if !s.ReadUint16LengthPrefixed(&cipherSuites) {
+ return false
+ }
+ m.cipherSuites = []uint16{}
+ m.secureRenegotiationSupported = false
+ for !cipherSuites.Empty() {
+ var suite uint16
+ if !cipherSuites.ReadUint16(&suite) {
+ return false
+ }
+ if suite == scsvRenegotiation {
+ m.secureRenegotiationSupported = true
+ }
+ m.cipherSuites = append(m.cipherSuites, suite)
+ }
+
+ if !readUint8LengthPrefixed(&s, &m.compressionMethods) {
+ return false
+ }
+
+ if s.Empty() {
+ // ClientHello is optionally followed by extension data
+ return true
+ }
+
+ var extensions cryptobyte.String
+ if !s.ReadUint16LengthPrefixed(&extensions) || !s.Empty() {
+ return false
+ }
+
+ seenExts := make(map[uint16]bool)
+ for !extensions.Empty() {
+ var extension uint16
+ var extData cryptobyte.String
+ if !extensions.ReadUint16(&extension) ||
+ !extensions.ReadUint16LengthPrefixed(&extData) {
+ return false
+ }
+
+ if seenExts[extension] {
+ return false
+ }
+ seenExts[extension] = true
+
+ switch extension {
+ case extensionServerName:
+ // RFC 6066, Section 3
+ var nameList cryptobyte.String
+ if !extData.ReadUint16LengthPrefixed(&nameList) || nameList.Empty() {
+ return false
+ }
+ for !nameList.Empty() {
+ var nameType uint8
+ var serverName cryptobyte.String
+ if !nameList.ReadUint8(&nameType) ||
+ !nameList.ReadUint16LengthPrefixed(&serverName) ||
+ serverName.Empty() {
+ return false
+ }
+ if nameType != 0 {
+ continue
+ }
+ if len(m.serverName) != 0 {
+ // Multiple names of the same name_type are prohibited.
+ return false
+ }
+ m.serverName = string(serverName)
+ // An SNI value may not include a trailing dot.
+ if strings.HasSuffix(m.serverName, ".") {
+ return false
+ }
+ }
+ case extensionStatusRequest:
+ // RFC 4366, Section 3.6
+ var statusType uint8
+ var ignored cryptobyte.String
+ if !extData.ReadUint8(&statusType) ||
+ !extData.ReadUint16LengthPrefixed(&ignored) ||
+ !extData.ReadUint16LengthPrefixed(&ignored) {
+ return false
+ }
+ m.ocspStapling = statusType == statusTypeOCSP
+ case extensionSupportedCurves:
+ // RFC 4492, sections 5.1.1 and RFC 8446, Section 4.2.7
+ var curves cryptobyte.String
+ if !extData.ReadUint16LengthPrefixed(&curves) || curves.Empty() {
+ return false
+ }
+ for !curves.Empty() {
+ var curve uint16
+ if !curves.ReadUint16(&curve) {
+ return false
+ }
+ m.supportedCurves = append(m.supportedCurves, CurveID(curve))
+ }
+ case extensionSupportedPoints:
+ // RFC 4492, Section 5.1.2
+ if !readUint8LengthPrefixed(&extData, &m.supportedPoints) ||
+ len(m.supportedPoints) == 0 {
+ return false
+ }
+ case extensionSessionTicket:
+ // RFC 5077, Section 3.2
+ m.ticketSupported = true
+ extData.ReadBytes(&m.sessionTicket, len(extData))
+ case extensionSignatureAlgorithms:
+ // RFC 5246, Section 7.4.1.4.1
+ var sigAndAlgs cryptobyte.String
+ if !extData.ReadUint16LengthPrefixed(&sigAndAlgs) || sigAndAlgs.Empty() {
+ return false
+ }
+ for !sigAndAlgs.Empty() {
+ var sigAndAlg uint16
+ if !sigAndAlgs.ReadUint16(&sigAndAlg) {
+ return false
+ }
+ m.supportedSignatureAlgorithms = append(
+ m.supportedSignatureAlgorithms, SignatureScheme(sigAndAlg))
+ }
+ case extensionSignatureAlgorithmsCert:
+ // RFC 8446, Section 4.2.3
+ var sigAndAlgs cryptobyte.String
+ if !extData.ReadUint16LengthPrefixed(&sigAndAlgs) || sigAndAlgs.Empty() {
+ return false
+ }
+ for !sigAndAlgs.Empty() {
+ var sigAndAlg uint16
+ if !sigAndAlgs.ReadUint16(&sigAndAlg) {
+ return false
+ }
+ m.supportedSignatureAlgorithmsCert = append(
+ m.supportedSignatureAlgorithmsCert, SignatureScheme(sigAndAlg))
+ }
+ case extensionRenegotiationInfo:
+ // RFC 5746, Section 3.2
+ if !readUint8LengthPrefixed(&extData, &m.secureRenegotiation) {
+ return false
+ }
+ m.secureRenegotiationSupported = true
+ case extensionExtendedMasterSecret:
+ // RFC 7627
+ m.extendedMasterSecret = true
+ case extensionALPN:
+ // RFC 7301, Section 3.1
+ var protoList cryptobyte.String
+ if !extData.ReadUint16LengthPrefixed(&protoList) || protoList.Empty() {
+ return false
+ }
+ for !protoList.Empty() {
+ var proto cryptobyte.String
+ if !protoList.ReadUint8LengthPrefixed(&proto) || proto.Empty() {
+ return false
+ }
+ m.alpnProtocols = append(m.alpnProtocols, string(proto))
+ }
+ case extensionSCT:
+ // RFC 6962, Section 3.3.1
+ m.scts = true
+ case extensionSupportedVersions:
+ // RFC 8446, Section 4.2.1
+ var versList cryptobyte.String
+ if !extData.ReadUint8LengthPrefixed(&versList) || versList.Empty() {
+ return false
+ }
+ for !versList.Empty() {
+ var vers uint16
+ if !versList.ReadUint16(&vers) {
+ return false
+ }
+ m.supportedVersions = append(m.supportedVersions, vers)
+ }
+ case extensionCookie:
+ // RFC 8446, Section 4.2.2
+ if !readUint16LengthPrefixed(&extData, &m.cookie) ||
+ len(m.cookie) == 0 {
+ return false
+ }
+ case extensionKeyShare:
+ // RFC 8446, Section 4.2.8
+ var clientShares cryptobyte.String
+ if !extData.ReadUint16LengthPrefixed(&clientShares) {
+ return false
+ }
+ for !clientShares.Empty() {
+ var ks keyShare
+ if !clientShares.ReadUint16((*uint16)(&ks.group)) ||
+ !readUint16LengthPrefixed(&clientShares, &ks.data) ||
+ len(ks.data) == 0 {
+ return false
+ }
+ m.keyShares = append(m.keyShares, ks)
+ }
+ case extensionEarlyData:
+ // RFC 8446, Section 4.2.10
+ m.earlyData = true
+ case extensionPSKModes:
+ // RFC 8446, Section 4.2.9
+ if !readUint8LengthPrefixed(&extData, &m.pskModes) {
+ return false
+ }
+ case extensionQUICTransportParameters:
+ m.quicTransportParameters = make([]byte, len(extData))
+ if !extData.CopyBytes(m.quicTransportParameters) {
+ return false
+ }
+ case extensionPreSharedKey:
+ // RFC 8446, Section 4.2.11
+ if !extensions.Empty() {
+ return false // pre_shared_key must be the last extension
+ }
+ var identities cryptobyte.String
+ if !extData.ReadUint16LengthPrefixed(&identities) || identities.Empty() {
+ return false
+ }
+ for !identities.Empty() {
+ var psk pskIdentity
+ if !readUint16LengthPrefixed(&identities, &psk.label) ||
+ !identities.ReadUint32(&psk.obfuscatedTicketAge) ||
+ len(psk.label) == 0 {
+ return false
+ }
+ m.pskIdentities = append(m.pskIdentities, psk)
+ }
+ var binders cryptobyte.String
+ if !extData.ReadUint16LengthPrefixed(&binders) || binders.Empty() {
+ return false
+ }
+ for !binders.Empty() {
+ var binder []byte
+ if !readUint8LengthPrefixed(&binders, &binder) ||
+ len(binder) == 0 {
+ return false
+ }
+ m.pskBinders = append(m.pskBinders, binder)
+ }
+ default:
+ // Ignore unknown extensions.
+ continue
+ }
+
+ if !extData.Empty() {
+ return false
+ }
+ }
+
+ return true
+}
+
+type serverHelloMsg struct {
+ raw []byte
+ vers uint16
+ random []byte
+ sessionId []byte
+ cipherSuite uint16
+ compressionMethod uint8
+ ocspStapling bool
+ ticketSupported bool
+ secureRenegotiationSupported bool
+ secureRenegotiation []byte
+ extendedMasterSecret bool
+ alpnProtocol string
+ scts [][]byte
+ supportedVersion uint16
+ serverShare keyShare
+ selectedIdentityPresent bool
+ selectedIdentity uint16
+ supportedPoints []uint8
+
+ // HelloRetryRequest extensions
+ cookie []byte
+ selectedGroup CurveID
+}
+
+func (m *serverHelloMsg) marshal() ([]byte, error) {
+ if m.raw != nil {
+ return m.raw, nil
+ }
+
+ var exts cryptobyte.Builder
+ if m.ocspStapling {
+ exts.AddUint16(extensionStatusRequest)
+ exts.AddUint16(0) // empty extension_data
+ }
+ if m.ticketSupported {
+ exts.AddUint16(extensionSessionTicket)
+ exts.AddUint16(0) // empty extension_data
+ }
+ if m.secureRenegotiationSupported {
+ exts.AddUint16(extensionRenegotiationInfo)
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddUint8LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddBytes(m.secureRenegotiation)
+ })
+ })
+ }
+ if m.extendedMasterSecret {
+ exts.AddUint16(extensionExtendedMasterSecret)
+ exts.AddUint16(0) // empty extension_data
+ }
+ if len(m.alpnProtocol) > 0 {
+ exts.AddUint16(extensionALPN)
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddUint8LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddBytes([]byte(m.alpnProtocol))
+ })
+ })
+ })
+ }
+ if len(m.scts) > 0 {
+ exts.AddUint16(extensionSCT)
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ for _, sct := range m.scts {
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddBytes(sct)
+ })
+ }
+ })
+ })
+ }
+ if m.supportedVersion != 0 {
+ exts.AddUint16(extensionSupportedVersions)
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddUint16(m.supportedVersion)
+ })
+ }
+ if m.serverShare.group != 0 {
+ exts.AddUint16(extensionKeyShare)
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddUint16(uint16(m.serverShare.group))
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddBytes(m.serverShare.data)
+ })
+ })
+ }
+ if m.selectedIdentityPresent {
+ exts.AddUint16(extensionPreSharedKey)
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddUint16(m.selectedIdentity)
+ })
+ }
+
+ if len(m.cookie) > 0 {
+ exts.AddUint16(extensionCookie)
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddBytes(m.cookie)
+ })
+ })
+ }
+ if m.selectedGroup != 0 {
+ exts.AddUint16(extensionKeyShare)
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddUint16(uint16(m.selectedGroup))
+ })
+ }
+ if len(m.supportedPoints) > 0 {
+ exts.AddUint16(extensionSupportedPoints)
+ exts.AddUint16LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddUint8LengthPrefixed(func(exts *cryptobyte.Builder) {
+ exts.AddBytes(m.supportedPoints)
+ })
+ })
+ }
+
+ extBytes, err := exts.Bytes()
+ if err != nil {
+ return nil, err
+ }
+
+ var b cryptobyte.Builder
+ b.AddUint8(typeServerHello)
+ b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddUint16(m.vers)
+ addBytesWithLength(b, m.random, 32)
+ b.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddBytes(m.sessionId)
+ })
+ b.AddUint16(m.cipherSuite)
+ b.AddUint8(m.compressionMethod)
+
+ if len(extBytes) > 0 {
+ b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddBytes(extBytes)
+ })
+ }
+ })
+
+ m.raw, err = b.Bytes()
+ return m.raw, err
+}
+
+func (m *serverHelloMsg) unmarshal(data []byte) bool {
+ *m = serverHelloMsg{raw: data}
+ s := cryptobyte.String(data)
+
+ if !s.Skip(4) || // message type and uint24 length field
+ !s.ReadUint16(&m.vers) || !s.ReadBytes(&m.random, 32) ||
+ !readUint8LengthPrefixed(&s, &m.sessionId) ||
+ !s.ReadUint16(&m.cipherSuite) ||
+ !s.ReadUint8(&m.compressionMethod) {
+ return false
+ }
+
+ if s.Empty() {
+ // ServerHello is optionally followed by extension data
+ return true
+ }
+
+ var extensions cryptobyte.String
+ if !s.ReadUint16LengthPrefixed(&extensions) || !s.Empty() {
+ return false
+ }
+
+ seenExts := make(map[uint16]bool)
+ for !extensions.Empty() {
+ var extension uint16
+ var extData cryptobyte.String
+ if !extensions.ReadUint16(&extension) ||
+ !extensions.ReadUint16LengthPrefixed(&extData) {
+ return false
+ }
+
+ if seenExts[extension] {
+ return false
+ }
+ seenExts[extension] = true
+
+ switch extension {
+ case extensionStatusRequest:
+ m.ocspStapling = true
+ case extensionSessionTicket:
+ m.ticketSupported = true
+ case extensionRenegotiationInfo:
+ if !readUint8LengthPrefixed(&extData, &m.secureRenegotiation) {
+ return false
+ }
+ m.secureRenegotiationSupported = true
+ case extensionExtendedMasterSecret:
+ m.extendedMasterSecret = true
+ case extensionALPN:
+ var protoList cryptobyte.String
+ if !extData.ReadUint16LengthPrefixed(&protoList) || protoList.Empty() {
+ return false
+ }
+ var proto cryptobyte.String
+ if !protoList.ReadUint8LengthPrefixed(&proto) ||
+ proto.Empty() || !protoList.Empty() {
+ return false
+ }
+ m.alpnProtocol = string(proto)
+ case extensionSCT:
+ var sctList cryptobyte.String
+ if !extData.ReadUint16LengthPrefixed(&sctList) || sctList.Empty() {
+ return false
+ }
+ for !sctList.Empty() {
+ var sct []byte
+ if !readUint16LengthPrefixed(&sctList, &sct) ||
+ len(sct) == 0 {
+ return false
+ }
+ m.scts = append(m.scts, sct)
+ }
+ case extensionSupportedVersions:
+ if !extData.ReadUint16(&m.supportedVersion) {
+ return false
+ }
+ case extensionCookie:
+ if !readUint16LengthPrefixed(&extData, &m.cookie) ||
+ len(m.cookie) == 0 {
+ return false
+ }
+ case extensionKeyShare:
+ // This extension has different formats in SH and HRR, accept either
+ // and let the handshake logic decide. See RFC 8446, Section 4.2.8.
+ if len(extData) == 2 {
+ if !extData.ReadUint16((*uint16)(&m.selectedGroup)) {
+ return false
+ }
+ } else {
+ if !extData.ReadUint16((*uint16)(&m.serverShare.group)) ||
+ !readUint16LengthPrefixed(&extData, &m.serverShare.data) {
+ return false
+ }
+ }
+ case extensionPreSharedKey:
+ m.selectedIdentityPresent = true
+ if !extData.ReadUint16(&m.selectedIdentity) {
+ return false
+ }
+ case extensionSupportedPoints:
+ // RFC 4492, Section 5.1.2
+ if !readUint8LengthPrefixed(&extData, &m.supportedPoints) ||
+ len(m.supportedPoints) == 0 {
+ return false
+ }
+ default:
+ // Ignore unknown extensions.
+ continue
+ }
+
+ if !extData.Empty() {
+ return false
+ }
+ }
+
+ return true
+}
+
+type encryptedExtensionsMsg struct {
+ raw []byte
+ alpnProtocol string
+ quicTransportParameters []byte
+ earlyData bool
+}
+
+func (m *encryptedExtensionsMsg) marshal() ([]byte, error) {
+ if m.raw != nil {
+ return m.raw, nil
+ }
+
+ var b cryptobyte.Builder
+ b.AddUint8(typeEncryptedExtensions)
+ b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
+ if len(m.alpnProtocol) > 0 {
+ b.AddUint16(extensionALPN)
+ b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddBytes([]byte(m.alpnProtocol))
+ })
+ })
+ })
+ }
+ if m.quicTransportParameters != nil { // marshal zero-length parameters when present
+ // draft-ietf-quic-tls-32, Section 8.2
+ b.AddUint16(extensionQUICTransportParameters)
+ b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddBytes(m.quicTransportParameters)
+ })
+ }
+ if m.earlyData {
+ // RFC 8446, Section 4.2.10
+ b.AddUint16(extensionEarlyData)
+ b.AddUint16(0) // empty extension_data
+ }
+ })
+ })
+
+ var err error
+ m.raw, err = b.Bytes()
+ return m.raw, err
+}
+
+func (m *encryptedExtensionsMsg) unmarshal(data []byte) bool {
+ *m = encryptedExtensionsMsg{raw: data}
+ s := cryptobyte.String(data)
+
+ var extensions cryptobyte.String
+ if !s.Skip(4) || // message type and uint24 length field
+ !s.ReadUint16LengthPrefixed(&extensions) || !s.Empty() {
+ return false
+ }
+
+ for !extensions.Empty() {
+ var extension uint16
+ var extData cryptobyte.String
+ if !extensions.ReadUint16(&extension) ||
+ !extensions.ReadUint16LengthPrefixed(&extData) {
+ return false
+ }
+
+ switch extension {
+ case extensionALPN:
+ var protoList cryptobyte.String
+ if !extData.ReadUint16LengthPrefixed(&protoList) || protoList.Empty() {
+ return false
+ }
+ var proto cryptobyte.String
+ if !protoList.ReadUint8LengthPrefixed(&proto) ||
+ proto.Empty() || !protoList.Empty() {
+ return false
+ }
+ m.alpnProtocol = string(proto)
+ case extensionQUICTransportParameters:
+ m.quicTransportParameters = make([]byte, len(extData))
+ if !extData.CopyBytes(m.quicTransportParameters) {
+ return false
+ }
+ case extensionEarlyData:
+ // RFC 8446, Section 4.2.10
+ m.earlyData = true
+ default:
+ // Ignore unknown extensions.
+ continue
+ }
+
+ if !extData.Empty() {
+ return false
+ }
+ }
+
+ return true
+}
+
+type endOfEarlyDataMsg struct{}
+
+func (m *endOfEarlyDataMsg) marshal() ([]byte, error) {
+ x := make([]byte, 4)
+ x[0] = typeEndOfEarlyData
+ return x, nil
+}
+
+func (m *endOfEarlyDataMsg) unmarshal(data []byte) bool {
+ return len(data) == 4
+}
+
+type keyUpdateMsg struct {
+ raw []byte
+ updateRequested bool
+}
+
+func (m *keyUpdateMsg) marshal() ([]byte, error) {
+ if m.raw != nil {
+ return m.raw, nil
+ }
+
+ var b cryptobyte.Builder
+ b.AddUint8(typeKeyUpdate)
+ b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
+ if m.updateRequested {
+ b.AddUint8(1)
+ } else {
+ b.AddUint8(0)
+ }
+ })
+
+ var err error
+ m.raw, err = b.Bytes()
+ return m.raw, err
+}
+
+func (m *keyUpdateMsg) unmarshal(data []byte) bool {
+ m.raw = data
+ s := cryptobyte.String(data)
+
+ var updateRequested uint8
+ if !s.Skip(4) || // message type and uint24 length field
+ !s.ReadUint8(&updateRequested) || !s.Empty() {
+ return false
+ }
+ switch updateRequested {
+ case 0:
+ m.updateRequested = false
+ case 1:
+ m.updateRequested = true
+ default:
+ return false
+ }
+ return true
+}
+
+type newSessionTicketMsgTLS13 struct {
+ raw []byte
+ lifetime uint32
+ ageAdd uint32
+ nonce []byte
+ label []byte
+ maxEarlyData uint32
+}
+
+func (m *newSessionTicketMsgTLS13) marshal() ([]byte, error) {
+ if m.raw != nil {
+ return m.raw, nil
+ }
+
+ var b cryptobyte.Builder
+ b.AddUint8(typeNewSessionTicket)
+ b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddUint32(m.lifetime)
+ b.AddUint32(m.ageAdd)
+ b.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddBytes(m.nonce)
+ })
+ b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddBytes(m.label)
+ })
+
+ b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
+ if m.maxEarlyData > 0 {
+ b.AddUint16(extensionEarlyData)
+ b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddUint32(m.maxEarlyData)
+ })
+ }
+ })
+ })
+
+ var err error
+ m.raw, err = b.Bytes()
+ return m.raw, err
+}
+
+func (m *newSessionTicketMsgTLS13) unmarshal(data []byte) bool {
+ *m = newSessionTicketMsgTLS13{raw: data}
+ s := cryptobyte.String(data)
+
+ var extensions cryptobyte.String
+ if !s.Skip(4) || // message type and uint24 length field
+ !s.ReadUint32(&m.lifetime) ||
+ !s.ReadUint32(&m.ageAdd) ||
+ !readUint8LengthPrefixed(&s, &m.nonce) ||
+ !readUint16LengthPrefixed(&s, &m.label) ||
+ !s.ReadUint16LengthPrefixed(&extensions) ||
+ !s.Empty() {
+ return false
+ }
+
+ for !extensions.Empty() {
+ var extension uint16
+ var extData cryptobyte.String
+ if !extensions.ReadUint16(&extension) ||
+ !extensions.ReadUint16LengthPrefixed(&extData) {
+ return false
+ }
+
+ switch extension {
+ case extensionEarlyData:
+ if !extData.ReadUint32(&m.maxEarlyData) {
+ return false
+ }
+ default:
+ // Ignore unknown extensions.
+ continue
+ }
+
+ if !extData.Empty() {
+ return false
+ }
+ }
+
+ return true
+}
+
+type certificateRequestMsgTLS13 struct {
+ raw []byte
+ ocspStapling bool
+ scts bool
+ supportedSignatureAlgorithms []SignatureScheme
+ supportedSignatureAlgorithmsCert []SignatureScheme
+ certificateAuthorities [][]byte
+}
+
+func (m *certificateRequestMsgTLS13) marshal() ([]byte, error) {
+ if m.raw != nil {
+ return m.raw, nil
+ }
+
+ var b cryptobyte.Builder
+ b.AddUint8(typeCertificateRequest)
+ b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
+ // certificate_request_context (SHALL be zero length unless used for
+ // post-handshake authentication)
+ b.AddUint8(0)
+
+ b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
+ if m.ocspStapling {
+ b.AddUint16(extensionStatusRequest)
+ b.AddUint16(0) // empty extension_data
+ }
+ if m.scts {
+ // RFC 8446, Section 4.4.2.1 makes no mention of
+ // signed_certificate_timestamp in CertificateRequest, but
+ // "Extensions in the Certificate message from the client MUST
+ // correspond to extensions in the CertificateRequest message
+ // from the server." and it appears in the table in Section 4.2.
+ b.AddUint16(extensionSCT)
+ b.AddUint16(0) // empty extension_data
+ }
+ if len(m.supportedSignatureAlgorithms) > 0 {
+ b.AddUint16(extensionSignatureAlgorithms)
+ b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
+ for _, sigAlgo := range m.supportedSignatureAlgorithms {
+ b.AddUint16(uint16(sigAlgo))
+ }
+ })
+ })
+ }
+ if len(m.supportedSignatureAlgorithmsCert) > 0 {
+ b.AddUint16(extensionSignatureAlgorithmsCert)
+ b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
+ for _, sigAlgo := range m.supportedSignatureAlgorithmsCert {
+ b.AddUint16(uint16(sigAlgo))
+ }
+ })
+ })
+ }
+ if len(m.certificateAuthorities) > 0 {
+ b.AddUint16(extensionCertificateAuthorities)
+ b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
+ for _, ca := range m.certificateAuthorities {
+ b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddBytes(ca)
+ })
+ }
+ })
+ })
+ }
+ })
+ })
+
+ var err error
+ m.raw, err = b.Bytes()
+ return m.raw, err
+}
+
+func (m *certificateRequestMsgTLS13) unmarshal(data []byte) bool {
+ *m = certificateRequestMsgTLS13{raw: data}
+ s := cryptobyte.String(data)
+
+ var context, extensions cryptobyte.String
+ if !s.Skip(4) || // message type and uint24 length field
+ !s.ReadUint8LengthPrefixed(&context) || !context.Empty() ||
+ !s.ReadUint16LengthPrefixed(&extensions) ||
+ !s.Empty() {
+ return false
+ }
+
+ for !extensions.Empty() {
+ var extension uint16
+ var extData cryptobyte.String
+ if !extensions.ReadUint16(&extension) ||
+ !extensions.ReadUint16LengthPrefixed(&extData) {
+ return false
+ }
+
+ switch extension {
+ case extensionStatusRequest:
+ m.ocspStapling = true
+ case extensionSCT:
+ m.scts = true
+ case extensionSignatureAlgorithms:
+ var sigAndAlgs cryptobyte.String
+ if !extData.ReadUint16LengthPrefixed(&sigAndAlgs) || sigAndAlgs.Empty() {
+ return false
+ }
+ for !sigAndAlgs.Empty() {
+ var sigAndAlg uint16
+ if !sigAndAlgs.ReadUint16(&sigAndAlg) {
+ return false
+ }
+ m.supportedSignatureAlgorithms = append(
+ m.supportedSignatureAlgorithms, SignatureScheme(sigAndAlg))
+ }
+ case extensionSignatureAlgorithmsCert:
+ var sigAndAlgs cryptobyte.String
+ if !extData.ReadUint16LengthPrefixed(&sigAndAlgs) || sigAndAlgs.Empty() {
+ return false
+ }
+ for !sigAndAlgs.Empty() {
+ var sigAndAlg uint16
+ if !sigAndAlgs.ReadUint16(&sigAndAlg) {
+ return false
+ }
+ m.supportedSignatureAlgorithmsCert = append(
+ m.supportedSignatureAlgorithmsCert, SignatureScheme(sigAndAlg))
+ }
+ case extensionCertificateAuthorities:
+ var auths cryptobyte.String
+ if !extData.ReadUint16LengthPrefixed(&auths) || auths.Empty() {
+ return false
+ }
+ for !auths.Empty() {
+ var ca []byte
+ if !readUint16LengthPrefixed(&auths, &ca) || len(ca) == 0 {
+ return false
+ }
+ m.certificateAuthorities = append(m.certificateAuthorities, ca)
+ }
+ default:
+ // Ignore unknown extensions.
+ continue
+ }
+
+ if !extData.Empty() {
+ return false
+ }
+ }
+
+ return true
+}
+
+type certificateMsg struct {
+ raw []byte
+ certificates [][]byte
+}
+
+func (m *certificateMsg) marshal() ([]byte, error) {
+ if m.raw != nil {
+ return m.raw, nil
+ }
+
+ var i int
+ for _, slice := range m.certificates {
+ i += len(slice)
+ }
+
+ length := 3 + 3*len(m.certificates) + i
+ x := make([]byte, 4+length)
+ x[0] = typeCertificate
+ x[1] = uint8(length >> 16)
+ x[2] = uint8(length >> 8)
+ x[3] = uint8(length)
+
+ certificateOctets := length - 3
+ x[4] = uint8(certificateOctets >> 16)
+ x[5] = uint8(certificateOctets >> 8)
+ x[6] = uint8(certificateOctets)
+
+ y := x[7:]
+ for _, slice := range m.certificates {
+ y[0] = uint8(len(slice) >> 16)
+ y[1] = uint8(len(slice) >> 8)
+ y[2] = uint8(len(slice))
+ copy(y[3:], slice)
+ y = y[3+len(slice):]
+ }
+
+ m.raw = x
+ return m.raw, nil
+}
+
+func (m *certificateMsg) unmarshal(data []byte) bool {
+ if len(data) < 7 {
+ return false
+ }
+
+ m.raw = data
+ certsLen := uint32(data[4])<<16 | uint32(data[5])<<8 | uint32(data[6])
+ if uint32(len(data)) != certsLen+7 {
+ return false
+ }
+
+ numCerts := 0
+ d := data[7:]
+ for certsLen > 0 {
+ if len(d) < 4 {
+ return false
+ }
+ certLen := uint32(d[0])<<16 | uint32(d[1])<<8 | uint32(d[2])
+ if uint32(len(d)) < 3+certLen {
+ return false
+ }
+ d = d[3+certLen:]
+ certsLen -= 3 + certLen
+ numCerts++
+ }
+
+ m.certificates = make([][]byte, numCerts)
+ d = data[7:]
+ for i := 0; i < numCerts; i++ {
+ certLen := uint32(d[0])<<16 | uint32(d[1])<<8 | uint32(d[2])
+ m.certificates[i] = d[3 : 3+certLen]
+ d = d[3+certLen:]
+ }
+
+ return true
+}
+
+type certificateMsgTLS13 struct {
+ raw []byte
+ certificate Certificate
+ ocspStapling bool
+ scts bool
+}
+
+func (m *certificateMsgTLS13) marshal() ([]byte, error) {
+ if m.raw != nil {
+ return m.raw, nil
+ }
+
+ var b cryptobyte.Builder
+ b.AddUint8(typeCertificate)
+ b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddUint8(0) // certificate_request_context
+
+ certificate := m.certificate
+ if !m.ocspStapling {
+ certificate.OCSPStaple = nil
+ }
+ if !m.scts {
+ certificate.SignedCertificateTimestamps = nil
+ }
+ marshalCertificate(b, certificate)
+ })
+
+ var err error
+ m.raw, err = b.Bytes()
+ return m.raw, err
+}
+
+func marshalCertificate(b *cryptobyte.Builder, certificate Certificate) {
+ b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
+ for i, cert := range certificate.Certificate {
+ b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddBytes(cert)
+ })
+ b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
+ if i > 0 {
+ // This library only supports OCSP and SCT for leaf certificates.
+ return
+ }
+ if certificate.OCSPStaple != nil {
+ b.AddUint16(extensionStatusRequest)
+ b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddUint8(statusTypeOCSP)
+ b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddBytes(certificate.OCSPStaple)
+ })
+ })
+ }
+ if certificate.SignedCertificateTimestamps != nil {
+ b.AddUint16(extensionSCT)
+ b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
+ for _, sct := range certificate.SignedCertificateTimestamps {
+ b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddBytes(sct)
+ })
+ }
+ })
+ })
+ }
+ })
+ }
+ })
+}
+
+func (m *certificateMsgTLS13) unmarshal(data []byte) bool {
+ *m = certificateMsgTLS13{raw: data}
+ s := cryptobyte.String(data)
+
+ var context cryptobyte.String
+ if !s.Skip(4) || // message type and uint24 length field
+ !s.ReadUint8LengthPrefixed(&context) || !context.Empty() ||
+ !unmarshalCertificate(&s, &m.certificate) ||
+ !s.Empty() {
+ return false
+ }
+
+ m.scts = m.certificate.SignedCertificateTimestamps != nil
+ m.ocspStapling = m.certificate.OCSPStaple != nil
+
+ return true
+}
+
+func unmarshalCertificate(s *cryptobyte.String, certificate *Certificate) bool {
+ var certList cryptobyte.String
+ if !s.ReadUint24LengthPrefixed(&certList) {
+ return false
+ }
+ for !certList.Empty() {
+ var cert []byte
+ var extensions cryptobyte.String
+ if !readUint24LengthPrefixed(&certList, &cert) ||
+ !certList.ReadUint16LengthPrefixed(&extensions) {
+ return false
+ }
+ certificate.Certificate = append(certificate.Certificate, cert)
+ for !extensions.Empty() {
+ var extension uint16
+ var extData cryptobyte.String
+ if !extensions.ReadUint16(&extension) ||
+ !extensions.ReadUint16LengthPrefixed(&extData) {
+ return false
+ }
+ if len(certificate.Certificate) > 1 {
+ // This library only supports OCSP and SCT for leaf certificates.
+ continue
+ }
+
+ switch extension {
+ case extensionStatusRequest:
+ var statusType uint8
+ if !extData.ReadUint8(&statusType) || statusType != statusTypeOCSP ||
+ !readUint24LengthPrefixed(&extData, &certificate.OCSPStaple) ||
+ len(certificate.OCSPStaple) == 0 {
+ return false
+ }
+ case extensionSCT:
+ var sctList cryptobyte.String
+ if !extData.ReadUint16LengthPrefixed(&sctList) || sctList.Empty() {
+ return false
+ }
+ for !sctList.Empty() {
+ var sct []byte
+ if !readUint16LengthPrefixed(&sctList, &sct) ||
+ len(sct) == 0 {
+ return false
+ }
+ certificate.SignedCertificateTimestamps = append(
+ certificate.SignedCertificateTimestamps, sct)
+ }
+ default:
+ // Ignore unknown extensions.
+ continue
+ }
+
+ if !extData.Empty() {
+ return false
+ }
+ }
+ }
+ return true
+}
+
+type serverKeyExchangeMsg struct {
+ raw []byte
+ key []byte
+}
+
+func (m *serverKeyExchangeMsg) marshal() ([]byte, error) {
+ if m.raw != nil {
+ return m.raw, nil
+ }
+ length := len(m.key)
+ x := make([]byte, length+4)
+ x[0] = typeServerKeyExchange
+ x[1] = uint8(length >> 16)
+ x[2] = uint8(length >> 8)
+ x[3] = uint8(length)
+ copy(x[4:], m.key)
+
+ m.raw = x
+ return x, nil
+}
+
+func (m *serverKeyExchangeMsg) unmarshal(data []byte) bool {
+ m.raw = data
+ if len(data) < 4 {
+ return false
+ }
+ m.key = data[4:]
+ return true
+}
+
+type certificateStatusMsg struct {
+ raw []byte
+ response []byte
+}
+
+func (m *certificateStatusMsg) marshal() ([]byte, error) {
+ if m.raw != nil {
+ return m.raw, nil
+ }
+
+ var b cryptobyte.Builder
+ b.AddUint8(typeCertificateStatus)
+ b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddUint8(statusTypeOCSP)
+ b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddBytes(m.response)
+ })
+ })
+
+ var err error
+ m.raw, err = b.Bytes()
+ return m.raw, err
+}
+
+func (m *certificateStatusMsg) unmarshal(data []byte) bool {
+ m.raw = data
+ s := cryptobyte.String(data)
+
+ var statusType uint8
+ if !s.Skip(4) || // message type and uint24 length field
+ !s.ReadUint8(&statusType) || statusType != statusTypeOCSP ||
+ !readUint24LengthPrefixed(&s, &m.response) ||
+ len(m.response) == 0 || !s.Empty() {
+ return false
+ }
+ return true
+}
+
+type serverHelloDoneMsg struct{}
+
+func (m *serverHelloDoneMsg) marshal() ([]byte, error) {
+ x := make([]byte, 4)
+ x[0] = typeServerHelloDone
+ return x, nil
+}
+
+func (m *serverHelloDoneMsg) unmarshal(data []byte) bool {
+ return len(data) == 4
+}
+
+type clientKeyExchangeMsg struct {
+ raw []byte
+ ciphertext []byte
+}
+
+func (m *clientKeyExchangeMsg) marshal() ([]byte, error) {
+ if m.raw != nil {
+ return m.raw, nil
+ }
+ length := len(m.ciphertext)
+ x := make([]byte, length+4)
+ x[0] = typeClientKeyExchange
+ x[1] = uint8(length >> 16)
+ x[2] = uint8(length >> 8)
+ x[3] = uint8(length)
+ copy(x[4:], m.ciphertext)
+
+ m.raw = x
+ return x, nil
+}
+
+func (m *clientKeyExchangeMsg) unmarshal(data []byte) bool {
+ m.raw = data
+ if len(data) < 4 {
+ return false
+ }
+ l := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
+ if l != len(data)-4 {
+ return false
+ }
+ m.ciphertext = data[4:]
+ return true
+}
+
+type finishedMsg struct {
+ raw []byte
+ verifyData []byte
+}
+
+func (m *finishedMsg) marshal() ([]byte, error) {
+ if m.raw != nil {
+ return m.raw, nil
+ }
+
+ var b cryptobyte.Builder
+ b.AddUint8(typeFinished)
+ b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddBytes(m.verifyData)
+ })
+
+ var err error
+ m.raw, err = b.Bytes()
+ return m.raw, err
+}
+
+func (m *finishedMsg) unmarshal(data []byte) bool {
+ m.raw = data
+ s := cryptobyte.String(data)
+ return s.Skip(1) &&
+ readUint24LengthPrefixed(&s, &m.verifyData) &&
+ s.Empty()
+}
+
+type certificateRequestMsg struct {
+ raw []byte
+ // hasSignatureAlgorithm indicates whether this message includes a list of
+ // supported signature algorithms. This change was introduced with TLS 1.2.
+ hasSignatureAlgorithm bool
+
+ certificateTypes []byte
+ supportedSignatureAlgorithms []SignatureScheme
+ certificateAuthorities [][]byte
+}
+
+func (m *certificateRequestMsg) marshal() ([]byte, error) {
+ if m.raw != nil {
+ return m.raw, nil
+ }
+
+ // See RFC 4346, Section 7.4.4.
+ length := 1 + len(m.certificateTypes) + 2
+ casLength := 0
+ for _, ca := range m.certificateAuthorities {
+ casLength += 2 + len(ca)
+ }
+ length += casLength
+
+ if m.hasSignatureAlgorithm {
+ length += 2 + 2*len(m.supportedSignatureAlgorithms)
+ }
+
+ x := make([]byte, 4+length)
+ x[0] = typeCertificateRequest
+ x[1] = uint8(length >> 16)
+ x[2] = uint8(length >> 8)
+ x[3] = uint8(length)
+
+ x[4] = uint8(len(m.certificateTypes))
+
+ copy(x[5:], m.certificateTypes)
+ y := x[5+len(m.certificateTypes):]
+
+ if m.hasSignatureAlgorithm {
+ n := len(m.supportedSignatureAlgorithms) * 2
+ y[0] = uint8(n >> 8)
+ y[1] = uint8(n)
+ y = y[2:]
+ for _, sigAlgo := range m.supportedSignatureAlgorithms {
+ y[0] = uint8(sigAlgo >> 8)
+ y[1] = uint8(sigAlgo)
+ y = y[2:]
+ }
+ }
+
+ y[0] = uint8(casLength >> 8)
+ y[1] = uint8(casLength)
+ y = y[2:]
+ for _, ca := range m.certificateAuthorities {
+ y[0] = uint8(len(ca) >> 8)
+ y[1] = uint8(len(ca))
+ y = y[2:]
+ copy(y, ca)
+ y = y[len(ca):]
+ }
+
+ m.raw = x
+ return m.raw, nil
+}
+
+func (m *certificateRequestMsg) unmarshal(data []byte) bool {
+ m.raw = data
+
+ if len(data) < 5 {
+ return false
+ }
+
+ length := uint32(data[1])<<16 | uint32(data[2])<<8 | uint32(data[3])
+ if uint32(len(data))-4 != length {
+ return false
+ }
+
+ numCertTypes := int(data[4])
+ data = data[5:]
+ if numCertTypes == 0 || len(data) <= numCertTypes {
+ return false
+ }
+
+ m.certificateTypes = make([]byte, numCertTypes)
+ if copy(m.certificateTypes, data) != numCertTypes {
+ return false
+ }
+
+ data = data[numCertTypes:]
+
+ if m.hasSignatureAlgorithm {
+ if len(data) < 2 {
+ return false
+ }
+ sigAndHashLen := uint16(data[0])<<8 | uint16(data[1])
+ data = data[2:]
+ if sigAndHashLen&1 != 0 {
+ return false
+ }
+ if len(data) < int(sigAndHashLen) {
+ return false
+ }
+ numSigAlgos := sigAndHashLen / 2
+ m.supportedSignatureAlgorithms = make([]SignatureScheme, numSigAlgos)
+ for i := range m.supportedSignatureAlgorithms {
+ m.supportedSignatureAlgorithms[i] = SignatureScheme(data[0])<<8 | SignatureScheme(data[1])
+ data = data[2:]
+ }
+ }
+
+ if len(data) < 2 {
+ return false
+ }
+ casLength := uint16(data[0])<<8 | uint16(data[1])
+ data = data[2:]
+ if len(data) < int(casLength) {
+ return false
+ }
+ cas := make([]byte, casLength)
+ copy(cas, data)
+ data = data[casLength:]
+
+ m.certificateAuthorities = nil
+ for len(cas) > 0 {
+ if len(cas) < 2 {
+ return false
+ }
+ caLen := uint16(cas[0])<<8 | uint16(cas[1])
+ cas = cas[2:]
+
+ if len(cas) < int(caLen) {
+ return false
+ }
+
+ m.certificateAuthorities = append(m.certificateAuthorities, cas[:caLen])
+ cas = cas[caLen:]
+ }
+
+ return len(data) == 0
+}
+
+type certificateVerifyMsg struct {
+ raw []byte
+ hasSignatureAlgorithm bool // format change introduced in TLS 1.2
+ signatureAlgorithm SignatureScheme
+ signature []byte
+}
+
+func (m *certificateVerifyMsg) marshal() ([]byte, error) {
+ if m.raw != nil {
+ return m.raw, nil
+ }
+
+ var b cryptobyte.Builder
+ b.AddUint8(typeCertificateVerify)
+ b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
+ if m.hasSignatureAlgorithm {
+ b.AddUint16(uint16(m.signatureAlgorithm))
+ }
+ b.AddUint16LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddBytes(m.signature)
+ })
+ })
+
+ var err error
+ m.raw, err = b.Bytes()
+ return m.raw, err
+}
+
+func (m *certificateVerifyMsg) unmarshal(data []byte) bool {
+ m.raw = data
+ s := cryptobyte.String(data)
+
+ if !s.Skip(4) { // message type and uint24 length field
+ return false
+ }
+ if m.hasSignatureAlgorithm {
+ if !s.ReadUint16((*uint16)(&m.signatureAlgorithm)) {
+ return false
+ }
+ }
+ return readUint16LengthPrefixed(&s, &m.signature) && s.Empty()
+}
+
+type newSessionTicketMsg struct {
+ raw []byte
+ ticket []byte
+}
+
+func (m *newSessionTicketMsg) marshal() ([]byte, error) {
+ if m.raw != nil {
+ return m.raw, nil
+ }
+
+ // See RFC 5077, Section 3.3.
+ ticketLen := len(m.ticket)
+ length := 2 + 4 + ticketLen
+ x := make([]byte, 4+length)
+ x[0] = typeNewSessionTicket
+ x[1] = uint8(length >> 16)
+ x[2] = uint8(length >> 8)
+ x[3] = uint8(length)
+ x[8] = uint8(ticketLen >> 8)
+ x[9] = uint8(ticketLen)
+ copy(x[10:], m.ticket)
+
+ m.raw = x
+
+ return m.raw, nil
+}
+
+func (m *newSessionTicketMsg) unmarshal(data []byte) bool {
+ m.raw = data
+
+ if len(data) < 10 {
+ return false
+ }
+
+ length := uint32(data[1])<<16 | uint32(data[2])<<8 | uint32(data[3])
+ if uint32(len(data))-4 != length {
+ return false
+ }
+
+ ticketLen := int(data[8])<<8 + int(data[9])
+ if len(data)-10 != ticketLen {
+ return false
+ }
+
+ m.ticket = data[10:]
+
+ return true
+}
+
+type helloRequestMsg struct {
+}
+
+func (*helloRequestMsg) marshal() ([]byte, error) {
+ return []byte{typeHelloRequest, 0, 0, 0}, nil
+}
+
+func (*helloRequestMsg) unmarshal(data []byte) bool {
+ return len(data) == 4
+}
+
+type transcriptHash interface {
+ Write([]byte) (int, error)
+}
+
+// transcriptMsg is a helper used to marshal and hash messages which typically
+// are not written to the wire, and as such aren't hashed during Conn.writeRecord.
+func transcriptMsg(msg handshakeMessage, h transcriptHash) error {
+ data, err := msg.marshal()
+ if err != nil {
+ return err
+ }
+ h.Write(data)
+ return nil
+}
diff --git a/contrib/go/_std_1.21/src/crypto/tls/handshake_server.go b/contrib/go/_std_1.21/src/crypto/tls/handshake_server.go
new file mode 100644
index 0000000000..996b23b1f5
--- /dev/null
+++ b/contrib/go/_std_1.21/src/crypto/tls/handshake_server.go
@@ -0,0 +1,954 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package tls
+
+import (
+ "context"
+ "crypto"
+ "crypto/ecdsa"
+ "crypto/ed25519"
+ "crypto/rsa"
+ "crypto/subtle"
+ "crypto/x509"
+ "errors"
+ "fmt"
+ "hash"
+ "io"
+ "time"
+)
+
+// serverHandshakeState contains details of a server handshake in progress.
+// It's discarded once the handshake has completed.
+type serverHandshakeState struct {
+ c *Conn
+ ctx context.Context
+ clientHello *clientHelloMsg
+ hello *serverHelloMsg
+ suite *cipherSuite
+ ecdheOk bool
+ ecSignOk bool
+ rsaDecryptOk bool
+ rsaSignOk bool
+ sessionState *SessionState
+ finishedHash finishedHash
+ masterSecret []byte
+ cert *Certificate
+}
+
+// serverHandshake performs a TLS handshake as a server.
+func (c *Conn) serverHandshake(ctx context.Context) error {
+ clientHello, err := c.readClientHello(ctx)
+ if err != nil {
+ return err
+ }
+
+ if c.vers == VersionTLS13 {
+ hs := serverHandshakeStateTLS13{
+ c: c,
+ ctx: ctx,
+ clientHello: clientHello,
+ }
+ return hs.handshake()
+ }
+
+ hs := serverHandshakeState{
+ c: c,
+ ctx: ctx,
+ clientHello: clientHello,
+ }
+ return hs.handshake()
+}
+
+func (hs *serverHandshakeState) handshake() error {
+ c := hs.c
+
+ if err := hs.processClientHello(); err != nil {
+ return err
+ }
+
+ // For an overview of TLS handshaking, see RFC 5246, Section 7.3.
+ c.buffering = true
+ if err := hs.checkForResumption(); err != nil {
+ return err
+ }
+ if hs.sessionState != nil {
+ // The client has included a session ticket and so we do an abbreviated handshake.
+ if err := hs.doResumeHandshake(); err != nil {
+ return err
+ }
+ if err := hs.establishKeys(); err != nil {
+ return err
+ }
+ if err := hs.sendSessionTicket(); err != nil {
+ return err
+ }
+ if err := hs.sendFinished(c.serverFinished[:]); err != nil {
+ return err
+ }
+ if _, err := c.flush(); err != nil {
+ return err
+ }
+ c.clientFinishedIsFirst = false
+ if err := hs.readFinished(nil); err != nil {
+ return err
+ }
+ } else {
+ // The client didn't include a session ticket, or it wasn't
+ // valid so we do a full handshake.
+ if err := hs.pickCipherSuite(); err != nil {
+ return err
+ }
+ if err := hs.doFullHandshake(); err != nil {
+ return err
+ }
+ if err := hs.establishKeys(); err != nil {
+ return err
+ }
+ if err := hs.readFinished(c.clientFinished[:]); err != nil {
+ return err
+ }
+ c.clientFinishedIsFirst = true
+ c.buffering = true
+ if err := hs.sendSessionTicket(); err != nil {
+ return err
+ }
+ if err := hs.sendFinished(nil); err != nil {
+ return err
+ }
+ if _, err := c.flush(); err != nil {
+ return err
+ }
+ }
+
+ c.ekm = ekmFromMasterSecret(c.vers, hs.suite, hs.masterSecret, hs.clientHello.random, hs.hello.random)
+ c.isHandshakeComplete.Store(true)
+
+ return nil
+}
+
+// readClientHello reads a ClientHello message and selects the protocol version.
+func (c *Conn) readClientHello(ctx context.Context) (*clientHelloMsg, error) {
+ // clientHelloMsg is included in the transcript, but we haven't initialized
+ // it yet. The respective handshake functions will record it themselves.
+ msg, err := c.readHandshake(nil)
+ if err != nil {
+ return nil, err
+ }
+ clientHello, ok := msg.(*clientHelloMsg)
+ if !ok {
+ c.sendAlert(alertUnexpectedMessage)
+ return nil, unexpectedMessageError(clientHello, msg)
+ }
+
+ var configForClient *Config
+ originalConfig := c.config
+ if c.config.GetConfigForClient != nil {
+ chi := clientHelloInfo(ctx, c, clientHello)
+ if configForClient, err = c.config.GetConfigForClient(chi); err != nil {
+ c.sendAlert(alertInternalError)
+ return nil, err
+ } else if configForClient != nil {
+ c.config = configForClient
+ }
+ }
+ c.ticketKeys = originalConfig.ticketKeys(configForClient)
+
+ clientVersions := clientHello.supportedVersions
+ if len(clientHello.supportedVersions) == 0 {
+ clientVersions = supportedVersionsFromMax(clientHello.vers)
+ }
+ c.vers, ok = c.config.mutualVersion(roleServer, clientVersions)
+ if !ok {
+ c.sendAlert(alertProtocolVersion)
+ return nil, fmt.Errorf("tls: client offered only unsupported versions: %x", clientVersions)
+ }
+ c.haveVers = true
+ c.in.version = c.vers
+ c.out.version = c.vers
+
+ return clientHello, nil
+}
+
+func (hs *serverHandshakeState) processClientHello() error {
+ c := hs.c
+
+ hs.hello = new(serverHelloMsg)
+ hs.hello.vers = c.vers
+
+ foundCompression := false
+ // We only support null compression, so check that the client offered it.
+ for _, compression := range hs.clientHello.compressionMethods {
+ if compression == compressionNone {
+ foundCompression = true
+ break
+ }
+ }
+
+ if !foundCompression {
+ c.sendAlert(alertHandshakeFailure)
+ return errors.New("tls: client does not support uncompressed connections")
+ }
+
+ hs.hello.random = make([]byte, 32)
+ serverRandom := hs.hello.random
+ // Downgrade protection canaries. See RFC 8446, Section 4.1.3.
+ maxVers := c.config.maxSupportedVersion(roleServer)
+ if maxVers >= VersionTLS12 && c.vers < maxVers || testingOnlyForceDowngradeCanary {
+ if c.vers == VersionTLS12 {
+ copy(serverRandom[24:], downgradeCanaryTLS12)
+ } else {
+ copy(serverRandom[24:], downgradeCanaryTLS11)
+ }
+ serverRandom = serverRandom[:24]
+ }
+ _, err := io.ReadFull(c.config.rand(), serverRandom)
+ if err != nil {
+ c.sendAlert(alertInternalError)
+ return err
+ }
+
+ if len(hs.clientHello.secureRenegotiation) != 0 {
+ c.sendAlert(alertHandshakeFailure)
+ return errors.New("tls: initial handshake had non-empty renegotiation extension")
+ }
+
+ hs.hello.extendedMasterSecret = hs.clientHello.extendedMasterSecret
+ hs.hello.secureRenegotiationSupported = hs.clientHello.secureRenegotiationSupported
+ hs.hello.compressionMethod = compressionNone
+ if len(hs.clientHello.serverName) > 0 {
+ c.serverName = hs.clientHello.serverName
+ }
+
+ selectedProto, err := negotiateALPN(c.config.NextProtos, hs.clientHello.alpnProtocols, false)
+ if err != nil {
+ c.sendAlert(alertNoApplicationProtocol)
+ return err
+ }
+ hs.hello.alpnProtocol = selectedProto
+ c.clientProtocol = selectedProto
+
+ hs.cert, err = c.config.getCertificate(clientHelloInfo(hs.ctx, c, hs.clientHello))
+ if err != nil {
+ if err == errNoCertificates {
+ c.sendAlert(alertUnrecognizedName)
+ } else {
+ c.sendAlert(alertInternalError)
+ }
+ return err
+ }
+ if hs.clientHello.scts {
+ hs.hello.scts = hs.cert.SignedCertificateTimestamps
+ }
+
+ hs.ecdheOk = supportsECDHE(c.config, hs.clientHello.supportedCurves, hs.clientHello.supportedPoints)
+
+ if hs.ecdheOk && len(hs.clientHello.supportedPoints) > 0 {
+ // Although omitting the ec_point_formats extension is permitted, some
+ // old OpenSSL version will refuse to handshake if not present.
+ //
+ // Per RFC 4492, section 5.1.2, implementations MUST support the
+ // uncompressed point format. See golang.org/issue/31943.
+ hs.hello.supportedPoints = []uint8{pointFormatUncompressed}
+ }
+
+ if priv, ok := hs.cert.PrivateKey.(crypto.Signer); ok {
+ switch priv.Public().(type) {
+ case *ecdsa.PublicKey:
+ hs.ecSignOk = true
+ case ed25519.PublicKey:
+ hs.ecSignOk = true
+ case *rsa.PublicKey:
+ hs.rsaSignOk = true
+ default:
+ c.sendAlert(alertInternalError)
+ return fmt.Errorf("tls: unsupported signing key type (%T)", priv.Public())
+ }
+ }
+ if priv, ok := hs.cert.PrivateKey.(crypto.Decrypter); ok {
+ switch priv.Public().(type) {
+ case *rsa.PublicKey:
+ hs.rsaDecryptOk = true
+ default:
+ c.sendAlert(alertInternalError)
+ return fmt.Errorf("tls: unsupported decryption key type (%T)", priv.Public())
+ }
+ }
+
+ return nil
+}
+
+// negotiateALPN picks a shared ALPN protocol that both sides support in server
+// preference order. If ALPN is not configured or the peer doesn't support it,
+// it returns "" and no error.
+func negotiateALPN(serverProtos, clientProtos []string, quic bool) (string, error) {
+ if len(serverProtos) == 0 || len(clientProtos) == 0 {
+ if quic && len(serverProtos) != 0 {
+ // RFC 9001, Section 8.1
+ return "", fmt.Errorf("tls: client did not request an application protocol")
+ }
+ return "", nil
+ }
+ var http11fallback bool
+ for _, s := range serverProtos {
+ for _, c := range clientProtos {
+ if s == c {
+ return s, nil
+ }
+ if s == "h2" && c == "http/1.1" {
+ http11fallback = true
+ }
+ }
+ }
+ // As a special case, let http/1.1 clients connect to h2 servers as if they
+ // didn't support ALPN. We used not to enforce protocol overlap, so over
+ // time a number of HTTP servers were configured with only "h2", but
+ // expected to accept connections from "http/1.1" clients. See Issue 46310.
+ if http11fallback {
+ return "", nil
+ }
+ return "", fmt.Errorf("tls: client requested unsupported application protocols (%s)", clientProtos)
+}
+
+// supportsECDHE returns whether ECDHE key exchanges can be used with this
+// pre-TLS 1.3 client.
+func supportsECDHE(c *Config, supportedCurves []CurveID, supportedPoints []uint8) bool {
+ supportsCurve := false
+ for _, curve := range supportedCurves {
+ if c.supportsCurve(curve) {
+ supportsCurve = true
+ break
+ }
+ }
+
+ supportsPointFormat := false
+ for _, pointFormat := range supportedPoints {
+ if pointFormat == pointFormatUncompressed {
+ supportsPointFormat = true
+ break
+ }
+ }
+ // Per RFC 8422, Section 5.1.2, if the Supported Point Formats extension is
+ // missing, uncompressed points are supported. If supportedPoints is empty,
+ // the extension must be missing, as an empty extension body is rejected by
+ // the parser. See https://go.dev/issue/49126.
+ if len(supportedPoints) == 0 {
+ supportsPointFormat = true
+ }
+
+ return supportsCurve && supportsPointFormat
+}
+
+func (hs *serverHandshakeState) pickCipherSuite() error {
+ c := hs.c
+
+ preferenceOrder := cipherSuitesPreferenceOrder
+ if !hasAESGCMHardwareSupport || !aesgcmPreferred(hs.clientHello.cipherSuites) {
+ preferenceOrder = cipherSuitesPreferenceOrderNoAES
+ }
+
+ configCipherSuites := c.config.cipherSuites()
+ preferenceList := make([]uint16, 0, len(configCipherSuites))
+ for _, suiteID := range preferenceOrder {
+ for _, id := range configCipherSuites {
+ if id == suiteID {
+ preferenceList = append(preferenceList, id)
+ break
+ }
+ }
+ }
+
+ hs.suite = selectCipherSuite(preferenceList, hs.clientHello.cipherSuites, hs.cipherSuiteOk)
+ if hs.suite == nil {
+ c.sendAlert(alertHandshakeFailure)
+ return errors.New("tls: no cipher suite supported by both client and server")
+ }
+ c.cipherSuite = hs.suite.id
+
+ for _, id := range hs.clientHello.cipherSuites {
+ if id == TLS_FALLBACK_SCSV {
+ // The client is doing a fallback connection. See RFC 7507.
+ if hs.clientHello.vers < c.config.maxSupportedVersion(roleServer) {
+ c.sendAlert(alertInappropriateFallback)
+ return errors.New("tls: client using inappropriate protocol fallback")
+ }
+ break
+ }
+ }
+
+ return nil
+}
+
+func (hs *serverHandshakeState) cipherSuiteOk(c *cipherSuite) bool {
+ if c.flags&suiteECDHE != 0 {
+ if !hs.ecdheOk {
+ return false
+ }
+ if c.flags&suiteECSign != 0 {
+ if !hs.ecSignOk {
+ return false
+ }
+ } else if !hs.rsaSignOk {
+ return false
+ }
+ } else if !hs.rsaDecryptOk {
+ return false
+ }
+ if hs.c.vers < VersionTLS12 && c.flags&suiteTLS12 != 0 {
+ return false
+ }
+ return true
+}
+
+// checkForResumption reports whether we should perform resumption on this connection.
+func (hs *serverHandshakeState) checkForResumption() error {
+ c := hs.c
+
+ if c.config.SessionTicketsDisabled {
+ return nil
+ }
+
+ var sessionState *SessionState
+ if c.config.UnwrapSession != nil {
+ ss, err := c.config.UnwrapSession(hs.clientHello.sessionTicket, c.connectionStateLocked())
+ if err != nil {
+ return err
+ }
+ if ss == nil {
+ return nil
+ }
+ sessionState = ss
+ } else {
+ plaintext := c.config.decryptTicket(hs.clientHello.sessionTicket, c.ticketKeys)
+ if plaintext == nil {
+ return nil
+ }
+ ss, err := ParseSessionState(plaintext)
+ if err != nil {
+ return nil
+ }
+ sessionState = ss
+ }
+
+ // TLS 1.2 tickets don't natively have a lifetime, but we want to avoid
+ // re-wrapping the same master secret in different tickets over and over for
+ // too long, weakening forward secrecy.
+ createdAt := time.Unix(int64(sessionState.createdAt), 0)
+ if c.config.time().Sub(createdAt) > maxSessionTicketLifetime {
+ return nil
+ }
+
+ // Never resume a session for a different TLS version.
+ if c.vers != sessionState.version {
+ return nil
+ }
+
+ cipherSuiteOk := false
+ // Check that the client is still offering the ciphersuite in the session.
+ for _, id := range hs.clientHello.cipherSuites {
+ if id == sessionState.cipherSuite {
+ cipherSuiteOk = true
+ break
+ }
+ }
+ if !cipherSuiteOk {
+ return nil
+ }
+
+ // Check that we also support the ciphersuite from the session.
+ suite := selectCipherSuite([]uint16{sessionState.cipherSuite},
+ c.config.cipherSuites(), hs.cipherSuiteOk)
+ if suite == nil {
+ return nil
+ }
+
+ sessionHasClientCerts := len(sessionState.peerCertificates) != 0
+ needClientCerts := requiresClientCert(c.config.ClientAuth)
+ if needClientCerts && !sessionHasClientCerts {
+ return nil
+ }
+ if sessionHasClientCerts && c.config.ClientAuth == NoClientCert {
+ return nil
+ }
+ if sessionHasClientCerts && c.config.time().After(sessionState.peerCertificates[0].NotAfter) {
+ return nil
+ }
+ if sessionHasClientCerts && c.config.ClientAuth >= VerifyClientCertIfGiven &&
+ len(sessionState.verifiedChains) == 0 {
+ return nil
+ }
+
+ // RFC 7627, Section 5.3
+ if !sessionState.extMasterSecret && hs.clientHello.extendedMasterSecret {
+ return nil
+ }
+ if sessionState.extMasterSecret && !hs.clientHello.extendedMasterSecret {
+ // Aborting is somewhat harsh, but it's a MUST and it would indicate a
+ // weird downgrade in client capabilities.
+ return errors.New("tls: session supported extended_master_secret but client does not")
+ }
+
+ c.peerCertificates = sessionState.peerCertificates
+ c.ocspResponse = sessionState.ocspResponse
+ c.scts = sessionState.scts
+ c.verifiedChains = sessionState.verifiedChains
+ c.extMasterSecret = sessionState.extMasterSecret
+ hs.sessionState = sessionState
+ hs.suite = suite
+ c.didResume = true
+ return nil
+}
+
+func (hs *serverHandshakeState) doResumeHandshake() error {
+ c := hs.c
+
+ hs.hello.cipherSuite = hs.suite.id
+ c.cipherSuite = hs.suite.id
+ // We echo the client's session ID in the ServerHello to let it know
+ // that we're doing a resumption.
+ hs.hello.sessionId = hs.clientHello.sessionId
+ // We always send a new session ticket, even if it wraps the same master
+ // secret and it's potentially encrypted with the same key, to help the
+ // client avoid cross-connection tracking from a network observer.
+ hs.hello.ticketSupported = true
+ hs.finishedHash = newFinishedHash(c.vers, hs.suite)
+ hs.finishedHash.discardHandshakeBuffer()
+ if err := transcriptMsg(hs.clientHello, &hs.finishedHash); err != nil {
+ return err
+ }
+ if _, err := hs.c.writeHandshakeRecord(hs.hello, &hs.finishedHash); err != nil {
+ return err
+ }
+
+ if c.config.VerifyConnection != nil {
+ if err := c.config.VerifyConnection(c.connectionStateLocked()); err != nil {
+ c.sendAlert(alertBadCertificate)
+ return err
+ }
+ }
+
+ hs.masterSecret = hs.sessionState.secret
+
+ return nil
+}
+
+func (hs *serverHandshakeState) doFullHandshake() error {
+ c := hs.c
+
+ if hs.clientHello.ocspStapling && len(hs.cert.OCSPStaple) > 0 {
+ hs.hello.ocspStapling = true
+ }
+
+ hs.hello.ticketSupported = hs.clientHello.ticketSupported && !c.config.SessionTicketsDisabled
+ hs.hello.cipherSuite = hs.suite.id
+
+ hs.finishedHash = newFinishedHash(hs.c.vers, hs.suite)
+ if c.config.ClientAuth == NoClientCert {
+ // No need to keep a full record of the handshake if client
+ // certificates won't be used.
+ hs.finishedHash.discardHandshakeBuffer()
+ }
+ if err := transcriptMsg(hs.clientHello, &hs.finishedHash); err != nil {
+ return err
+ }
+ if _, err := hs.c.writeHandshakeRecord(hs.hello, &hs.finishedHash); err != nil {
+ return err
+ }
+
+ certMsg := new(certificateMsg)
+ certMsg.certificates = hs.cert.Certificate
+ if _, err := hs.c.writeHandshakeRecord(certMsg, &hs.finishedHash); err != nil {
+ return err
+ }
+
+ if hs.hello.ocspStapling {
+ certStatus := new(certificateStatusMsg)
+ certStatus.response = hs.cert.OCSPStaple
+ if _, err := hs.c.writeHandshakeRecord(certStatus, &hs.finishedHash); err != nil {
+ return err
+ }
+ }
+
+ keyAgreement := hs.suite.ka(c.vers)
+ skx, err := keyAgreement.generateServerKeyExchange(c.config, hs.cert, hs.clientHello, hs.hello)
+ if err != nil {
+ c.sendAlert(alertHandshakeFailure)
+ return err
+ }
+ if skx != nil {
+ if _, err := hs.c.writeHandshakeRecord(skx, &hs.finishedHash); err != nil {
+ return err
+ }
+ }
+
+ var certReq *certificateRequestMsg
+ if c.config.ClientAuth >= RequestClientCert {
+ // Request a client certificate
+ certReq = new(certificateRequestMsg)
+ certReq.certificateTypes = []byte{
+ byte(certTypeRSASign),
+ byte(certTypeECDSASign),
+ }
+ if c.vers >= VersionTLS12 {
+ certReq.hasSignatureAlgorithm = true
+ certReq.supportedSignatureAlgorithms = supportedSignatureAlgorithms()
+ }
+
+ // An empty list of certificateAuthorities signals to
+ // the client that it may send any certificate in response
+ // to our request. When we know the CAs we trust, then
+ // we can send them down, so that the client can choose
+ // an appropriate certificate to give to us.
+ if c.config.ClientCAs != nil {
+ certReq.certificateAuthorities = c.config.ClientCAs.Subjects()
+ }
+ if _, err := hs.c.writeHandshakeRecord(certReq, &hs.finishedHash); err != nil {
+ return err
+ }
+ }
+
+ helloDone := new(serverHelloDoneMsg)
+ if _, err := hs.c.writeHandshakeRecord(helloDone, &hs.finishedHash); err != nil {
+ return err
+ }
+
+ if _, err := c.flush(); err != nil {
+ return err
+ }
+
+ var pub crypto.PublicKey // public key for client auth, if any
+
+ msg, err := c.readHandshake(&hs.finishedHash)
+ if err != nil {
+ return err
+ }
+
+ // If we requested a client certificate, then the client must send a
+ // certificate message, even if it's empty.
+ if c.config.ClientAuth >= RequestClientCert {
+ certMsg, ok := msg.(*certificateMsg)
+ if !ok {
+ c.sendAlert(alertUnexpectedMessage)
+ return unexpectedMessageError(certMsg, msg)
+ }
+
+ if err := c.processCertsFromClient(Certificate{
+ Certificate: certMsg.certificates,
+ }); err != nil {
+ return err
+ }
+ if len(certMsg.certificates) != 0 {
+ pub = c.peerCertificates[0].PublicKey
+ }
+
+ msg, err = c.readHandshake(&hs.finishedHash)
+ if err != nil {
+ return err
+ }
+ }
+ if c.config.VerifyConnection != nil {
+ if err := c.config.VerifyConnection(c.connectionStateLocked()); err != nil {
+ c.sendAlert(alertBadCertificate)
+ return err
+ }
+ }
+
+ // Get client key exchange
+ ckx, ok := msg.(*clientKeyExchangeMsg)
+ if !ok {
+ c.sendAlert(alertUnexpectedMessage)
+ return unexpectedMessageError(ckx, msg)
+ }
+
+ preMasterSecret, err := keyAgreement.processClientKeyExchange(c.config, hs.cert, ckx, c.vers)
+ if err != nil {
+ c.sendAlert(alertHandshakeFailure)
+ return err
+ }
+ if hs.hello.extendedMasterSecret {
+ c.extMasterSecret = true
+ hs.masterSecret = extMasterFromPreMasterSecret(c.vers, hs.suite, preMasterSecret,
+ hs.finishedHash.Sum())
+ } else {
+ hs.masterSecret = masterFromPreMasterSecret(c.vers, hs.suite, preMasterSecret,
+ hs.clientHello.random, hs.hello.random)
+ }
+ if err := c.config.writeKeyLog(keyLogLabelTLS12, hs.clientHello.random, hs.masterSecret); err != nil {
+ c.sendAlert(alertInternalError)
+ return err
+ }
+
+ // If we received a client cert in response to our certificate request message,
+ // the client will send us a certificateVerifyMsg immediately after the
+ // clientKeyExchangeMsg. This message is a digest of all preceding
+ // handshake-layer messages that is signed using the private key corresponding
+ // to the client's certificate. This allows us to verify that the client is in
+ // possession of the private key of the certificate.
+ if len(c.peerCertificates) > 0 {
+ // certificateVerifyMsg is included in the transcript, but not until
+ // after we verify the handshake signature, since the state before
+ // this message was sent is used.
+ msg, err = c.readHandshake(nil)
+ if err != nil {
+ return err
+ }
+ certVerify, ok := msg.(*certificateVerifyMsg)
+ if !ok {
+ c.sendAlert(alertUnexpectedMessage)
+ return unexpectedMessageError(certVerify, msg)
+ }
+
+ var sigType uint8
+ var sigHash crypto.Hash
+ if c.vers >= VersionTLS12 {
+ if !isSupportedSignatureAlgorithm(certVerify.signatureAlgorithm, certReq.supportedSignatureAlgorithms) {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: client certificate used with invalid signature algorithm")
+ }
+ sigType, sigHash, err = typeAndHashFromSignatureScheme(certVerify.signatureAlgorithm)
+ if err != nil {
+ return c.sendAlert(alertInternalError)
+ }
+ } else {
+ sigType, sigHash, err = legacyTypeAndHashFromPublicKey(pub)
+ if err != nil {
+ c.sendAlert(alertIllegalParameter)
+ return err
+ }
+ }
+
+ signed := hs.finishedHash.hashForClientCertificate(sigType, sigHash)
+ if err := verifyHandshakeSignature(sigType, pub, sigHash, signed, certVerify.signature); err != nil {
+ c.sendAlert(alertDecryptError)
+ return errors.New("tls: invalid signature by the client certificate: " + err.Error())
+ }
+
+ if err := transcriptMsg(certVerify, &hs.finishedHash); err != nil {
+ return err
+ }
+ }
+
+ hs.finishedHash.discardHandshakeBuffer()
+
+ return nil
+}
+
+func (hs *serverHandshakeState) establishKeys() error {
+ c := hs.c
+
+ clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV :=
+ keysFromMasterSecret(c.vers, hs.suite, hs.masterSecret, hs.clientHello.random, hs.hello.random, hs.suite.macLen, hs.suite.keyLen, hs.suite.ivLen)
+
+ var clientCipher, serverCipher any
+ var clientHash, serverHash hash.Hash
+
+ if hs.suite.aead == nil {
+ clientCipher = hs.suite.cipher(clientKey, clientIV, true /* for reading */)
+ clientHash = hs.suite.mac(clientMAC)
+ serverCipher = hs.suite.cipher(serverKey, serverIV, false /* not for reading */)
+ serverHash = hs.suite.mac(serverMAC)
+ } else {
+ clientCipher = hs.suite.aead(clientKey, clientIV)
+ serverCipher = hs.suite.aead(serverKey, serverIV)
+ }
+
+ c.in.prepareCipherSpec(c.vers, clientCipher, clientHash)
+ c.out.prepareCipherSpec(c.vers, serverCipher, serverHash)
+
+ return nil
+}
+
+func (hs *serverHandshakeState) readFinished(out []byte) error {
+ c := hs.c
+
+ if err := c.readChangeCipherSpec(); err != nil {
+ return err
+ }
+
+ // finishedMsg is included in the transcript, but not until after we
+ // check the client version, since the state before this message was
+ // sent is used during verification.
+ msg, err := c.readHandshake(nil)
+ if err != nil {
+ return err
+ }
+ clientFinished, ok := msg.(*finishedMsg)
+ if !ok {
+ c.sendAlert(alertUnexpectedMessage)
+ return unexpectedMessageError(clientFinished, msg)
+ }
+
+ verify := hs.finishedHash.clientSum(hs.masterSecret)
+ if len(verify) != len(clientFinished.verifyData) ||
+ subtle.ConstantTimeCompare(verify, clientFinished.verifyData) != 1 {
+ c.sendAlert(alertHandshakeFailure)
+ return errors.New("tls: client's Finished message is incorrect")
+ }
+
+ if err := transcriptMsg(clientFinished, &hs.finishedHash); err != nil {
+ return err
+ }
+
+ copy(out, verify)
+ return nil
+}
+
+func (hs *serverHandshakeState) sendSessionTicket() error {
+ if !hs.hello.ticketSupported {
+ return nil
+ }
+
+ c := hs.c
+ m := new(newSessionTicketMsg)
+
+ state, err := c.sessionState()
+ if err != nil {
+ return err
+ }
+ state.secret = hs.masterSecret
+ if hs.sessionState != nil {
+ // If this is re-wrapping an old key, then keep
+ // the original time it was created.
+ state.createdAt = hs.sessionState.createdAt
+ }
+ if c.config.WrapSession != nil {
+ m.ticket, err = c.config.WrapSession(c.connectionStateLocked(), state)
+ if err != nil {
+ return err
+ }
+ } else {
+ stateBytes, err := state.Bytes()
+ if err != nil {
+ return err
+ }
+ m.ticket, err = c.config.encryptTicket(stateBytes, c.ticketKeys)
+ if err != nil {
+ return err
+ }
+ }
+
+ if _, err := hs.c.writeHandshakeRecord(m, &hs.finishedHash); err != nil {
+ return err
+ }
+
+ return nil
+}
+
+func (hs *serverHandshakeState) sendFinished(out []byte) error {
+ c := hs.c
+
+ if err := c.writeChangeCipherRecord(); err != nil {
+ return err
+ }
+
+ finished := new(finishedMsg)
+ finished.verifyData = hs.finishedHash.serverSum(hs.masterSecret)
+ if _, err := hs.c.writeHandshakeRecord(finished, &hs.finishedHash); err != nil {
+ return err
+ }
+
+ copy(out, finished.verifyData)
+
+ return nil
+}
+
+// processCertsFromClient takes a chain of client certificates either from a
+// Certificates message and verifies them.
+func (c *Conn) processCertsFromClient(certificate Certificate) error {
+ certificates := certificate.Certificate
+ certs := make([]*x509.Certificate, len(certificates))
+ var err error
+ for i, asn1Data := range certificates {
+ if certs[i], err = x509.ParseCertificate(asn1Data); err != nil {
+ c.sendAlert(alertBadCertificate)
+ return errors.New("tls: failed to parse client certificate: " + err.Error())
+ }
+ if certs[i].PublicKeyAlgorithm == x509.RSA {
+ n := certs[i].PublicKey.(*rsa.PublicKey).N.BitLen()
+ if max, ok := checkKeySize(n); !ok {
+ c.sendAlert(alertBadCertificate)
+ return fmt.Errorf("tls: client sent certificate containing RSA key larger than %d bits", max)
+ }
+ }
+ }
+
+ if len(certs) == 0 && requiresClientCert(c.config.ClientAuth) {
+ if c.vers == VersionTLS13 {
+ c.sendAlert(alertCertificateRequired)
+ } else {
+ c.sendAlert(alertBadCertificate)
+ }
+ return errors.New("tls: client didn't provide a certificate")
+ }
+
+ if c.config.ClientAuth >= VerifyClientCertIfGiven && len(certs) > 0 {
+ opts := x509.VerifyOptions{
+ Roots: c.config.ClientCAs,
+ CurrentTime: c.config.time(),
+ Intermediates: x509.NewCertPool(),
+ KeyUsages: []x509.ExtKeyUsage{x509.ExtKeyUsageClientAuth},
+ }
+
+ for _, cert := range certs[1:] {
+ opts.Intermediates.AddCert(cert)
+ }
+
+ chains, err := certs[0].Verify(opts)
+ if err != nil {
+ var errCertificateInvalid x509.CertificateInvalidError
+ if errors.As(err, &x509.UnknownAuthorityError{}) {
+ c.sendAlert(alertUnknownCA)
+ } else if errors.As(err, &errCertificateInvalid) && errCertificateInvalid.Reason == x509.Expired {
+ c.sendAlert(alertCertificateExpired)
+ } else {
+ c.sendAlert(alertBadCertificate)
+ }
+ return &CertificateVerificationError{UnverifiedCertificates: certs, Err: err}
+ }
+
+ c.verifiedChains = chains
+ }
+
+ c.peerCertificates = certs
+ c.ocspResponse = certificate.OCSPStaple
+ c.scts = certificate.SignedCertificateTimestamps
+
+ if len(certs) > 0 {
+ switch certs[0].PublicKey.(type) {
+ case *ecdsa.PublicKey, *rsa.PublicKey, ed25519.PublicKey:
+ default:
+ c.sendAlert(alertUnsupportedCertificate)
+ return fmt.Errorf("tls: client certificate contains an unsupported public key of type %T", certs[0].PublicKey)
+ }
+ }
+
+ if c.config.VerifyPeerCertificate != nil {
+ if err := c.config.VerifyPeerCertificate(certificates, c.verifiedChains); err != nil {
+ c.sendAlert(alertBadCertificate)
+ return err
+ }
+ }
+
+ return nil
+}
+
+func clientHelloInfo(ctx context.Context, c *Conn, clientHello *clientHelloMsg) *ClientHelloInfo {
+ supportedVersions := clientHello.supportedVersions
+ if len(clientHello.supportedVersions) == 0 {
+ supportedVersions = supportedVersionsFromMax(clientHello.vers)
+ }
+
+ return &ClientHelloInfo{
+ CipherSuites: clientHello.cipherSuites,
+ ServerName: clientHello.serverName,
+ SupportedCurves: clientHello.supportedCurves,
+ SupportedPoints: clientHello.supportedPoints,
+ SignatureSchemes: clientHello.supportedSignatureAlgorithms,
+ SupportedProtos: clientHello.alpnProtocols,
+ SupportedVersions: supportedVersions,
+ Conn: c.conn,
+ config: c.config,
+ ctx: ctx,
+ }
+}
diff --git a/contrib/go/_std_1.21/src/crypto/tls/handshake_server_tls13.go b/contrib/go/_std_1.21/src/crypto/tls/handshake_server_tls13.go
new file mode 100644
index 0000000000..07b1a3851e
--- /dev/null
+++ b/contrib/go/_std_1.21/src/crypto/tls/handshake_server_tls13.go
@@ -0,0 +1,991 @@
+// Copyright 2018 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package tls
+
+import (
+ "bytes"
+ "context"
+ "crypto"
+ "crypto/hmac"
+ "crypto/rsa"
+ "encoding/binary"
+ "errors"
+ "hash"
+ "io"
+ "time"
+)
+
+// maxClientPSKIdentities is the number of client PSK identities the server will
+// attempt to validate. It will ignore the rest not to let cheap ClientHello
+// messages cause too much work in session ticket decryption attempts.
+const maxClientPSKIdentities = 5
+
+type serverHandshakeStateTLS13 struct {
+ c *Conn
+ ctx context.Context
+ clientHello *clientHelloMsg
+ hello *serverHelloMsg
+ sentDummyCCS bool
+ usingPSK bool
+ earlyData bool
+ suite *cipherSuiteTLS13
+ cert *Certificate
+ sigAlg SignatureScheme
+ earlySecret []byte
+ sharedKey []byte
+ handshakeSecret []byte
+ masterSecret []byte
+ trafficSecret []byte // client_application_traffic_secret_0
+ transcript hash.Hash
+ clientFinished []byte
+}
+
+func (hs *serverHandshakeStateTLS13) handshake() error {
+ c := hs.c
+
+ if needFIPS() {
+ return errors.New("tls: internal error: TLS 1.3 reached in FIPS mode")
+ }
+
+ // For an overview of the TLS 1.3 handshake, see RFC 8446, Section 2.
+ if err := hs.processClientHello(); err != nil {
+ return err
+ }
+ if err := hs.checkForResumption(); err != nil {
+ return err
+ }
+ if err := hs.pickCertificate(); err != nil {
+ return err
+ }
+ c.buffering = true
+ if err := hs.sendServerParameters(); err != nil {
+ return err
+ }
+ if err := hs.sendServerCertificate(); err != nil {
+ return err
+ }
+ if err := hs.sendServerFinished(); err != nil {
+ return err
+ }
+ // Note that at this point we could start sending application data without
+ // waiting for the client's second flight, but the application might not
+ // expect the lack of replay protection of the ClientHello parameters.
+ if _, err := c.flush(); err != nil {
+ return err
+ }
+ if err := hs.readClientCertificate(); err != nil {
+ return err
+ }
+ if err := hs.readClientFinished(); err != nil {
+ return err
+ }
+
+ c.isHandshakeComplete.Store(true)
+
+ return nil
+}
+
+func (hs *serverHandshakeStateTLS13) processClientHello() error {
+ c := hs.c
+
+ hs.hello = new(serverHelloMsg)
+
+ // TLS 1.3 froze the ServerHello.legacy_version field, and uses
+ // supported_versions instead. See RFC 8446, sections 4.1.3 and 4.2.1.
+ hs.hello.vers = VersionTLS12
+ hs.hello.supportedVersion = c.vers
+
+ if len(hs.clientHello.supportedVersions) == 0 {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: client used the legacy version field to negotiate TLS 1.3")
+ }
+
+ // Abort if the client is doing a fallback and landing lower than what we
+ // support. See RFC 7507, which however does not specify the interaction
+ // with supported_versions. The only difference is that with
+ // supported_versions a client has a chance to attempt a [TLS 1.2, TLS 1.4]
+ // handshake in case TLS 1.3 is broken but 1.2 is not. Alas, in that case,
+ // it will have to drop the TLS_FALLBACK_SCSV protection if it falls back to
+ // TLS 1.2, because a TLS 1.3 server would abort here. The situation before
+ // supported_versions was not better because there was just no way to do a
+ // TLS 1.4 handshake without risking the server selecting TLS 1.3.
+ for _, id := range hs.clientHello.cipherSuites {
+ if id == TLS_FALLBACK_SCSV {
+ // Use c.vers instead of max(supported_versions) because an attacker
+ // could defeat this by adding an arbitrary high version otherwise.
+ if c.vers < c.config.maxSupportedVersion(roleServer) {
+ c.sendAlert(alertInappropriateFallback)
+ return errors.New("tls: client using inappropriate protocol fallback")
+ }
+ break
+ }
+ }
+
+ if len(hs.clientHello.compressionMethods) != 1 ||
+ hs.clientHello.compressionMethods[0] != compressionNone {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: TLS 1.3 client supports illegal compression methods")
+ }
+
+ hs.hello.random = make([]byte, 32)
+ if _, err := io.ReadFull(c.config.rand(), hs.hello.random); err != nil {
+ c.sendAlert(alertInternalError)
+ return err
+ }
+
+ if len(hs.clientHello.secureRenegotiation) != 0 {
+ c.sendAlert(alertHandshakeFailure)
+ return errors.New("tls: initial handshake had non-empty renegotiation extension")
+ }
+
+ if hs.clientHello.earlyData && c.quic != nil {
+ if len(hs.clientHello.pskIdentities) == 0 {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: early_data without pre_shared_key")
+ }
+ } else if hs.clientHello.earlyData {
+ // See RFC 8446, Section 4.2.10 for the complicated behavior required
+ // here. The scenario is that a different server at our address offered
+ // to accept early data in the past, which we can't handle. For now, all
+ // 0-RTT enabled session tickets need to expire before a Go server can
+ // replace a server or join a pool. That's the same requirement that
+ // applies to mixing or replacing with any TLS 1.2 server.
+ c.sendAlert(alertUnsupportedExtension)
+ return errors.New("tls: client sent unexpected early data")
+ }
+
+ hs.hello.sessionId = hs.clientHello.sessionId
+ hs.hello.compressionMethod = compressionNone
+
+ preferenceList := defaultCipherSuitesTLS13
+ if !hasAESGCMHardwareSupport || !aesgcmPreferred(hs.clientHello.cipherSuites) {
+ preferenceList = defaultCipherSuitesTLS13NoAES
+ }
+ for _, suiteID := range preferenceList {
+ hs.suite = mutualCipherSuiteTLS13(hs.clientHello.cipherSuites, suiteID)
+ if hs.suite != nil {
+ break
+ }
+ }
+ if hs.suite == nil {
+ c.sendAlert(alertHandshakeFailure)
+ return errors.New("tls: no cipher suite supported by both client and server")
+ }
+ c.cipherSuite = hs.suite.id
+ hs.hello.cipherSuite = hs.suite.id
+ hs.transcript = hs.suite.hash.New()
+
+ // Pick the ECDHE group in server preference order, but give priority to
+ // groups with a key share, to avoid a HelloRetryRequest round-trip.
+ var selectedGroup CurveID
+ var clientKeyShare *keyShare
+GroupSelection:
+ for _, preferredGroup := range c.config.curvePreferences() {
+ for _, ks := range hs.clientHello.keyShares {
+ if ks.group == preferredGroup {
+ selectedGroup = ks.group
+ clientKeyShare = &ks
+ break GroupSelection
+ }
+ }
+ if selectedGroup != 0 {
+ continue
+ }
+ for _, group := range hs.clientHello.supportedCurves {
+ if group == preferredGroup {
+ selectedGroup = group
+ break
+ }
+ }
+ }
+ if selectedGroup == 0 {
+ c.sendAlert(alertHandshakeFailure)
+ return errors.New("tls: no ECDHE curve supported by both client and server")
+ }
+ if clientKeyShare == nil {
+ if err := hs.doHelloRetryRequest(selectedGroup); err != nil {
+ return err
+ }
+ clientKeyShare = &hs.clientHello.keyShares[0]
+ }
+
+ if _, ok := curveForCurveID(selectedGroup); !ok {
+ c.sendAlert(alertInternalError)
+ return errors.New("tls: CurvePreferences includes unsupported curve")
+ }
+ key, err := generateECDHEKey(c.config.rand(), selectedGroup)
+ if err != nil {
+ c.sendAlert(alertInternalError)
+ return err
+ }
+ hs.hello.serverShare = keyShare{group: selectedGroup, data: key.PublicKey().Bytes()}
+ peerKey, err := key.Curve().NewPublicKey(clientKeyShare.data)
+ if err != nil {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: invalid client key share")
+ }
+ hs.sharedKey, err = key.ECDH(peerKey)
+ if err != nil {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: invalid client key share")
+ }
+
+ selectedProto, err := negotiateALPN(c.config.NextProtos, hs.clientHello.alpnProtocols, c.quic != nil)
+ if err != nil {
+ c.sendAlert(alertNoApplicationProtocol)
+ return err
+ }
+ c.clientProtocol = selectedProto
+
+ if c.quic != nil {
+ if hs.clientHello.quicTransportParameters == nil {
+ // RFC 9001 Section 8.2.
+ c.sendAlert(alertMissingExtension)
+ return errors.New("tls: client did not send a quic_transport_parameters extension")
+ }
+ c.quicSetTransportParameters(hs.clientHello.quicTransportParameters)
+ } else {
+ if hs.clientHello.quicTransportParameters != nil {
+ c.sendAlert(alertUnsupportedExtension)
+ return errors.New("tls: client sent an unexpected quic_transport_parameters extension")
+ }
+ }
+
+ c.serverName = hs.clientHello.serverName
+ return nil
+}
+
+func (hs *serverHandshakeStateTLS13) checkForResumption() error {
+ c := hs.c
+
+ if c.config.SessionTicketsDisabled {
+ return nil
+ }
+
+ modeOK := false
+ for _, mode := range hs.clientHello.pskModes {
+ if mode == pskModeDHE {
+ modeOK = true
+ break
+ }
+ }
+ if !modeOK {
+ return nil
+ }
+
+ if len(hs.clientHello.pskIdentities) != len(hs.clientHello.pskBinders) {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: invalid or missing PSK binders")
+ }
+ if len(hs.clientHello.pskIdentities) == 0 {
+ return nil
+ }
+
+ for i, identity := range hs.clientHello.pskIdentities {
+ if i >= maxClientPSKIdentities {
+ break
+ }
+
+ var sessionState *SessionState
+ if c.config.UnwrapSession != nil {
+ var err error
+ sessionState, err = c.config.UnwrapSession(identity.label, c.connectionStateLocked())
+ if err != nil {
+ return err
+ }
+ if sessionState == nil {
+ continue
+ }
+ } else {
+ plaintext := c.config.decryptTicket(identity.label, c.ticketKeys)
+ if plaintext == nil {
+ continue
+ }
+ var err error
+ sessionState, err = ParseSessionState(plaintext)
+ if err != nil {
+ continue
+ }
+ }
+
+ if sessionState.version != VersionTLS13 {
+ continue
+ }
+
+ createdAt := time.Unix(int64(sessionState.createdAt), 0)
+ if c.config.time().Sub(createdAt) > maxSessionTicketLifetime {
+ continue
+ }
+
+ pskSuite := cipherSuiteTLS13ByID(sessionState.cipherSuite)
+ if pskSuite == nil || pskSuite.hash != hs.suite.hash {
+ continue
+ }
+
+ // PSK connections don't re-establish client certificates, but carry
+ // them over in the session ticket. Ensure the presence of client certs
+ // in the ticket is consistent with the configured requirements.
+ sessionHasClientCerts := len(sessionState.peerCertificates) != 0
+ needClientCerts := requiresClientCert(c.config.ClientAuth)
+ if needClientCerts && !sessionHasClientCerts {
+ continue
+ }
+ if sessionHasClientCerts && c.config.ClientAuth == NoClientCert {
+ continue
+ }
+ if sessionHasClientCerts && c.config.time().After(sessionState.peerCertificates[0].NotAfter) {
+ continue
+ }
+ if sessionHasClientCerts && c.config.ClientAuth >= VerifyClientCertIfGiven &&
+ len(sessionState.verifiedChains) == 0 {
+ continue
+ }
+
+ hs.earlySecret = hs.suite.extract(sessionState.secret, nil)
+ binderKey := hs.suite.deriveSecret(hs.earlySecret, resumptionBinderLabel, nil)
+ // Clone the transcript in case a HelloRetryRequest was recorded.
+ transcript := cloneHash(hs.transcript, hs.suite.hash)
+ if transcript == nil {
+ c.sendAlert(alertInternalError)
+ return errors.New("tls: internal error: failed to clone hash")
+ }
+ clientHelloBytes, err := hs.clientHello.marshalWithoutBinders()
+ if err != nil {
+ c.sendAlert(alertInternalError)
+ return err
+ }
+ transcript.Write(clientHelloBytes)
+ pskBinder := hs.suite.finishedHash(binderKey, transcript)
+ if !hmac.Equal(hs.clientHello.pskBinders[i], pskBinder) {
+ c.sendAlert(alertDecryptError)
+ return errors.New("tls: invalid PSK binder")
+ }
+
+ if c.quic != nil && hs.clientHello.earlyData && i == 0 &&
+ sessionState.EarlyData && sessionState.cipherSuite == hs.suite.id &&
+ sessionState.alpnProtocol == c.clientProtocol {
+ hs.earlyData = true
+
+ transcript := hs.suite.hash.New()
+ if err := transcriptMsg(hs.clientHello, transcript); err != nil {
+ return err
+ }
+ earlyTrafficSecret := hs.suite.deriveSecret(hs.earlySecret, clientEarlyTrafficLabel, transcript)
+ c.quicSetReadSecret(QUICEncryptionLevelEarly, hs.suite.id, earlyTrafficSecret)
+ }
+
+ c.didResume = true
+ c.peerCertificates = sessionState.peerCertificates
+ c.ocspResponse = sessionState.ocspResponse
+ c.scts = sessionState.scts
+ c.verifiedChains = sessionState.verifiedChains
+
+ hs.hello.selectedIdentityPresent = true
+ hs.hello.selectedIdentity = uint16(i)
+ hs.usingPSK = true
+ return nil
+ }
+
+ return nil
+}
+
+// cloneHash uses the encoding.BinaryMarshaler and encoding.BinaryUnmarshaler
+// interfaces implemented by standard library hashes to clone the state of in
+// to a new instance of h. It returns nil if the operation fails.
+func cloneHash(in hash.Hash, h crypto.Hash) hash.Hash {
+ // Recreate the interface to avoid importing encoding.
+ type binaryMarshaler interface {
+ MarshalBinary() (data []byte, err error)
+ UnmarshalBinary(data []byte) error
+ }
+ marshaler, ok := in.(binaryMarshaler)
+ if !ok {
+ return nil
+ }
+ state, err := marshaler.MarshalBinary()
+ if err != nil {
+ return nil
+ }
+ out := h.New()
+ unmarshaler, ok := out.(binaryMarshaler)
+ if !ok {
+ return nil
+ }
+ if err := unmarshaler.UnmarshalBinary(state); err != nil {
+ return nil
+ }
+ return out
+}
+
+func (hs *serverHandshakeStateTLS13) pickCertificate() error {
+ c := hs.c
+
+ // Only one of PSK and certificates are used at a time.
+ if hs.usingPSK {
+ return nil
+ }
+
+ // signature_algorithms is required in TLS 1.3. See RFC 8446, Section 4.2.3.
+ if len(hs.clientHello.supportedSignatureAlgorithms) == 0 {
+ return c.sendAlert(alertMissingExtension)
+ }
+
+ certificate, err := c.config.getCertificate(clientHelloInfo(hs.ctx, c, hs.clientHello))
+ if err != nil {
+ if err == errNoCertificates {
+ c.sendAlert(alertUnrecognizedName)
+ } else {
+ c.sendAlert(alertInternalError)
+ }
+ return err
+ }
+ hs.sigAlg, err = selectSignatureScheme(c.vers, certificate, hs.clientHello.supportedSignatureAlgorithms)
+ if err != nil {
+ // getCertificate returned a certificate that is unsupported or
+ // incompatible with the client's signature algorithms.
+ c.sendAlert(alertHandshakeFailure)
+ return err
+ }
+ hs.cert = certificate
+
+ return nil
+}
+
+// sendDummyChangeCipherSpec sends a ChangeCipherSpec record for compatibility
+// with middleboxes that didn't implement TLS correctly. See RFC 8446, Appendix D.4.
+func (hs *serverHandshakeStateTLS13) sendDummyChangeCipherSpec() error {
+ if hs.c.quic != nil {
+ return nil
+ }
+ if hs.sentDummyCCS {
+ return nil
+ }
+ hs.sentDummyCCS = true
+
+ return hs.c.writeChangeCipherRecord()
+}
+
+func (hs *serverHandshakeStateTLS13) doHelloRetryRequest(selectedGroup CurveID) error {
+ c := hs.c
+
+ // The first ClientHello gets double-hashed into the transcript upon a
+ // HelloRetryRequest. See RFC 8446, Section 4.4.1.
+ if err := transcriptMsg(hs.clientHello, hs.transcript); err != nil {
+ return err
+ }
+ chHash := hs.transcript.Sum(nil)
+ hs.transcript.Reset()
+ hs.transcript.Write([]byte{typeMessageHash, 0, 0, uint8(len(chHash))})
+ hs.transcript.Write(chHash)
+
+ helloRetryRequest := &serverHelloMsg{
+ vers: hs.hello.vers,
+ random: helloRetryRequestRandom,
+ sessionId: hs.hello.sessionId,
+ cipherSuite: hs.hello.cipherSuite,
+ compressionMethod: hs.hello.compressionMethod,
+ supportedVersion: hs.hello.supportedVersion,
+ selectedGroup: selectedGroup,
+ }
+
+ if _, err := hs.c.writeHandshakeRecord(helloRetryRequest, hs.transcript); err != nil {
+ return err
+ }
+
+ if err := hs.sendDummyChangeCipherSpec(); err != nil {
+ return err
+ }
+
+ // clientHelloMsg is not included in the transcript.
+ msg, err := c.readHandshake(nil)
+ if err != nil {
+ return err
+ }
+
+ clientHello, ok := msg.(*clientHelloMsg)
+ if !ok {
+ c.sendAlert(alertUnexpectedMessage)
+ return unexpectedMessageError(clientHello, msg)
+ }
+
+ if len(clientHello.keyShares) != 1 || clientHello.keyShares[0].group != selectedGroup {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: client sent invalid key share in second ClientHello")
+ }
+
+ if clientHello.earlyData {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: client indicated early data in second ClientHello")
+ }
+
+ if illegalClientHelloChange(clientHello, hs.clientHello) {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: client illegally modified second ClientHello")
+ }
+
+ hs.clientHello = clientHello
+ return nil
+}
+
+// illegalClientHelloChange reports whether the two ClientHello messages are
+// different, with the exception of the changes allowed before and after a
+// HelloRetryRequest. See RFC 8446, Section 4.1.2.
+func illegalClientHelloChange(ch, ch1 *clientHelloMsg) bool {
+ if len(ch.supportedVersions) != len(ch1.supportedVersions) ||
+ len(ch.cipherSuites) != len(ch1.cipherSuites) ||
+ len(ch.supportedCurves) != len(ch1.supportedCurves) ||
+ len(ch.supportedSignatureAlgorithms) != len(ch1.supportedSignatureAlgorithms) ||
+ len(ch.supportedSignatureAlgorithmsCert) != len(ch1.supportedSignatureAlgorithmsCert) ||
+ len(ch.alpnProtocols) != len(ch1.alpnProtocols) {
+ return true
+ }
+ for i := range ch.supportedVersions {
+ if ch.supportedVersions[i] != ch1.supportedVersions[i] {
+ return true
+ }
+ }
+ for i := range ch.cipherSuites {
+ if ch.cipherSuites[i] != ch1.cipherSuites[i] {
+ return true
+ }
+ }
+ for i := range ch.supportedCurves {
+ if ch.supportedCurves[i] != ch1.supportedCurves[i] {
+ return true
+ }
+ }
+ for i := range ch.supportedSignatureAlgorithms {
+ if ch.supportedSignatureAlgorithms[i] != ch1.supportedSignatureAlgorithms[i] {
+ return true
+ }
+ }
+ for i := range ch.supportedSignatureAlgorithmsCert {
+ if ch.supportedSignatureAlgorithmsCert[i] != ch1.supportedSignatureAlgorithmsCert[i] {
+ return true
+ }
+ }
+ for i := range ch.alpnProtocols {
+ if ch.alpnProtocols[i] != ch1.alpnProtocols[i] {
+ return true
+ }
+ }
+ return ch.vers != ch1.vers ||
+ !bytes.Equal(ch.random, ch1.random) ||
+ !bytes.Equal(ch.sessionId, ch1.sessionId) ||
+ !bytes.Equal(ch.compressionMethods, ch1.compressionMethods) ||
+ ch.serverName != ch1.serverName ||
+ ch.ocspStapling != ch1.ocspStapling ||
+ !bytes.Equal(ch.supportedPoints, ch1.supportedPoints) ||
+ ch.ticketSupported != ch1.ticketSupported ||
+ !bytes.Equal(ch.sessionTicket, ch1.sessionTicket) ||
+ ch.secureRenegotiationSupported != ch1.secureRenegotiationSupported ||
+ !bytes.Equal(ch.secureRenegotiation, ch1.secureRenegotiation) ||
+ ch.scts != ch1.scts ||
+ !bytes.Equal(ch.cookie, ch1.cookie) ||
+ !bytes.Equal(ch.pskModes, ch1.pskModes)
+}
+
+func (hs *serverHandshakeStateTLS13) sendServerParameters() error {
+ c := hs.c
+
+ if err := transcriptMsg(hs.clientHello, hs.transcript); err != nil {
+ return err
+ }
+ if _, err := hs.c.writeHandshakeRecord(hs.hello, hs.transcript); err != nil {
+ return err
+ }
+
+ if err := hs.sendDummyChangeCipherSpec(); err != nil {
+ return err
+ }
+
+ earlySecret := hs.earlySecret
+ if earlySecret == nil {
+ earlySecret = hs.suite.extract(nil, nil)
+ }
+ hs.handshakeSecret = hs.suite.extract(hs.sharedKey,
+ hs.suite.deriveSecret(earlySecret, "derived", nil))
+
+ clientSecret := hs.suite.deriveSecret(hs.handshakeSecret,
+ clientHandshakeTrafficLabel, hs.transcript)
+ c.in.setTrafficSecret(hs.suite, QUICEncryptionLevelHandshake, clientSecret)
+ serverSecret := hs.suite.deriveSecret(hs.handshakeSecret,
+ serverHandshakeTrafficLabel, hs.transcript)
+ c.out.setTrafficSecret(hs.suite, QUICEncryptionLevelHandshake, serverSecret)
+
+ if c.quic != nil {
+ if c.hand.Len() != 0 {
+ c.sendAlert(alertUnexpectedMessage)
+ }
+ c.quicSetWriteSecret(QUICEncryptionLevelHandshake, hs.suite.id, serverSecret)
+ c.quicSetReadSecret(QUICEncryptionLevelHandshake, hs.suite.id, clientSecret)
+ }
+
+ err := c.config.writeKeyLog(keyLogLabelClientHandshake, hs.clientHello.random, clientSecret)
+ if err != nil {
+ c.sendAlert(alertInternalError)
+ return err
+ }
+ err = c.config.writeKeyLog(keyLogLabelServerHandshake, hs.clientHello.random, serverSecret)
+ if err != nil {
+ c.sendAlert(alertInternalError)
+ return err
+ }
+
+ encryptedExtensions := new(encryptedExtensionsMsg)
+ encryptedExtensions.alpnProtocol = c.clientProtocol
+
+ if c.quic != nil {
+ p, err := c.quicGetTransportParameters()
+ if err != nil {
+ return err
+ }
+ encryptedExtensions.quicTransportParameters = p
+ encryptedExtensions.earlyData = hs.earlyData
+ }
+
+ if _, err := hs.c.writeHandshakeRecord(encryptedExtensions, hs.transcript); err != nil {
+ return err
+ }
+
+ return nil
+}
+
+func (hs *serverHandshakeStateTLS13) requestClientCert() bool {
+ return hs.c.config.ClientAuth >= RequestClientCert && !hs.usingPSK
+}
+
+func (hs *serverHandshakeStateTLS13) sendServerCertificate() error {
+ c := hs.c
+
+ // Only one of PSK and certificates are used at a time.
+ if hs.usingPSK {
+ return nil
+ }
+
+ if hs.requestClientCert() {
+ // Request a client certificate
+ certReq := new(certificateRequestMsgTLS13)
+ certReq.ocspStapling = true
+ certReq.scts = true
+ certReq.supportedSignatureAlgorithms = supportedSignatureAlgorithms()
+ if c.config.ClientCAs != nil {
+ certReq.certificateAuthorities = c.config.ClientCAs.Subjects()
+ }
+
+ if _, err := hs.c.writeHandshakeRecord(certReq, hs.transcript); err != nil {
+ return err
+ }
+ }
+
+ certMsg := new(certificateMsgTLS13)
+
+ certMsg.certificate = *hs.cert
+ certMsg.scts = hs.clientHello.scts && len(hs.cert.SignedCertificateTimestamps) > 0
+ certMsg.ocspStapling = hs.clientHello.ocspStapling && len(hs.cert.OCSPStaple) > 0
+
+ if _, err := hs.c.writeHandshakeRecord(certMsg, hs.transcript); err != nil {
+ return err
+ }
+
+ certVerifyMsg := new(certificateVerifyMsg)
+ certVerifyMsg.hasSignatureAlgorithm = true
+ certVerifyMsg.signatureAlgorithm = hs.sigAlg
+
+ sigType, sigHash, err := typeAndHashFromSignatureScheme(hs.sigAlg)
+ if err != nil {
+ return c.sendAlert(alertInternalError)
+ }
+
+ signed := signedMessage(sigHash, serverSignatureContext, hs.transcript)
+ signOpts := crypto.SignerOpts(sigHash)
+ if sigType == signatureRSAPSS {
+ signOpts = &rsa.PSSOptions{SaltLength: rsa.PSSSaltLengthEqualsHash, Hash: sigHash}
+ }
+ sig, err := hs.cert.PrivateKey.(crypto.Signer).Sign(c.config.rand(), signed, signOpts)
+ if err != nil {
+ public := hs.cert.PrivateKey.(crypto.Signer).Public()
+ if rsaKey, ok := public.(*rsa.PublicKey); ok && sigType == signatureRSAPSS &&
+ rsaKey.N.BitLen()/8 < sigHash.Size()*2+2 { // key too small for RSA-PSS
+ c.sendAlert(alertHandshakeFailure)
+ } else {
+ c.sendAlert(alertInternalError)
+ }
+ return errors.New("tls: failed to sign handshake: " + err.Error())
+ }
+ certVerifyMsg.signature = sig
+
+ if _, err := hs.c.writeHandshakeRecord(certVerifyMsg, hs.transcript); err != nil {
+ return err
+ }
+
+ return nil
+}
+
+func (hs *serverHandshakeStateTLS13) sendServerFinished() error {
+ c := hs.c
+
+ finished := &finishedMsg{
+ verifyData: hs.suite.finishedHash(c.out.trafficSecret, hs.transcript),
+ }
+
+ if _, err := hs.c.writeHandshakeRecord(finished, hs.transcript); err != nil {
+ return err
+ }
+
+ // Derive secrets that take context through the server Finished.
+
+ hs.masterSecret = hs.suite.extract(nil,
+ hs.suite.deriveSecret(hs.handshakeSecret, "derived", nil))
+
+ hs.trafficSecret = hs.suite.deriveSecret(hs.masterSecret,
+ clientApplicationTrafficLabel, hs.transcript)
+ serverSecret := hs.suite.deriveSecret(hs.masterSecret,
+ serverApplicationTrafficLabel, hs.transcript)
+ c.out.setTrafficSecret(hs.suite, QUICEncryptionLevelApplication, serverSecret)
+
+ if c.quic != nil {
+ if c.hand.Len() != 0 {
+ // TODO: Handle this in setTrafficSecret?
+ c.sendAlert(alertUnexpectedMessage)
+ }
+ c.quicSetWriteSecret(QUICEncryptionLevelApplication, hs.suite.id, serverSecret)
+ }
+
+ err := c.config.writeKeyLog(keyLogLabelClientTraffic, hs.clientHello.random, hs.trafficSecret)
+ if err != nil {
+ c.sendAlert(alertInternalError)
+ return err
+ }
+ err = c.config.writeKeyLog(keyLogLabelServerTraffic, hs.clientHello.random, serverSecret)
+ if err != nil {
+ c.sendAlert(alertInternalError)
+ return err
+ }
+
+ c.ekm = hs.suite.exportKeyingMaterial(hs.masterSecret, hs.transcript)
+
+ // If we did not request client certificates, at this point we can
+ // precompute the client finished and roll the transcript forward to send
+ // session tickets in our first flight.
+ if !hs.requestClientCert() {
+ if err := hs.sendSessionTickets(); err != nil {
+ return err
+ }
+ }
+
+ return nil
+}
+
+func (hs *serverHandshakeStateTLS13) shouldSendSessionTickets() bool {
+ if hs.c.config.SessionTicketsDisabled {
+ return false
+ }
+
+ // QUIC tickets are sent by QUICConn.SendSessionTicket, not automatically.
+ if hs.c.quic != nil {
+ return false
+ }
+
+ // Don't send tickets the client wouldn't use. See RFC 8446, Section 4.2.9.
+ for _, pskMode := range hs.clientHello.pskModes {
+ if pskMode == pskModeDHE {
+ return true
+ }
+ }
+ return false
+}
+
+func (hs *serverHandshakeStateTLS13) sendSessionTickets() error {
+ c := hs.c
+
+ hs.clientFinished = hs.suite.finishedHash(c.in.trafficSecret, hs.transcript)
+ finishedMsg := &finishedMsg{
+ verifyData: hs.clientFinished,
+ }
+ if err := transcriptMsg(finishedMsg, hs.transcript); err != nil {
+ return err
+ }
+
+ c.resumptionSecret = hs.suite.deriveSecret(hs.masterSecret,
+ resumptionLabel, hs.transcript)
+
+ if !hs.shouldSendSessionTickets() {
+ return nil
+ }
+ return c.sendSessionTicket(false)
+}
+
+func (c *Conn) sendSessionTicket(earlyData bool) error {
+ suite := cipherSuiteTLS13ByID(c.cipherSuite)
+ if suite == nil {
+ return errors.New("tls: internal error: unknown cipher suite")
+ }
+ // ticket_nonce, which must be unique per connection, is always left at
+ // zero because we only ever send one ticket per connection.
+ psk := suite.expandLabel(c.resumptionSecret, "resumption",
+ nil, suite.hash.Size())
+
+ m := new(newSessionTicketMsgTLS13)
+
+ state, err := c.sessionState()
+ if err != nil {
+ return err
+ }
+ state.secret = psk
+ state.EarlyData = earlyData
+ if c.config.WrapSession != nil {
+ m.label, err = c.config.WrapSession(c.connectionStateLocked(), state)
+ if err != nil {
+ return err
+ }
+ } else {
+ stateBytes, err := state.Bytes()
+ if err != nil {
+ c.sendAlert(alertInternalError)
+ return err
+ }
+ m.label, err = c.config.encryptTicket(stateBytes, c.ticketKeys)
+ if err != nil {
+ return err
+ }
+ }
+ m.lifetime = uint32(maxSessionTicketLifetime / time.Second)
+
+ // ticket_age_add is a random 32-bit value. See RFC 8446, section 4.6.1
+ // The value is not stored anywhere; we never need to check the ticket age
+ // because 0-RTT is not supported.
+ ageAdd := make([]byte, 4)
+ _, err = c.config.rand().Read(ageAdd)
+ if err != nil {
+ return err
+ }
+ m.ageAdd = binary.LittleEndian.Uint32(ageAdd)
+
+ if earlyData {
+ // RFC 9001, Section 4.6.1
+ m.maxEarlyData = 0xffffffff
+ }
+
+ if _, err := c.writeHandshakeRecord(m, nil); err != nil {
+ return err
+ }
+
+ return nil
+}
+
+func (hs *serverHandshakeStateTLS13) readClientCertificate() error {
+ c := hs.c
+
+ if !hs.requestClientCert() {
+ // Make sure the connection is still being verified whether or not
+ // the server requested a client certificate.
+ if c.config.VerifyConnection != nil {
+ if err := c.config.VerifyConnection(c.connectionStateLocked()); err != nil {
+ c.sendAlert(alertBadCertificate)
+ return err
+ }
+ }
+ return nil
+ }
+
+ // If we requested a client certificate, then the client must send a
+ // certificate message. If it's empty, no CertificateVerify is sent.
+
+ msg, err := c.readHandshake(hs.transcript)
+ if err != nil {
+ return err
+ }
+
+ certMsg, ok := msg.(*certificateMsgTLS13)
+ if !ok {
+ c.sendAlert(alertUnexpectedMessage)
+ return unexpectedMessageError(certMsg, msg)
+ }
+
+ if err := c.processCertsFromClient(certMsg.certificate); err != nil {
+ return err
+ }
+
+ if c.config.VerifyConnection != nil {
+ if err := c.config.VerifyConnection(c.connectionStateLocked()); err != nil {
+ c.sendAlert(alertBadCertificate)
+ return err
+ }
+ }
+
+ if len(certMsg.certificate.Certificate) != 0 {
+ // certificateVerifyMsg is included in the transcript, but not until
+ // after we verify the handshake signature, since the state before
+ // this message was sent is used.
+ msg, err = c.readHandshake(nil)
+ if err != nil {
+ return err
+ }
+
+ certVerify, ok := msg.(*certificateVerifyMsg)
+ if !ok {
+ c.sendAlert(alertUnexpectedMessage)
+ return unexpectedMessageError(certVerify, msg)
+ }
+
+ // See RFC 8446, Section 4.4.3.
+ if !isSupportedSignatureAlgorithm(certVerify.signatureAlgorithm, supportedSignatureAlgorithms()) {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: client certificate used with invalid signature algorithm")
+ }
+ sigType, sigHash, err := typeAndHashFromSignatureScheme(certVerify.signatureAlgorithm)
+ if err != nil {
+ return c.sendAlert(alertInternalError)
+ }
+ if sigType == signaturePKCS1v15 || sigHash == crypto.SHA1 {
+ c.sendAlert(alertIllegalParameter)
+ return errors.New("tls: client certificate used with invalid signature algorithm")
+ }
+ signed := signedMessage(sigHash, clientSignatureContext, hs.transcript)
+ if err := verifyHandshakeSignature(sigType, c.peerCertificates[0].PublicKey,
+ sigHash, signed, certVerify.signature); err != nil {
+ c.sendAlert(alertDecryptError)
+ return errors.New("tls: invalid signature by the client certificate: " + err.Error())
+ }
+
+ if err := transcriptMsg(certVerify, hs.transcript); err != nil {
+ return err
+ }
+ }
+
+ // If we waited until the client certificates to send session tickets, we
+ // are ready to do it now.
+ if err := hs.sendSessionTickets(); err != nil {
+ return err
+ }
+
+ return nil
+}
+
+func (hs *serverHandshakeStateTLS13) readClientFinished() error {
+ c := hs.c
+
+ // finishedMsg is not included in the transcript.
+ msg, err := c.readHandshake(nil)
+ if err != nil {
+ return err
+ }
+
+ finished, ok := msg.(*finishedMsg)
+ if !ok {
+ c.sendAlert(alertUnexpectedMessage)
+ return unexpectedMessageError(finished, msg)
+ }
+
+ if !hmac.Equal(hs.clientFinished, finished.verifyData) {
+ c.sendAlert(alertDecryptError)
+ return errors.New("tls: invalid client finished hash")
+ }
+
+ c.in.setTrafficSecret(hs.suite, QUICEncryptionLevelApplication, hs.trafficSecret)
+
+ return nil
+}
diff --git a/contrib/go/_std_1.21/src/crypto/tls/key_agreement.go b/contrib/go/_std_1.21/src/crypto/tls/key_agreement.go
new file mode 100644
index 0000000000..2c8c5b8d77
--- /dev/null
+++ b/contrib/go/_std_1.21/src/crypto/tls/key_agreement.go
@@ -0,0 +1,366 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package tls
+
+import (
+ "crypto"
+ "crypto/ecdh"
+ "crypto/md5"
+ "crypto/rsa"
+ "crypto/sha1"
+ "crypto/x509"
+ "errors"
+ "fmt"
+ "io"
+)
+
+// a keyAgreement implements the client and server side of a TLS key agreement
+// protocol by generating and processing key exchange messages.
+type keyAgreement interface {
+ // On the server side, the first two methods are called in order.
+
+ // In the case that the key agreement protocol doesn't use a
+ // ServerKeyExchange message, generateServerKeyExchange can return nil,
+ // nil.
+ generateServerKeyExchange(*Config, *Certificate, *clientHelloMsg, *serverHelloMsg) (*serverKeyExchangeMsg, error)
+ processClientKeyExchange(*Config, *Certificate, *clientKeyExchangeMsg, uint16) ([]byte, error)
+
+ // On the client side, the next two methods are called in order.
+
+ // This method may not be called if the server doesn't send a
+ // ServerKeyExchange message.
+ processServerKeyExchange(*Config, *clientHelloMsg, *serverHelloMsg, *x509.Certificate, *serverKeyExchangeMsg) error
+ generateClientKeyExchange(*Config, *clientHelloMsg, *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error)
+}
+
+var errClientKeyExchange = errors.New("tls: invalid ClientKeyExchange message")
+var errServerKeyExchange = errors.New("tls: invalid ServerKeyExchange message")
+
+// rsaKeyAgreement implements the standard TLS key agreement where the client
+// encrypts the pre-master secret to the server's public key.
+type rsaKeyAgreement struct{}
+
+func (ka rsaKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
+ return nil, nil
+}
+
+func (ka rsaKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) {
+ if len(ckx.ciphertext) < 2 {
+ return nil, errClientKeyExchange
+ }
+ ciphertextLen := int(ckx.ciphertext[0])<<8 | int(ckx.ciphertext[1])
+ if ciphertextLen != len(ckx.ciphertext)-2 {
+ return nil, errClientKeyExchange
+ }
+ ciphertext := ckx.ciphertext[2:]
+
+ priv, ok := cert.PrivateKey.(crypto.Decrypter)
+ if !ok {
+ return nil, errors.New("tls: certificate private key does not implement crypto.Decrypter")
+ }
+ // Perform constant time RSA PKCS #1 v1.5 decryption
+ preMasterSecret, err := priv.Decrypt(config.rand(), ciphertext, &rsa.PKCS1v15DecryptOptions{SessionKeyLen: 48})
+ if err != nil {
+ return nil, err
+ }
+ // We don't check the version number in the premaster secret. For one,
+ // by checking it, we would leak information about the validity of the
+ // encrypted pre-master secret. Secondly, it provides only a small
+ // benefit against a downgrade attack and some implementations send the
+ // wrong version anyway. See the discussion at the end of section
+ // 7.4.7.1 of RFC 4346.
+ return preMasterSecret, nil
+}
+
+func (ka rsaKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error {
+ return errors.New("tls: unexpected ServerKeyExchange")
+}
+
+func (ka rsaKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) {
+ preMasterSecret := make([]byte, 48)
+ preMasterSecret[0] = byte(clientHello.vers >> 8)
+ preMasterSecret[1] = byte(clientHello.vers)
+ _, err := io.ReadFull(config.rand(), preMasterSecret[2:])
+ if err != nil {
+ return nil, nil, err
+ }
+
+ rsaKey, ok := cert.PublicKey.(*rsa.PublicKey)
+ if !ok {
+ return nil, nil, errors.New("tls: server certificate contains incorrect key type for selected ciphersuite")
+ }
+ encrypted, err := rsa.EncryptPKCS1v15(config.rand(), rsaKey, preMasterSecret)
+ if err != nil {
+ return nil, nil, err
+ }
+ ckx := new(clientKeyExchangeMsg)
+ ckx.ciphertext = make([]byte, len(encrypted)+2)
+ ckx.ciphertext[0] = byte(len(encrypted) >> 8)
+ ckx.ciphertext[1] = byte(len(encrypted))
+ copy(ckx.ciphertext[2:], encrypted)
+ return preMasterSecret, ckx, nil
+}
+
+// sha1Hash calculates a SHA1 hash over the given byte slices.
+func sha1Hash(slices [][]byte) []byte {
+ hsha1 := sha1.New()
+ for _, slice := range slices {
+ hsha1.Write(slice)
+ }
+ return hsha1.Sum(nil)
+}
+
+// md5SHA1Hash implements TLS 1.0's hybrid hash function which consists of the
+// concatenation of an MD5 and SHA1 hash.
+func md5SHA1Hash(slices [][]byte) []byte {
+ md5sha1 := make([]byte, md5.Size+sha1.Size)
+ hmd5 := md5.New()
+ for _, slice := range slices {
+ hmd5.Write(slice)
+ }
+ copy(md5sha1, hmd5.Sum(nil))
+ copy(md5sha1[md5.Size:], sha1Hash(slices))
+ return md5sha1
+}
+
+// hashForServerKeyExchange hashes the given slices and returns their digest
+// using the given hash function (for >= TLS 1.2) or using a default based on
+// the sigType (for earlier TLS versions). For Ed25519 signatures, which don't
+// do pre-hashing, it returns the concatenation of the slices.
+func hashForServerKeyExchange(sigType uint8, hashFunc crypto.Hash, version uint16, slices ...[]byte) []byte {
+ if sigType == signatureEd25519 {
+ var signed []byte
+ for _, slice := range slices {
+ signed = append(signed, slice...)
+ }
+ return signed
+ }
+ if version >= VersionTLS12 {
+ h := hashFunc.New()
+ for _, slice := range slices {
+ h.Write(slice)
+ }
+ digest := h.Sum(nil)
+ return digest
+ }
+ if sigType == signatureECDSA {
+ return sha1Hash(slices)
+ }
+ return md5SHA1Hash(slices)
+}
+
+// ecdheKeyAgreement implements a TLS key agreement where the server
+// generates an ephemeral EC public/private key pair and signs it. The
+// pre-master secret is then calculated using ECDH. The signature may
+// be ECDSA, Ed25519 or RSA.
+type ecdheKeyAgreement struct {
+ version uint16
+ isRSA bool
+ key *ecdh.PrivateKey
+
+ // ckx and preMasterSecret are generated in processServerKeyExchange
+ // and returned in generateClientKeyExchange.
+ ckx *clientKeyExchangeMsg
+ preMasterSecret []byte
+}
+
+func (ka *ecdheKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
+ var curveID CurveID
+ for _, c := range clientHello.supportedCurves {
+ if config.supportsCurve(c) {
+ curveID = c
+ break
+ }
+ }
+
+ if curveID == 0 {
+ return nil, errors.New("tls: no supported elliptic curves offered")
+ }
+ if _, ok := curveForCurveID(curveID); !ok {
+ return nil, errors.New("tls: CurvePreferences includes unsupported curve")
+ }
+
+ key, err := generateECDHEKey(config.rand(), curveID)
+ if err != nil {
+ return nil, err
+ }
+ ka.key = key
+
+ // See RFC 4492, Section 5.4.
+ ecdhePublic := key.PublicKey().Bytes()
+ serverECDHEParams := make([]byte, 1+2+1+len(ecdhePublic))
+ serverECDHEParams[0] = 3 // named curve
+ serverECDHEParams[1] = byte(curveID >> 8)
+ serverECDHEParams[2] = byte(curveID)
+ serverECDHEParams[3] = byte(len(ecdhePublic))
+ copy(serverECDHEParams[4:], ecdhePublic)
+
+ priv, ok := cert.PrivateKey.(crypto.Signer)
+ if !ok {
+ return nil, fmt.Errorf("tls: certificate private key of type %T does not implement crypto.Signer", cert.PrivateKey)
+ }
+
+ var signatureAlgorithm SignatureScheme
+ var sigType uint8
+ var sigHash crypto.Hash
+ if ka.version >= VersionTLS12 {
+ signatureAlgorithm, err = selectSignatureScheme(ka.version, cert, clientHello.supportedSignatureAlgorithms)
+ if err != nil {
+ return nil, err
+ }
+ sigType, sigHash, err = typeAndHashFromSignatureScheme(signatureAlgorithm)
+ if err != nil {
+ return nil, err
+ }
+ } else {
+ sigType, sigHash, err = legacyTypeAndHashFromPublicKey(priv.Public())
+ if err != nil {
+ return nil, err
+ }
+ }
+ if (sigType == signaturePKCS1v15 || sigType == signatureRSAPSS) != ka.isRSA {
+ return nil, errors.New("tls: certificate cannot be used with the selected cipher suite")
+ }
+
+ signed := hashForServerKeyExchange(sigType, sigHash, ka.version, clientHello.random, hello.random, serverECDHEParams)
+
+ signOpts := crypto.SignerOpts(sigHash)
+ if sigType == signatureRSAPSS {
+ signOpts = &rsa.PSSOptions{SaltLength: rsa.PSSSaltLengthEqualsHash, Hash: sigHash}
+ }
+ sig, err := priv.Sign(config.rand(), signed, signOpts)
+ if err != nil {
+ return nil, errors.New("tls: failed to sign ECDHE parameters: " + err.Error())
+ }
+
+ skx := new(serverKeyExchangeMsg)
+ sigAndHashLen := 0
+ if ka.version >= VersionTLS12 {
+ sigAndHashLen = 2
+ }
+ skx.key = make([]byte, len(serverECDHEParams)+sigAndHashLen+2+len(sig))
+ copy(skx.key, serverECDHEParams)
+ k := skx.key[len(serverECDHEParams):]
+ if ka.version >= VersionTLS12 {
+ k[0] = byte(signatureAlgorithm >> 8)
+ k[1] = byte(signatureAlgorithm)
+ k = k[2:]
+ }
+ k[0] = byte(len(sig) >> 8)
+ k[1] = byte(len(sig))
+ copy(k[2:], sig)
+
+ return skx, nil
+}
+
+func (ka *ecdheKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) {
+ if len(ckx.ciphertext) == 0 || int(ckx.ciphertext[0]) != len(ckx.ciphertext)-1 {
+ return nil, errClientKeyExchange
+ }
+
+ peerKey, err := ka.key.Curve().NewPublicKey(ckx.ciphertext[1:])
+ if err != nil {
+ return nil, errClientKeyExchange
+ }
+ preMasterSecret, err := ka.key.ECDH(peerKey)
+ if err != nil {
+ return nil, errClientKeyExchange
+ }
+
+ return preMasterSecret, nil
+}
+
+func (ka *ecdheKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error {
+ if len(skx.key) < 4 {
+ return errServerKeyExchange
+ }
+ if skx.key[0] != 3 { // named curve
+ return errors.New("tls: server selected unsupported curve")
+ }
+ curveID := CurveID(skx.key[1])<<8 | CurveID(skx.key[2])
+
+ publicLen := int(skx.key[3])
+ if publicLen+4 > len(skx.key) {
+ return errServerKeyExchange
+ }
+ serverECDHEParams := skx.key[:4+publicLen]
+ publicKey := serverECDHEParams[4:]
+
+ sig := skx.key[4+publicLen:]
+ if len(sig) < 2 {
+ return errServerKeyExchange
+ }
+
+ if _, ok := curveForCurveID(curveID); !ok {
+ return errors.New("tls: server selected unsupported curve")
+ }
+
+ key, err := generateECDHEKey(config.rand(), curveID)
+ if err != nil {
+ return err
+ }
+ ka.key = key
+
+ peerKey, err := key.Curve().NewPublicKey(publicKey)
+ if err != nil {
+ return errServerKeyExchange
+ }
+ ka.preMasterSecret, err = key.ECDH(peerKey)
+ if err != nil {
+ return errServerKeyExchange
+ }
+
+ ourPublicKey := key.PublicKey().Bytes()
+ ka.ckx = new(clientKeyExchangeMsg)
+ ka.ckx.ciphertext = make([]byte, 1+len(ourPublicKey))
+ ka.ckx.ciphertext[0] = byte(len(ourPublicKey))
+ copy(ka.ckx.ciphertext[1:], ourPublicKey)
+
+ var sigType uint8
+ var sigHash crypto.Hash
+ if ka.version >= VersionTLS12 {
+ signatureAlgorithm := SignatureScheme(sig[0])<<8 | SignatureScheme(sig[1])
+ sig = sig[2:]
+ if len(sig) < 2 {
+ return errServerKeyExchange
+ }
+
+ if !isSupportedSignatureAlgorithm(signatureAlgorithm, clientHello.supportedSignatureAlgorithms) {
+ return errors.New("tls: certificate used with invalid signature algorithm")
+ }
+ sigType, sigHash, err = typeAndHashFromSignatureScheme(signatureAlgorithm)
+ if err != nil {
+ return err
+ }
+ } else {
+ sigType, sigHash, err = legacyTypeAndHashFromPublicKey(cert.PublicKey)
+ if err != nil {
+ return err
+ }
+ }
+ if (sigType == signaturePKCS1v15 || sigType == signatureRSAPSS) != ka.isRSA {
+ return errServerKeyExchange
+ }
+
+ sigLen := int(sig[0])<<8 | int(sig[1])
+ if sigLen+2 != len(sig) {
+ return errServerKeyExchange
+ }
+ sig = sig[2:]
+
+ signed := hashForServerKeyExchange(sigType, sigHash, ka.version, clientHello.random, serverHello.random, serverECDHEParams)
+ if err := verifyHandshakeSignature(sigType, cert.PublicKey, sigHash, signed, sig); err != nil {
+ return errors.New("tls: invalid signature by the server certificate: " + err.Error())
+ }
+ return nil
+}
+
+func (ka *ecdheKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) {
+ if ka.ckx == nil {
+ return nil, nil, errors.New("tls: missing ServerKeyExchange message")
+ }
+
+ return ka.preMasterSecret, ka.ckx, nil
+}
diff --git a/contrib/go/_std_1.21/src/crypto/tls/key_schedule.go b/contrib/go/_std_1.21/src/crypto/tls/key_schedule.go
new file mode 100644
index 0000000000..d7f082c9ee
--- /dev/null
+++ b/contrib/go/_std_1.21/src/crypto/tls/key_schedule.go
@@ -0,0 +1,159 @@
+// Copyright 2018 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package tls
+
+import (
+ "crypto/ecdh"
+ "crypto/hmac"
+ "errors"
+ "fmt"
+ "hash"
+ "io"
+
+ "golang.org/x/crypto/cryptobyte"
+ "golang.org/x/crypto/hkdf"
+)
+
+// This file contains the functions necessary to compute the TLS 1.3 key
+// schedule. See RFC 8446, Section 7.
+
+const (
+ resumptionBinderLabel = "res binder"
+ clientEarlyTrafficLabel = "c e traffic"
+ clientHandshakeTrafficLabel = "c hs traffic"
+ serverHandshakeTrafficLabel = "s hs traffic"
+ clientApplicationTrafficLabel = "c ap traffic"
+ serverApplicationTrafficLabel = "s ap traffic"
+ exporterLabel = "exp master"
+ resumptionLabel = "res master"
+ trafficUpdateLabel = "traffic upd"
+)
+
+// expandLabel implements HKDF-Expand-Label from RFC 8446, Section 7.1.
+func (c *cipherSuiteTLS13) expandLabel(secret []byte, label string, context []byte, length int) []byte {
+ var hkdfLabel cryptobyte.Builder
+ hkdfLabel.AddUint16(uint16(length))
+ hkdfLabel.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddBytes([]byte("tls13 "))
+ b.AddBytes([]byte(label))
+ })
+ hkdfLabel.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddBytes(context)
+ })
+ hkdfLabelBytes, err := hkdfLabel.Bytes()
+ if err != nil {
+ // Rather than calling BytesOrPanic, we explicitly handle this error, in
+ // order to provide a reasonable error message. It should be basically
+ // impossible for this to panic, and routing errors back through the
+ // tree rooted in this function is quite painful. The labels are fixed
+ // size, and the context is either a fixed-length computed hash, or
+ // parsed from a field which has the same length limitation. As such, an
+ // error here is likely to only be caused during development.
+ //
+ // NOTE: another reasonable approach here might be to return a
+ // randomized slice if we encounter an error, which would break the
+ // connection, but avoid panicking. This would perhaps be safer but
+ // significantly more confusing to users.
+ panic(fmt.Errorf("failed to construct HKDF label: %s", err))
+ }
+ out := make([]byte, length)
+ n, err := hkdf.Expand(c.hash.New, secret, hkdfLabelBytes).Read(out)
+ if err != nil || n != length {
+ panic("tls: HKDF-Expand-Label invocation failed unexpectedly")
+ }
+ return out
+}
+
+// deriveSecret implements Derive-Secret from RFC 8446, Section 7.1.
+func (c *cipherSuiteTLS13) deriveSecret(secret []byte, label string, transcript hash.Hash) []byte {
+ if transcript == nil {
+ transcript = c.hash.New()
+ }
+ return c.expandLabel(secret, label, transcript.Sum(nil), c.hash.Size())
+}
+
+// extract implements HKDF-Extract with the cipher suite hash.
+func (c *cipherSuiteTLS13) extract(newSecret, currentSecret []byte) []byte {
+ if newSecret == nil {
+ newSecret = make([]byte, c.hash.Size())
+ }
+ return hkdf.Extract(c.hash.New, newSecret, currentSecret)
+}
+
+// nextTrafficSecret generates the next traffic secret, given the current one,
+// according to RFC 8446, Section 7.2.
+func (c *cipherSuiteTLS13) nextTrafficSecret(trafficSecret []byte) []byte {
+ return c.expandLabel(trafficSecret, trafficUpdateLabel, nil, c.hash.Size())
+}
+
+// trafficKey generates traffic keys according to RFC 8446, Section 7.3.
+func (c *cipherSuiteTLS13) trafficKey(trafficSecret []byte) (key, iv []byte) {
+ key = c.expandLabel(trafficSecret, "key", nil, c.keyLen)
+ iv = c.expandLabel(trafficSecret, "iv", nil, aeadNonceLength)
+ return
+}
+
+// finishedHash generates the Finished verify_data or PskBinderEntry according
+// to RFC 8446, Section 4.4.4. See sections 4.4 and 4.2.11.2 for the baseKey
+// selection.
+func (c *cipherSuiteTLS13) finishedHash(baseKey []byte, transcript hash.Hash) []byte {
+ finishedKey := c.expandLabel(baseKey, "finished", nil, c.hash.Size())
+ verifyData := hmac.New(c.hash.New, finishedKey)
+ verifyData.Write(transcript.Sum(nil))
+ return verifyData.Sum(nil)
+}
+
+// exportKeyingMaterial implements RFC5705 exporters for TLS 1.3 according to
+// RFC 8446, Section 7.5.
+func (c *cipherSuiteTLS13) exportKeyingMaterial(masterSecret []byte, transcript hash.Hash) func(string, []byte, int) ([]byte, error) {
+ expMasterSecret := c.deriveSecret(masterSecret, exporterLabel, transcript)
+ return func(label string, context []byte, length int) ([]byte, error) {
+ secret := c.deriveSecret(expMasterSecret, label, nil)
+ h := c.hash.New()
+ h.Write(context)
+ return c.expandLabel(secret, "exporter", h.Sum(nil), length), nil
+ }
+}
+
+// generateECDHEKey returns a PrivateKey that implements Diffie-Hellman
+// according to RFC 8446, Section 4.2.8.2.
+func generateECDHEKey(rand io.Reader, curveID CurveID) (*ecdh.PrivateKey, error) {
+ curve, ok := curveForCurveID(curveID)
+ if !ok {
+ return nil, errors.New("tls: internal error: unsupported curve")
+ }
+
+ return curve.GenerateKey(rand)
+}
+
+func curveForCurveID(id CurveID) (ecdh.Curve, bool) {
+ switch id {
+ case X25519:
+ return ecdh.X25519(), true
+ case CurveP256:
+ return ecdh.P256(), true
+ case CurveP384:
+ return ecdh.P384(), true
+ case CurveP521:
+ return ecdh.P521(), true
+ default:
+ return nil, false
+ }
+}
+
+func curveIDForCurve(curve ecdh.Curve) (CurveID, bool) {
+ switch curve {
+ case ecdh.X25519():
+ return X25519, true
+ case ecdh.P256():
+ return CurveP256, true
+ case ecdh.P384():
+ return CurveP384, true
+ case ecdh.P521():
+ return CurveP521, true
+ default:
+ return 0, false
+ }
+}
diff --git a/contrib/go/_std_1.21/src/crypto/tls/notboring.go b/contrib/go/_std_1.21/src/crypto/tls/notboring.go
new file mode 100644
index 0000000000..7d85b39c59
--- /dev/null
+++ b/contrib/go/_std_1.21/src/crypto/tls/notboring.go
@@ -0,0 +1,20 @@
+// Copyright 2022 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build !boringcrypto
+
+package tls
+
+func needFIPS() bool { return false }
+
+func supportedSignatureAlgorithms() []SignatureScheme {
+ return defaultSupportedSignatureAlgorithms
+}
+
+func fipsMinVersion(c *Config) uint16 { panic("fipsMinVersion") }
+func fipsMaxVersion(c *Config) uint16 { panic("fipsMaxVersion") }
+func fipsCurvePreferences(c *Config) []CurveID { panic("fipsCurvePreferences") }
+func fipsCipherSuites(c *Config) []uint16 { panic("fipsCipherSuites") }
+
+var fipsSupportedSignatureAlgorithms []SignatureScheme
diff --git a/contrib/go/_std_1.21/src/crypto/tls/prf.go b/contrib/go/_std_1.21/src/crypto/tls/prf.go
new file mode 100644
index 0000000000..20bac96e86
--- /dev/null
+++ b/contrib/go/_std_1.21/src/crypto/tls/prf.go
@@ -0,0 +1,292 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package tls
+
+import (
+ "crypto"
+ "crypto/hmac"
+ "crypto/md5"
+ "crypto/sha1"
+ "crypto/sha256"
+ "crypto/sha512"
+ "errors"
+ "fmt"
+ "hash"
+)
+
+// Split a premaster secret in two as specified in RFC 4346, Section 5.
+func splitPreMasterSecret(secret []byte) (s1, s2 []byte) {
+ s1 = secret[0 : (len(secret)+1)/2]
+ s2 = secret[len(secret)/2:]
+ return
+}
+
+// pHash implements the P_hash function, as defined in RFC 4346, Section 5.
+func pHash(result, secret, seed []byte, hash func() hash.Hash) {
+ h := hmac.New(hash, secret)
+ h.Write(seed)
+ a := h.Sum(nil)
+
+ j := 0
+ for j < len(result) {
+ h.Reset()
+ h.Write(a)
+ h.Write(seed)
+ b := h.Sum(nil)
+ copy(result[j:], b)
+ j += len(b)
+
+ h.Reset()
+ h.Write(a)
+ a = h.Sum(nil)
+ }
+}
+
+// prf10 implements the TLS 1.0 pseudo-random function, as defined in RFC 2246, Section 5.
+func prf10(result, secret, label, seed []byte) {
+ hashSHA1 := sha1.New
+ hashMD5 := md5.New
+
+ labelAndSeed := make([]byte, len(label)+len(seed))
+ copy(labelAndSeed, label)
+ copy(labelAndSeed[len(label):], seed)
+
+ s1, s2 := splitPreMasterSecret(secret)
+ pHash(result, s1, labelAndSeed, hashMD5)
+ result2 := make([]byte, len(result))
+ pHash(result2, s2, labelAndSeed, hashSHA1)
+
+ for i, b := range result2 {
+ result[i] ^= b
+ }
+}
+
+// prf12 implements the TLS 1.2 pseudo-random function, as defined in RFC 5246, Section 5.
+func prf12(hashFunc func() hash.Hash) func(result, secret, label, seed []byte) {
+ return func(result, secret, label, seed []byte) {
+ labelAndSeed := make([]byte, len(label)+len(seed))
+ copy(labelAndSeed, label)
+ copy(labelAndSeed[len(label):], seed)
+
+ pHash(result, secret, labelAndSeed, hashFunc)
+ }
+}
+
+const (
+ masterSecretLength = 48 // Length of a master secret in TLS 1.1.
+ finishedVerifyLength = 12 // Length of verify_data in a Finished message.
+)
+
+var masterSecretLabel = []byte("master secret")
+var extendedMasterSecretLabel = []byte("extended master secret")
+var keyExpansionLabel = []byte("key expansion")
+var clientFinishedLabel = []byte("client finished")
+var serverFinishedLabel = []byte("server finished")
+
+func prfAndHashForVersion(version uint16, suite *cipherSuite) (func(result, secret, label, seed []byte), crypto.Hash) {
+ switch version {
+ case VersionTLS10, VersionTLS11:
+ return prf10, crypto.Hash(0)
+ case VersionTLS12:
+ if suite.flags&suiteSHA384 != 0 {
+ return prf12(sha512.New384), crypto.SHA384
+ }
+ return prf12(sha256.New), crypto.SHA256
+ default:
+ panic("unknown version")
+ }
+}
+
+func prfForVersion(version uint16, suite *cipherSuite) func(result, secret, label, seed []byte) {
+ prf, _ := prfAndHashForVersion(version, suite)
+ return prf
+}
+
+// masterFromPreMasterSecret generates the master secret from the pre-master
+// secret. See RFC 5246, Section 8.1.
+func masterFromPreMasterSecret(version uint16, suite *cipherSuite, preMasterSecret, clientRandom, serverRandom []byte) []byte {
+ seed := make([]byte, 0, len(clientRandom)+len(serverRandom))
+ seed = append(seed, clientRandom...)
+ seed = append(seed, serverRandom...)
+
+ masterSecret := make([]byte, masterSecretLength)
+ prfForVersion(version, suite)(masterSecret, preMasterSecret, masterSecretLabel, seed)
+ return masterSecret
+}
+
+// extMasterFromPreMasterSecret generates the extended master secret from the
+// pre-master secret. See RFC 7627.
+func extMasterFromPreMasterSecret(version uint16, suite *cipherSuite, preMasterSecret, transcript []byte) []byte {
+ masterSecret := make([]byte, masterSecretLength)
+ prfForVersion(version, suite)(masterSecret, preMasterSecret, extendedMasterSecretLabel, transcript)
+ return masterSecret
+}
+
+// keysFromMasterSecret generates the connection keys from the master
+// secret, given the lengths of the MAC key, cipher key and IV, as defined in
+// RFC 2246, Section 6.3.
+func keysFromMasterSecret(version uint16, suite *cipherSuite, masterSecret, clientRandom, serverRandom []byte, macLen, keyLen, ivLen int) (clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV []byte) {
+ seed := make([]byte, 0, len(serverRandom)+len(clientRandom))
+ seed = append(seed, serverRandom...)
+ seed = append(seed, clientRandom...)
+
+ n := 2*macLen + 2*keyLen + 2*ivLen
+ keyMaterial := make([]byte, n)
+ prfForVersion(version, suite)(keyMaterial, masterSecret, keyExpansionLabel, seed)
+ clientMAC = keyMaterial[:macLen]
+ keyMaterial = keyMaterial[macLen:]
+ serverMAC = keyMaterial[:macLen]
+ keyMaterial = keyMaterial[macLen:]
+ clientKey = keyMaterial[:keyLen]
+ keyMaterial = keyMaterial[keyLen:]
+ serverKey = keyMaterial[:keyLen]
+ keyMaterial = keyMaterial[keyLen:]
+ clientIV = keyMaterial[:ivLen]
+ keyMaterial = keyMaterial[ivLen:]
+ serverIV = keyMaterial[:ivLen]
+ return
+}
+
+func newFinishedHash(version uint16, cipherSuite *cipherSuite) finishedHash {
+ var buffer []byte
+ if version >= VersionTLS12 {
+ buffer = []byte{}
+ }
+
+ prf, hash := prfAndHashForVersion(version, cipherSuite)
+ if hash != 0 {
+ return finishedHash{hash.New(), hash.New(), nil, nil, buffer, version, prf}
+ }
+
+ return finishedHash{sha1.New(), sha1.New(), md5.New(), md5.New(), buffer, version, prf}
+}
+
+// A finishedHash calculates the hash of a set of handshake messages suitable
+// for including in a Finished message.
+type finishedHash struct {
+ client hash.Hash
+ server hash.Hash
+
+ // Prior to TLS 1.2, an additional MD5 hash is required.
+ clientMD5 hash.Hash
+ serverMD5 hash.Hash
+
+ // In TLS 1.2, a full buffer is sadly required.
+ buffer []byte
+
+ version uint16
+ prf func(result, secret, label, seed []byte)
+}
+
+func (h *finishedHash) Write(msg []byte) (n int, err error) {
+ h.client.Write(msg)
+ h.server.Write(msg)
+
+ if h.version < VersionTLS12 {
+ h.clientMD5.Write(msg)
+ h.serverMD5.Write(msg)
+ }
+
+ if h.buffer != nil {
+ h.buffer = append(h.buffer, msg...)
+ }
+
+ return len(msg), nil
+}
+
+func (h finishedHash) Sum() []byte {
+ if h.version >= VersionTLS12 {
+ return h.client.Sum(nil)
+ }
+
+ out := make([]byte, 0, md5.Size+sha1.Size)
+ out = h.clientMD5.Sum(out)
+ return h.client.Sum(out)
+}
+
+// clientSum returns the contents of the verify_data member of a client's
+// Finished message.
+func (h finishedHash) clientSum(masterSecret []byte) []byte {
+ out := make([]byte, finishedVerifyLength)
+ h.prf(out, masterSecret, clientFinishedLabel, h.Sum())
+ return out
+}
+
+// serverSum returns the contents of the verify_data member of a server's
+// Finished message.
+func (h finishedHash) serverSum(masterSecret []byte) []byte {
+ out := make([]byte, finishedVerifyLength)
+ h.prf(out, masterSecret, serverFinishedLabel, h.Sum())
+ return out
+}
+
+// hashForClientCertificate returns the handshake messages so far, pre-hashed if
+// necessary, suitable for signing by a TLS client certificate.
+func (h finishedHash) hashForClientCertificate(sigType uint8, hashAlg crypto.Hash) []byte {
+ if (h.version >= VersionTLS12 || sigType == signatureEd25519) && h.buffer == nil {
+ panic("tls: handshake hash for a client certificate requested after discarding the handshake buffer")
+ }
+
+ if sigType == signatureEd25519 {
+ return h.buffer
+ }
+
+ if h.version >= VersionTLS12 {
+ hash := hashAlg.New()
+ hash.Write(h.buffer)
+ return hash.Sum(nil)
+ }
+
+ if sigType == signatureECDSA {
+ return h.server.Sum(nil)
+ }
+
+ return h.Sum()
+}
+
+// discardHandshakeBuffer is called when there is no more need to
+// buffer the entirety of the handshake messages.
+func (h *finishedHash) discardHandshakeBuffer() {
+ h.buffer = nil
+}
+
+// noExportedKeyingMaterial is used as a value of
+// ConnectionState.ekm when renegotiation is enabled and thus
+// we wish to fail all key-material export requests.
+func noExportedKeyingMaterial(label string, context []byte, length int) ([]byte, error) {
+ return nil, errors.New("crypto/tls: ExportKeyingMaterial is unavailable when renegotiation is enabled")
+}
+
+// ekmFromMasterSecret generates exported keying material as defined in RFC 5705.
+func ekmFromMasterSecret(version uint16, suite *cipherSuite, masterSecret, clientRandom, serverRandom []byte) func(string, []byte, int) ([]byte, error) {
+ return func(label string, context []byte, length int) ([]byte, error) {
+ switch label {
+ case "client finished", "server finished", "master secret", "key expansion":
+ // These values are reserved and may not be used.
+ return nil, fmt.Errorf("crypto/tls: reserved ExportKeyingMaterial label: %s", label)
+ }
+
+ seedLen := len(serverRandom) + len(clientRandom)
+ if context != nil {
+ seedLen += 2 + len(context)
+ }
+ seed := make([]byte, 0, seedLen)
+
+ seed = append(seed, clientRandom...)
+ seed = append(seed, serverRandom...)
+
+ if context != nil {
+ if len(context) >= 1<<16 {
+ return nil, fmt.Errorf("crypto/tls: ExportKeyingMaterial context too long")
+ }
+ seed = append(seed, byte(len(context)>>8), byte(len(context)))
+ seed = append(seed, context...)
+ }
+
+ keyMaterial := make([]byte, length)
+ prfForVersion(version, suite)(keyMaterial, masterSecret, []byte(label), seed)
+ return keyMaterial, nil
+ }
+}
diff --git a/contrib/go/_std_1.21/src/crypto/tls/quic.go b/contrib/go/_std_1.21/src/crypto/tls/quic.go
new file mode 100644
index 0000000000..ba5c2af0fb
--- /dev/null
+++ b/contrib/go/_std_1.21/src/crypto/tls/quic.go
@@ -0,0 +1,421 @@
+// Copyright 2023 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package tls
+
+import (
+ "context"
+ "errors"
+ "fmt"
+)
+
+// QUICEncryptionLevel represents a QUIC encryption level used to transmit
+// handshake messages.
+type QUICEncryptionLevel int
+
+const (
+ QUICEncryptionLevelInitial = QUICEncryptionLevel(iota)
+ QUICEncryptionLevelEarly
+ QUICEncryptionLevelHandshake
+ QUICEncryptionLevelApplication
+)
+
+func (l QUICEncryptionLevel) String() string {
+ switch l {
+ case QUICEncryptionLevelInitial:
+ return "Initial"
+ case QUICEncryptionLevelEarly:
+ return "Early"
+ case QUICEncryptionLevelHandshake:
+ return "Handshake"
+ case QUICEncryptionLevelApplication:
+ return "Application"
+ default:
+ return fmt.Sprintf("QUICEncryptionLevel(%v)", int(l))
+ }
+}
+
+// A QUICConn represents a connection which uses a QUIC implementation as the underlying
+// transport as described in RFC 9001.
+//
+// Methods of QUICConn are not safe for concurrent use.
+type QUICConn struct {
+ conn *Conn
+
+ sessionTicketSent bool
+}
+
+// A QUICConfig configures a QUICConn.
+type QUICConfig struct {
+ TLSConfig *Config
+}
+
+// A QUICEventKind is a type of operation on a QUIC connection.
+type QUICEventKind int
+
+const (
+ // QUICNoEvent indicates that there are no events available.
+ QUICNoEvent QUICEventKind = iota
+
+ // QUICSetReadSecret and QUICSetWriteSecret provide the read and write
+ // secrets for a given encryption level.
+ // QUICEvent.Level, QUICEvent.Data, and QUICEvent.Suite are set.
+ //
+ // Secrets for the Initial encryption level are derived from the initial
+ // destination connection ID, and are not provided by the QUICConn.
+ QUICSetReadSecret
+ QUICSetWriteSecret
+
+ // QUICWriteData provides data to send to the peer in CRYPTO frames.
+ // QUICEvent.Data is set.
+ QUICWriteData
+
+ // QUICTransportParameters provides the peer's QUIC transport parameters.
+ // QUICEvent.Data is set.
+ QUICTransportParameters
+
+ // QUICTransportParametersRequired indicates that the caller must provide
+ // QUIC transport parameters to send to the peer. The caller should set
+ // the transport parameters with QUICConn.SetTransportParameters and call
+ // QUICConn.NextEvent again.
+ //
+ // If transport parameters are set before calling QUICConn.Start, the
+ // connection will never generate a QUICTransportParametersRequired event.
+ QUICTransportParametersRequired
+
+ // QUICRejectedEarlyData indicates that the server rejected 0-RTT data even
+ // if we offered it. It's returned before QUICEncryptionLevelApplication
+ // keys are returned.
+ QUICRejectedEarlyData
+
+ // QUICHandshakeDone indicates that the TLS handshake has completed.
+ QUICHandshakeDone
+)
+
+// A QUICEvent is an event occurring on a QUIC connection.
+//
+// The type of event is specified by the Kind field.
+// The contents of the other fields are kind-specific.
+type QUICEvent struct {
+ Kind QUICEventKind
+
+ // Set for QUICSetReadSecret, QUICSetWriteSecret, and QUICWriteData.
+ Level QUICEncryptionLevel
+
+ // Set for QUICTransportParameters, QUICSetReadSecret, QUICSetWriteSecret, and QUICWriteData.
+ // The contents are owned by crypto/tls, and are valid until the next NextEvent call.
+ Data []byte
+
+ // Set for QUICSetReadSecret and QUICSetWriteSecret.
+ Suite uint16
+}
+
+type quicState struct {
+ events []QUICEvent
+ nextEvent int
+
+ // eventArr is a statically allocated event array, large enough to handle
+ // the usual maximum number of events resulting from a single call: transport
+ // parameters, Initial data, Early read secret, Handshake write and read
+ // secrets, Handshake data, Application write secret, Application data.
+ eventArr [8]QUICEvent
+
+ started bool
+ signalc chan struct{} // handshake data is available to be read
+ blockedc chan struct{} // handshake is waiting for data, closed when done
+ cancelc <-chan struct{} // handshake has been canceled
+ cancel context.CancelFunc
+
+ // readbuf is shared between HandleData and the handshake goroutine.
+ // HandshakeCryptoData passes ownership to the handshake goroutine by
+ // reading from signalc, and reclaims ownership by reading from blockedc.
+ readbuf []byte
+
+ transportParams []byte // to send to the peer
+}
+
+// QUICClient returns a new TLS client side connection using QUICTransport as the
+// underlying transport. The config cannot be nil.
+//
+// The config's MinVersion must be at least TLS 1.3.
+func QUICClient(config *QUICConfig) *QUICConn {
+ return newQUICConn(Client(nil, config.TLSConfig))
+}
+
+// QUICServer returns a new TLS server side connection using QUICTransport as the
+// underlying transport. The config cannot be nil.
+//
+// The config's MinVersion must be at least TLS 1.3.
+func QUICServer(config *QUICConfig) *QUICConn {
+ return newQUICConn(Server(nil, config.TLSConfig))
+}
+
+func newQUICConn(conn *Conn) *QUICConn {
+ conn.quic = &quicState{
+ signalc: make(chan struct{}),
+ blockedc: make(chan struct{}),
+ }
+ conn.quic.events = conn.quic.eventArr[:0]
+ return &QUICConn{
+ conn: conn,
+ }
+}
+
+// Start starts the client or server handshake protocol.
+// It may produce connection events, which may be read with NextEvent.
+//
+// Start must be called at most once.
+func (q *QUICConn) Start(ctx context.Context) error {
+ if q.conn.quic.started {
+ return quicError(errors.New("tls: Start called more than once"))
+ }
+ q.conn.quic.started = true
+ if q.conn.config.MinVersion < VersionTLS13 {
+ return quicError(errors.New("tls: Config MinVersion must be at least TLS 1.13"))
+ }
+ go q.conn.HandshakeContext(ctx)
+ if _, ok := <-q.conn.quic.blockedc; !ok {
+ return q.conn.handshakeErr
+ }
+ return nil
+}
+
+// NextEvent returns the next event occurring on the connection.
+// It returns an event with a Kind of QUICNoEvent when no events are available.
+func (q *QUICConn) NextEvent() QUICEvent {
+ qs := q.conn.quic
+ if last := qs.nextEvent - 1; last >= 0 && len(qs.events[last].Data) > 0 {
+ // Write over some of the previous event's data,
+ // to catch callers erroniously retaining it.
+ qs.events[last].Data[0] = 0
+ }
+ if qs.nextEvent >= len(qs.events) {
+ qs.events = qs.events[:0]
+ qs.nextEvent = 0
+ return QUICEvent{Kind: QUICNoEvent}
+ }
+ e := qs.events[qs.nextEvent]
+ qs.events[qs.nextEvent] = QUICEvent{} // zero out references to data
+ qs.nextEvent++
+ return e
+}
+
+// Close closes the connection and stops any in-progress handshake.
+func (q *QUICConn) Close() error {
+ if q.conn.quic.cancel == nil {
+ return nil // never started
+ }
+ q.conn.quic.cancel()
+ for range q.conn.quic.blockedc {
+ // Wait for the handshake goroutine to return.
+ }
+ return q.conn.handshakeErr
+}
+
+// HandleData handles handshake bytes received from the peer.
+// It may produce connection events, which may be read with NextEvent.
+func (q *QUICConn) HandleData(level QUICEncryptionLevel, data []byte) error {
+ c := q.conn
+ if c.in.level != level {
+ return quicError(c.in.setErrorLocked(errors.New("tls: handshake data received at wrong level")))
+ }
+ c.quic.readbuf = data
+ <-c.quic.signalc
+ _, ok := <-c.quic.blockedc
+ if ok {
+ // The handshake goroutine is waiting for more data.
+ return nil
+ }
+ // The handshake goroutine has exited.
+ c.handshakeMutex.Lock()
+ defer c.handshakeMutex.Unlock()
+ c.hand.Write(c.quic.readbuf)
+ c.quic.readbuf = nil
+ for q.conn.hand.Len() >= 4 && q.conn.handshakeErr == nil {
+ b := q.conn.hand.Bytes()
+ n := int(b[1])<<16 | int(b[2])<<8 | int(b[3])
+ if n > maxHandshake {
+ q.conn.handshakeErr = fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake)
+ break
+ }
+ if len(b) < 4+n {
+ return nil
+ }
+ if err := q.conn.handlePostHandshakeMessage(); err != nil {
+ q.conn.handshakeErr = err
+ }
+ }
+ if q.conn.handshakeErr != nil {
+ return quicError(q.conn.handshakeErr)
+ }
+ return nil
+}
+
+type QUICSessionTicketOptions struct {
+ // EarlyData specifies whether the ticket may be used for 0-RTT.
+ EarlyData bool
+}
+
+// SendSessionTicket sends a session ticket to the client.
+// It produces connection events, which may be read with NextEvent.
+// Currently, it can only be called once.
+func (q *QUICConn) SendSessionTicket(opts QUICSessionTicketOptions) error {
+ c := q.conn
+ if !c.isHandshakeComplete.Load() {
+ return quicError(errors.New("tls: SendSessionTicket called before handshake completed"))
+ }
+ if c.isClient {
+ return quicError(errors.New("tls: SendSessionTicket called on the client"))
+ }
+ if q.sessionTicketSent {
+ return quicError(errors.New("tls: SendSessionTicket called multiple times"))
+ }
+ q.sessionTicketSent = true
+ return quicError(c.sendSessionTicket(opts.EarlyData))
+}
+
+// ConnectionState returns basic TLS details about the connection.
+func (q *QUICConn) ConnectionState() ConnectionState {
+ return q.conn.ConnectionState()
+}
+
+// SetTransportParameters sets the transport parameters to send to the peer.
+//
+// Server connections may delay setting the transport parameters until after
+// receiving the client's transport parameters. See QUICTransportParametersRequired.
+func (q *QUICConn) SetTransportParameters(params []byte) {
+ if params == nil {
+ params = []byte{}
+ }
+ q.conn.quic.transportParams = params
+ if q.conn.quic.started {
+ <-q.conn.quic.signalc
+ <-q.conn.quic.blockedc
+ }
+}
+
+// quicError ensures err is an AlertError.
+// If err is not already, quicError wraps it with alertInternalError.
+func quicError(err error) error {
+ if err == nil {
+ return nil
+ }
+ var ae AlertError
+ if errors.As(err, &ae) {
+ return err
+ }
+ var a alert
+ if !errors.As(err, &a) {
+ a = alertInternalError
+ }
+ // Return an error wrapping the original error and an AlertError.
+ // Truncate the text of the alert to 0 characters.
+ return fmt.Errorf("%w%.0w", err, AlertError(a))
+}
+
+func (c *Conn) quicReadHandshakeBytes(n int) error {
+ for c.hand.Len() < n {
+ if err := c.quicWaitForSignal(); err != nil {
+ return err
+ }
+ }
+ return nil
+}
+
+func (c *Conn) quicSetReadSecret(level QUICEncryptionLevel, suite uint16, secret []byte) {
+ c.quic.events = append(c.quic.events, QUICEvent{
+ Kind: QUICSetReadSecret,
+ Level: level,
+ Suite: suite,
+ Data: secret,
+ })
+}
+
+func (c *Conn) quicSetWriteSecret(level QUICEncryptionLevel, suite uint16, secret []byte) {
+ c.quic.events = append(c.quic.events, QUICEvent{
+ Kind: QUICSetWriteSecret,
+ Level: level,
+ Suite: suite,
+ Data: secret,
+ })
+}
+
+func (c *Conn) quicWriteCryptoData(level QUICEncryptionLevel, data []byte) {
+ var last *QUICEvent
+ if len(c.quic.events) > 0 {
+ last = &c.quic.events[len(c.quic.events)-1]
+ }
+ if last == nil || last.Kind != QUICWriteData || last.Level != level {
+ c.quic.events = append(c.quic.events, QUICEvent{
+ Kind: QUICWriteData,
+ Level: level,
+ })
+ last = &c.quic.events[len(c.quic.events)-1]
+ }
+ last.Data = append(last.Data, data...)
+}
+
+func (c *Conn) quicSetTransportParameters(params []byte) {
+ c.quic.events = append(c.quic.events, QUICEvent{
+ Kind: QUICTransportParameters,
+ Data: params,
+ })
+}
+
+func (c *Conn) quicGetTransportParameters() ([]byte, error) {
+ if c.quic.transportParams == nil {
+ c.quic.events = append(c.quic.events, QUICEvent{
+ Kind: QUICTransportParametersRequired,
+ })
+ }
+ for c.quic.transportParams == nil {
+ if err := c.quicWaitForSignal(); err != nil {
+ return nil, err
+ }
+ }
+ return c.quic.transportParams, nil
+}
+
+func (c *Conn) quicHandshakeComplete() {
+ c.quic.events = append(c.quic.events, QUICEvent{
+ Kind: QUICHandshakeDone,
+ })
+}
+
+func (c *Conn) quicRejectedEarlyData() {
+ c.quic.events = append(c.quic.events, QUICEvent{
+ Kind: QUICRejectedEarlyData,
+ })
+}
+
+// quicWaitForSignal notifies the QUICConn that handshake progress is blocked,
+// and waits for a signal that the handshake should proceed.
+//
+// The handshake may become blocked waiting for handshake bytes
+// or for the user to provide transport parameters.
+func (c *Conn) quicWaitForSignal() error {
+ // Drop the handshake mutex while blocked to allow the user
+ // to call ConnectionState before the handshake completes.
+ c.handshakeMutex.Unlock()
+ defer c.handshakeMutex.Lock()
+ // Send on blockedc to notify the QUICConn that the handshake is blocked.
+ // Exported methods of QUICConn wait for the handshake to become blocked
+ // before returning to the user.
+ select {
+ case c.quic.blockedc <- struct{}{}:
+ case <-c.quic.cancelc:
+ return c.sendAlertLocked(alertCloseNotify)
+ }
+ // The QUICConn reads from signalc to notify us that the handshake may
+ // be able to proceed. (The QUICConn reads, because we close signalc to
+ // indicate that the handshake has completed.)
+ select {
+ case c.quic.signalc <- struct{}{}:
+ c.hand.Write(c.quic.readbuf)
+ c.quic.readbuf = nil
+ case <-c.quic.cancelc:
+ return c.sendAlertLocked(alertCloseNotify)
+ }
+ return nil
+}
diff --git a/contrib/go/_std_1.21/src/crypto/tls/ticket.go b/contrib/go/_std_1.21/src/crypto/tls/ticket.go
new file mode 100644
index 0000000000..b43101ff66
--- /dev/null
+++ b/contrib/go/_std_1.21/src/crypto/tls/ticket.go
@@ -0,0 +1,421 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package tls
+
+import (
+ "crypto/aes"
+ "crypto/cipher"
+ "crypto/hmac"
+ "crypto/sha256"
+ "crypto/subtle"
+ "crypto/x509"
+ "errors"
+ "io"
+
+ "golang.org/x/crypto/cryptobyte"
+)
+
+// A SessionState is a resumable session.
+type SessionState struct {
+ // Encoded as a SessionState (in the language of RFC 8446, Section 3).
+ //
+ // enum { server(1), client(2) } SessionStateType;
+ //
+ // opaque Certificate<1..2^24-1>;
+ //
+ // Certificate CertificateChain<0..2^24-1>;
+ //
+ // opaque Extra<0..2^24-1>;
+ //
+ // struct {
+ // uint16 version;
+ // SessionStateType type;
+ // uint16 cipher_suite;
+ // uint64 created_at;
+ // opaque secret<1..2^8-1>;
+ // Extra extra<0..2^24-1>;
+ // uint8 ext_master_secret = { 0, 1 };
+ // uint8 early_data = { 0, 1 };
+ // CertificateEntry certificate_list<0..2^24-1>;
+ // CertificateChain verified_chains<0..2^24-1>; /* excluding leaf */
+ // select (SessionState.early_data) {
+ // case 0: Empty;
+ // case 1: opaque alpn<1..2^8-1>;
+ // };
+ // select (SessionState.type) {
+ // case server: Empty;
+ // case client: struct {
+ // select (SessionState.version) {
+ // case VersionTLS10..VersionTLS12: Empty;
+ // case VersionTLS13: struct {
+ // uint64 use_by;
+ // uint32 age_add;
+ // };
+ // };
+ // };
+ // };
+ // } SessionState;
+ //
+
+ // Extra is ignored by crypto/tls, but is encoded by [SessionState.Bytes]
+ // and parsed by [ParseSessionState].
+ //
+ // This allows [Config.UnwrapSession]/[Config.WrapSession] and
+ // [ClientSessionCache] implementations to store and retrieve additional
+ // data alongside this session.
+ //
+ // To allow different layers in a protocol stack to share this field,
+ // applications must only append to it, not replace it, and must use entries
+ // that can be recognized even if out of order (for example, by starting
+ // with a id and version prefix).
+ Extra [][]byte
+
+ // EarlyData indicates whether the ticket can be used for 0-RTT in a QUIC
+ // connection. The application may set this to false if it is true to
+ // decline to offer 0-RTT even if supported.
+ EarlyData bool
+
+ version uint16
+ isClient bool
+ cipherSuite uint16
+ // createdAt is the generation time of the secret on the sever (which for
+ // TLS 1.0–1.2 might be earlier than the current session) and the time at
+ // which the ticket was received on the client.
+ createdAt uint64 // seconds since UNIX epoch
+ secret []byte // master secret for TLS 1.2, or the PSK for TLS 1.3
+ extMasterSecret bool
+ peerCertificates []*x509.Certificate
+ activeCertHandles []*activeCert
+ ocspResponse []byte
+ scts [][]byte
+ verifiedChains [][]*x509.Certificate
+ alpnProtocol string // only set if EarlyData is true
+
+ // Client-side TLS 1.3-only fields.
+ useBy uint64 // seconds since UNIX epoch
+ ageAdd uint32
+}
+
+// Bytes encodes the session, including any private fields, so that it can be
+// parsed by [ParseSessionState]. The encoding contains secret values critical
+// to the security of future and possibly past sessions.
+//
+// The specific encoding should be considered opaque and may change incompatibly
+// between Go versions.
+func (s *SessionState) Bytes() ([]byte, error) {
+ var b cryptobyte.Builder
+ b.AddUint16(s.version)
+ if s.isClient {
+ b.AddUint8(2) // client
+ } else {
+ b.AddUint8(1) // server
+ }
+ b.AddUint16(s.cipherSuite)
+ addUint64(&b, s.createdAt)
+ b.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddBytes(s.secret)
+ })
+ b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
+ for _, extra := range s.Extra {
+ b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddBytes(extra)
+ })
+ }
+ })
+ if s.extMasterSecret {
+ b.AddUint8(1)
+ } else {
+ b.AddUint8(0)
+ }
+ if s.EarlyData {
+ b.AddUint8(1)
+ } else {
+ b.AddUint8(0)
+ }
+ marshalCertificate(&b, Certificate{
+ Certificate: certificatesToBytesSlice(s.peerCertificates),
+ OCSPStaple: s.ocspResponse,
+ SignedCertificateTimestamps: s.scts,
+ })
+ b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
+ for _, chain := range s.verifiedChains {
+ b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
+ // We elide the first certificate because it's always the leaf.
+ if len(chain) == 0 {
+ b.SetError(errors.New("tls: internal error: empty verified chain"))
+ return
+ }
+ for _, cert := range chain[1:] {
+ b.AddUint24LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddBytes(cert.Raw)
+ })
+ }
+ })
+ }
+ })
+ if s.EarlyData {
+ b.AddUint8LengthPrefixed(func(b *cryptobyte.Builder) {
+ b.AddBytes([]byte(s.alpnProtocol))
+ })
+ }
+ if s.isClient {
+ if s.version >= VersionTLS13 {
+ addUint64(&b, s.useBy)
+ b.AddUint32(s.ageAdd)
+ }
+ }
+ return b.Bytes()
+}
+
+func certificatesToBytesSlice(certs []*x509.Certificate) [][]byte {
+ s := make([][]byte, 0, len(certs))
+ for _, c := range certs {
+ s = append(s, c.Raw)
+ }
+ return s
+}
+
+// ParseSessionState parses a [SessionState] encoded by [SessionState.Bytes].
+func ParseSessionState(data []byte) (*SessionState, error) {
+ ss := &SessionState{}
+ s := cryptobyte.String(data)
+ var typ, extMasterSecret, earlyData uint8
+ var cert Certificate
+ var extra cryptobyte.String
+ if !s.ReadUint16(&ss.version) ||
+ !s.ReadUint8(&typ) ||
+ (typ != 1 && typ != 2) ||
+ !s.ReadUint16(&ss.cipherSuite) ||
+ !readUint64(&s, &ss.createdAt) ||
+ !readUint8LengthPrefixed(&s, &ss.secret) ||
+ !s.ReadUint24LengthPrefixed(&extra) ||
+ !s.ReadUint8(&extMasterSecret) ||
+ !s.ReadUint8(&earlyData) ||
+ len(ss.secret) == 0 ||
+ !unmarshalCertificate(&s, &cert) {
+ return nil, errors.New("tls: invalid session encoding")
+ }
+ for !extra.Empty() {
+ var e []byte
+ if !readUint24LengthPrefixed(&extra, &e) {
+ return nil, errors.New("tls: invalid session encoding")
+ }
+ ss.Extra = append(ss.Extra, e)
+ }
+ switch extMasterSecret {
+ case 0:
+ ss.extMasterSecret = false
+ case 1:
+ ss.extMasterSecret = true
+ default:
+ return nil, errors.New("tls: invalid session encoding")
+ }
+ switch earlyData {
+ case 0:
+ ss.EarlyData = false
+ case 1:
+ ss.EarlyData = true
+ default:
+ return nil, errors.New("tls: invalid session encoding")
+ }
+ for _, cert := range cert.Certificate {
+ c, err := globalCertCache.newCert(cert)
+ if err != nil {
+ return nil, err
+ }
+ ss.activeCertHandles = append(ss.activeCertHandles, c)
+ ss.peerCertificates = append(ss.peerCertificates, c.cert)
+ }
+ ss.ocspResponse = cert.OCSPStaple
+ ss.scts = cert.SignedCertificateTimestamps
+ var chainList cryptobyte.String
+ if !s.ReadUint24LengthPrefixed(&chainList) {
+ return nil, errors.New("tls: invalid session encoding")
+ }
+ for !chainList.Empty() {
+ var certList cryptobyte.String
+ if !chainList.ReadUint24LengthPrefixed(&certList) {
+ return nil, errors.New("tls: invalid session encoding")
+ }
+ var chain []*x509.Certificate
+ if len(ss.peerCertificates) == 0 {
+ return nil, errors.New("tls: invalid session encoding")
+ }
+ chain = append(chain, ss.peerCertificates[0])
+ for !certList.Empty() {
+ var cert []byte
+ if !readUint24LengthPrefixed(&certList, &cert) {
+ return nil, errors.New("tls: invalid session encoding")
+ }
+ c, err := globalCertCache.newCert(cert)
+ if err != nil {
+ return nil, err
+ }
+ ss.activeCertHandles = append(ss.activeCertHandles, c)
+ chain = append(chain, c.cert)
+ }
+ ss.verifiedChains = append(ss.verifiedChains, chain)
+ }
+ if ss.EarlyData {
+ var alpn []byte
+ if !readUint8LengthPrefixed(&s, &alpn) {
+ return nil, errors.New("tls: invalid session encoding")
+ }
+ ss.alpnProtocol = string(alpn)
+ }
+ if isClient := typ == 2; !isClient {
+ if !s.Empty() {
+ return nil, errors.New("tls: invalid session encoding")
+ }
+ return ss, nil
+ }
+ ss.isClient = true
+ if len(ss.peerCertificates) == 0 {
+ return nil, errors.New("tls: no server certificates in client session")
+ }
+ if ss.version < VersionTLS13 {
+ if !s.Empty() {
+ return nil, errors.New("tls: invalid session encoding")
+ }
+ return ss, nil
+ }
+ if !s.ReadUint64(&ss.useBy) || !s.ReadUint32(&ss.ageAdd) || !s.Empty() {
+ return nil, errors.New("tls: invalid session encoding")
+ }
+ return ss, nil
+}
+
+// sessionState returns a partially filled-out [SessionState] with information
+// from the current connection.
+func (c *Conn) sessionState() (*SessionState, error) {
+ return &SessionState{
+ version: c.vers,
+ cipherSuite: c.cipherSuite,
+ createdAt: uint64(c.config.time().Unix()),
+ alpnProtocol: c.clientProtocol,
+ peerCertificates: c.peerCertificates,
+ activeCertHandles: c.activeCertHandles,
+ ocspResponse: c.ocspResponse,
+ scts: c.scts,
+ isClient: c.isClient,
+ extMasterSecret: c.extMasterSecret,
+ verifiedChains: c.verifiedChains,
+ }, nil
+}
+
+// EncryptTicket encrypts a ticket with the Config's configured (or default)
+// session ticket keys. It can be used as a [Config.WrapSession] implementation.
+func (c *Config) EncryptTicket(cs ConnectionState, ss *SessionState) ([]byte, error) {
+ ticketKeys := c.ticketKeys(nil)
+ stateBytes, err := ss.Bytes()
+ if err != nil {
+ return nil, err
+ }
+ return c.encryptTicket(stateBytes, ticketKeys)
+}
+
+func (c *Config) encryptTicket(state []byte, ticketKeys []ticketKey) ([]byte, error) {
+ if len(ticketKeys) == 0 {
+ return nil, errors.New("tls: internal error: session ticket keys unavailable")
+ }
+
+ encrypted := make([]byte, aes.BlockSize+len(state)+sha256.Size)
+ iv := encrypted[:aes.BlockSize]
+ ciphertext := encrypted[aes.BlockSize : len(encrypted)-sha256.Size]
+ authenticated := encrypted[:len(encrypted)-sha256.Size]
+ macBytes := encrypted[len(encrypted)-sha256.Size:]
+
+ if _, err := io.ReadFull(c.rand(), iv); err != nil {
+ return nil, err
+ }
+ key := ticketKeys[0]
+ block, err := aes.NewCipher(key.aesKey[:])
+ if err != nil {
+ return nil, errors.New("tls: failed to create cipher while encrypting ticket: " + err.Error())
+ }
+ cipher.NewCTR(block, iv).XORKeyStream(ciphertext, state)
+
+ mac := hmac.New(sha256.New, key.hmacKey[:])
+ mac.Write(authenticated)
+ mac.Sum(macBytes[:0])
+
+ return encrypted, nil
+}
+
+// DecryptTicket decrypts a ticket encrypted by [Config.EncryptTicket]. It can
+// be used as a [Config.UnwrapSession] implementation.
+//
+// If the ticket can't be decrypted or parsed, DecryptTicket returns (nil, nil).
+func (c *Config) DecryptTicket(identity []byte, cs ConnectionState) (*SessionState, error) {
+ ticketKeys := c.ticketKeys(nil)
+ stateBytes := c.decryptTicket(identity, ticketKeys)
+ if stateBytes == nil {
+ return nil, nil
+ }
+ s, err := ParseSessionState(stateBytes)
+ if err != nil {
+ return nil, nil // drop unparsable tickets on the floor
+ }
+ return s, nil
+}
+
+func (c *Config) decryptTicket(encrypted []byte, ticketKeys []ticketKey) []byte {
+ if len(encrypted) < aes.BlockSize+sha256.Size {
+ return nil
+ }
+
+ iv := encrypted[:aes.BlockSize]
+ ciphertext := encrypted[aes.BlockSize : len(encrypted)-sha256.Size]
+ authenticated := encrypted[:len(encrypted)-sha256.Size]
+ macBytes := encrypted[len(encrypted)-sha256.Size:]
+
+ for _, key := range ticketKeys {
+ mac := hmac.New(sha256.New, key.hmacKey[:])
+ mac.Write(authenticated)
+ expected := mac.Sum(nil)
+
+ if subtle.ConstantTimeCompare(macBytes, expected) != 1 {
+ continue
+ }
+
+ block, err := aes.NewCipher(key.aesKey[:])
+ if err != nil {
+ return nil
+ }
+ plaintext := make([]byte, len(ciphertext))
+ cipher.NewCTR(block, iv).XORKeyStream(plaintext, ciphertext)
+
+ return plaintext
+ }
+
+ return nil
+}
+
+// ClientSessionState contains the state needed by a client to
+// resume a previous TLS session.
+type ClientSessionState struct {
+ ticket []byte
+ session *SessionState
+}
+
+// ResumptionState returns the session ticket sent by the server (also known as
+// the session's identity) and the state necessary to resume this session.
+//
+// It can be called by [ClientSessionCache.Put] to serialize (with
+// [SessionState.Bytes]) and store the session.
+func (cs *ClientSessionState) ResumptionState() (ticket []byte, state *SessionState, err error) {
+ return cs.ticket, cs.session, nil
+}
+
+// NewResumptionState returns a state value that can be returned by
+// [ClientSessionCache.Get] to resume a previous session.
+//
+// state needs to be returned by [ParseSessionState], and the ticket and session
+// state must have been returned by [ClientSessionState.ResumptionState].
+func NewResumptionState(ticket []byte, state *SessionState) (*ClientSessionState, error) {
+ return &ClientSessionState{
+ ticket: ticket, session: state,
+ }, nil
+}
diff --git a/contrib/go/_std_1.21/src/crypto/tls/tls.go b/contrib/go/_std_1.21/src/crypto/tls/tls.go
new file mode 100644
index 0000000000..b529c70523
--- /dev/null
+++ b/contrib/go/_std_1.21/src/crypto/tls/tls.go
@@ -0,0 +1,356 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package tls partially implements TLS 1.2, as specified in RFC 5246,
+// and TLS 1.3, as specified in RFC 8446.
+package tls
+
+// BUG(agl): The crypto/tls package only implements some countermeasures
+// against Lucky13 attacks on CBC-mode encryption, and only on SHA1
+// variants. See http://www.isg.rhul.ac.uk/tls/TLStiming.pdf and
+// https://www.imperialviolet.org/2013/02/04/luckythirteen.html.
+
+import (
+ "bytes"
+ "context"
+ "crypto"
+ "crypto/ecdsa"
+ "crypto/ed25519"
+ "crypto/rsa"
+ "crypto/x509"
+ "encoding/pem"
+ "errors"
+ "fmt"
+ "net"
+ "os"
+ "strings"
+)
+
+// Server returns a new TLS server side connection
+// using conn as the underlying transport.
+// The configuration config must be non-nil and must include
+// at least one certificate or else set GetCertificate.
+func Server(conn net.Conn, config *Config) *Conn {
+ c := &Conn{
+ conn: conn,
+ config: config,
+ }
+ c.handshakeFn = c.serverHandshake
+ return c
+}
+
+// Client returns a new TLS client side connection
+// using conn as the underlying transport.
+// The config cannot be nil: users must set either ServerName or
+// InsecureSkipVerify in the config.
+func Client(conn net.Conn, config *Config) *Conn {
+ c := &Conn{
+ conn: conn,
+ config: config,
+ isClient: true,
+ }
+ c.handshakeFn = c.clientHandshake
+ return c
+}
+
+// A listener implements a network listener (net.Listener) for TLS connections.
+type listener struct {
+ net.Listener
+ config *Config
+}
+
+// Accept waits for and returns the next incoming TLS connection.
+// The returned connection is of type *Conn.
+func (l *listener) Accept() (net.Conn, error) {
+ c, err := l.Listener.Accept()
+ if err != nil {
+ return nil, err
+ }
+ return Server(c, l.config), nil
+}
+
+// NewListener creates a Listener which accepts connections from an inner
+// Listener and wraps each connection with Server.
+// The configuration config must be non-nil and must include
+// at least one certificate or else set GetCertificate.
+func NewListener(inner net.Listener, config *Config) net.Listener {
+ l := new(listener)
+ l.Listener = inner
+ l.config = config
+ return l
+}
+
+// Listen creates a TLS listener accepting connections on the
+// given network address using net.Listen.
+// The configuration config must be non-nil and must include
+// at least one certificate or else set GetCertificate.
+func Listen(network, laddr string, config *Config) (net.Listener, error) {
+ if config == nil || len(config.Certificates) == 0 &&
+ config.GetCertificate == nil && config.GetConfigForClient == nil {
+ return nil, errors.New("tls: neither Certificates, GetCertificate, nor GetConfigForClient set in Config")
+ }
+ l, err := net.Listen(network, laddr)
+ if err != nil {
+ return nil, err
+ }
+ return NewListener(l, config), nil
+}
+
+type timeoutError struct{}
+
+func (timeoutError) Error() string { return "tls: DialWithDialer timed out" }
+func (timeoutError) Timeout() bool { return true }
+func (timeoutError) Temporary() bool { return true }
+
+// DialWithDialer connects to the given network address using dialer.Dial and
+// then initiates a TLS handshake, returning the resulting TLS connection. Any
+// timeout or deadline given in the dialer apply to connection and TLS
+// handshake as a whole.
+//
+// DialWithDialer interprets a nil configuration as equivalent to the zero
+// configuration; see the documentation of Config for the defaults.
+//
+// DialWithDialer uses context.Background internally; to specify the context,
+// use Dialer.DialContext with NetDialer set to the desired dialer.
+func DialWithDialer(dialer *net.Dialer, network, addr string, config *Config) (*Conn, error) {
+ return dial(context.Background(), dialer, network, addr, config)
+}
+
+func dial(ctx context.Context, netDialer *net.Dialer, network, addr string, config *Config) (*Conn, error) {
+ if netDialer.Timeout != 0 {
+ var cancel context.CancelFunc
+ ctx, cancel = context.WithTimeout(ctx, netDialer.Timeout)
+ defer cancel()
+ }
+
+ if !netDialer.Deadline.IsZero() {
+ var cancel context.CancelFunc
+ ctx, cancel = context.WithDeadline(ctx, netDialer.Deadline)
+ defer cancel()
+ }
+
+ rawConn, err := netDialer.DialContext(ctx, network, addr)
+ if err != nil {
+ return nil, err
+ }
+
+ colonPos := strings.LastIndex(addr, ":")
+ if colonPos == -1 {
+ colonPos = len(addr)
+ }
+ hostname := addr[:colonPos]
+
+ if config == nil {
+ config = defaultConfig()
+ }
+ // If no ServerName is set, infer the ServerName
+ // from the hostname we're connecting to.
+ if config.ServerName == "" {
+ // Make a copy to avoid polluting argument or default.
+ c := config.Clone()
+ c.ServerName = hostname
+ config = c
+ }
+
+ conn := Client(rawConn, config)
+ if err := conn.HandshakeContext(ctx); err != nil {
+ rawConn.Close()
+ return nil, err
+ }
+ return conn, nil
+}
+
+// Dial connects to the given network address using net.Dial
+// and then initiates a TLS handshake, returning the resulting
+// TLS connection.
+// Dial interprets a nil configuration as equivalent to
+// the zero configuration; see the documentation of Config
+// for the defaults.
+func Dial(network, addr string, config *Config) (*Conn, error) {
+ return DialWithDialer(new(net.Dialer), network, addr, config)
+}
+
+// Dialer dials TLS connections given a configuration and a Dialer for the
+// underlying connection.
+type Dialer struct {
+ // NetDialer is the optional dialer to use for the TLS connections'
+ // underlying TCP connections.
+ // A nil NetDialer is equivalent to the net.Dialer zero value.
+ NetDialer *net.Dialer
+
+ // Config is the TLS configuration to use for new connections.
+ // A nil configuration is equivalent to the zero
+ // configuration; see the documentation of Config for the
+ // defaults.
+ Config *Config
+}
+
+// Dial connects to the given network address and initiates a TLS
+// handshake, returning the resulting TLS connection.
+//
+// The returned Conn, if any, will always be of type *Conn.
+//
+// Dial uses context.Background internally; to specify the context,
+// use DialContext.
+func (d *Dialer) Dial(network, addr string) (net.Conn, error) {
+ return d.DialContext(context.Background(), network, addr)
+}
+
+func (d *Dialer) netDialer() *net.Dialer {
+ if d.NetDialer != nil {
+ return d.NetDialer
+ }
+ return new(net.Dialer)
+}
+
+// DialContext connects to the given network address and initiates a TLS
+// handshake, returning the resulting TLS connection.
+//
+// The provided Context must be non-nil. If the context expires before
+// the connection is complete, an error is returned. Once successfully
+// connected, any expiration of the context will not affect the
+// connection.
+//
+// The returned Conn, if any, will always be of type *Conn.
+func (d *Dialer) DialContext(ctx context.Context, network, addr string) (net.Conn, error) {
+ c, err := dial(ctx, d.netDialer(), network, addr, d.Config)
+ if err != nil {
+ // Don't return c (a typed nil) in an interface.
+ return nil, err
+ }
+ return c, nil
+}
+
+// LoadX509KeyPair reads and parses a public/private key pair from a pair
+// of files. The files must contain PEM encoded data. The certificate file
+// may contain intermediate certificates following the leaf certificate to
+// form a certificate chain. On successful return, Certificate.Leaf will
+// be nil because the parsed form of the certificate is not retained.
+func LoadX509KeyPair(certFile, keyFile string) (Certificate, error) {
+ certPEMBlock, err := os.ReadFile(certFile)
+ if err != nil {
+ return Certificate{}, err
+ }
+ keyPEMBlock, err := os.ReadFile(keyFile)
+ if err != nil {
+ return Certificate{}, err
+ }
+ return X509KeyPair(certPEMBlock, keyPEMBlock)
+}
+
+// X509KeyPair parses a public/private key pair from a pair of
+// PEM encoded data. On successful return, Certificate.Leaf will be nil because
+// the parsed form of the certificate is not retained.
+func X509KeyPair(certPEMBlock, keyPEMBlock []byte) (Certificate, error) {
+ fail := func(err error) (Certificate, error) { return Certificate{}, err }
+
+ var cert Certificate
+ var skippedBlockTypes []string
+ for {
+ var certDERBlock *pem.Block
+ certDERBlock, certPEMBlock = pem.Decode(certPEMBlock)
+ if certDERBlock == nil {
+ break
+ }
+ if certDERBlock.Type == "CERTIFICATE" {
+ cert.Certificate = append(cert.Certificate, certDERBlock.Bytes)
+ } else {
+ skippedBlockTypes = append(skippedBlockTypes, certDERBlock.Type)
+ }
+ }
+
+ if len(cert.Certificate) == 0 {
+ if len(skippedBlockTypes) == 0 {
+ return fail(errors.New("tls: failed to find any PEM data in certificate input"))
+ }
+ if len(skippedBlockTypes) == 1 && strings.HasSuffix(skippedBlockTypes[0], "PRIVATE KEY") {
+ return fail(errors.New("tls: failed to find certificate PEM data in certificate input, but did find a private key; PEM inputs may have been switched"))
+ }
+ return fail(fmt.Errorf("tls: failed to find \"CERTIFICATE\" PEM block in certificate input after skipping PEM blocks of the following types: %v", skippedBlockTypes))
+ }
+
+ skippedBlockTypes = skippedBlockTypes[:0]
+ var keyDERBlock *pem.Block
+ for {
+ keyDERBlock, keyPEMBlock = pem.Decode(keyPEMBlock)
+ if keyDERBlock == nil {
+ if len(skippedBlockTypes) == 0 {
+ return fail(errors.New("tls: failed to find any PEM data in key input"))
+ }
+ if len(skippedBlockTypes) == 1 && skippedBlockTypes[0] == "CERTIFICATE" {
+ return fail(errors.New("tls: found a certificate rather than a key in the PEM for the private key"))
+ }
+ return fail(fmt.Errorf("tls: failed to find PEM block with type ending in \"PRIVATE KEY\" in key input after skipping PEM blocks of the following types: %v", skippedBlockTypes))
+ }
+ if keyDERBlock.Type == "PRIVATE KEY" || strings.HasSuffix(keyDERBlock.Type, " PRIVATE KEY") {
+ break
+ }
+ skippedBlockTypes = append(skippedBlockTypes, keyDERBlock.Type)
+ }
+
+ // We don't need to parse the public key for TLS, but we so do anyway
+ // to check that it looks sane and matches the private key.
+ x509Cert, err := x509.ParseCertificate(cert.Certificate[0])
+ if err != nil {
+ return fail(err)
+ }
+
+ cert.PrivateKey, err = parsePrivateKey(keyDERBlock.Bytes)
+ if err != nil {
+ return fail(err)
+ }
+
+ switch pub := x509Cert.PublicKey.(type) {
+ case *rsa.PublicKey:
+ priv, ok := cert.PrivateKey.(*rsa.PrivateKey)
+ if !ok {
+ return fail(errors.New("tls: private key type does not match public key type"))
+ }
+ if pub.N.Cmp(priv.N) != 0 {
+ return fail(errors.New("tls: private key does not match public key"))
+ }
+ case *ecdsa.PublicKey:
+ priv, ok := cert.PrivateKey.(*ecdsa.PrivateKey)
+ if !ok {
+ return fail(errors.New("tls: private key type does not match public key type"))
+ }
+ if pub.X.Cmp(priv.X) != 0 || pub.Y.Cmp(priv.Y) != 0 {
+ return fail(errors.New("tls: private key does not match public key"))
+ }
+ case ed25519.PublicKey:
+ priv, ok := cert.PrivateKey.(ed25519.PrivateKey)
+ if !ok {
+ return fail(errors.New("tls: private key type does not match public key type"))
+ }
+ if !bytes.Equal(priv.Public().(ed25519.PublicKey), pub) {
+ return fail(errors.New("tls: private key does not match public key"))
+ }
+ default:
+ return fail(errors.New("tls: unknown public key algorithm"))
+ }
+
+ return cert, nil
+}
+
+// Attempt to parse the given private key DER block. OpenSSL 0.9.8 generates
+// PKCS #1 private keys by default, while OpenSSL 1.0.0 generates PKCS #8 keys.
+// OpenSSL ecparam generates SEC1 EC private keys for ECDSA. We try all three.
+func parsePrivateKey(der []byte) (crypto.PrivateKey, error) {
+ if key, err := x509.ParsePKCS1PrivateKey(der); err == nil {
+ return key, nil
+ }
+ if key, err := x509.ParsePKCS8PrivateKey(der); err == nil {
+ switch key := key.(type) {
+ case *rsa.PrivateKey, *ecdsa.PrivateKey, ed25519.PrivateKey:
+ return key, nil
+ default:
+ return nil, errors.New("tls: found unknown private key type in PKCS#8 wrapping")
+ }
+ }
+ if key, err := x509.ParseECPrivateKey(der); err == nil {
+ return key, nil
+ }
+
+ return nil, errors.New("tls: failed to parse private key")
+}
diff --git a/contrib/go/_std_1.21/src/crypto/tls/ya.make b/contrib/go/_std_1.21/src/crypto/tls/ya.make
new file mode 100644
index 0000000000..fce6f9ee97
--- /dev/null
+++ b/contrib/go/_std_1.21/src/crypto/tls/ya.make
@@ -0,0 +1,54 @@
+GO_LIBRARY()
+
+SRCS(
+ alert.go
+ auth.go
+ cache.go
+ cipher_suites.go
+ common.go
+ common_string.go
+ conn.go
+ handshake_client.go
+ handshake_client_tls13.go
+ handshake_messages.go
+ handshake_server.go
+ handshake_server_tls13.go
+ key_agreement.go
+ key_schedule.go
+ notboring.go
+ prf.go
+ quic.go
+ ticket.go
+ tls.go
+)
+
+GO_TEST_SRCS(
+ auth_test.go
+ cache_test.go
+ conn_test.go
+ handshake_client_test.go
+ handshake_messages_test.go
+ handshake_server_test.go
+ handshake_test.go
+ key_schedule_test.go
+ link_test.go
+ prf_test.go
+ quic_test.go
+ ticket_test.go
+ tls_test.go
+)
+
+GO_XTEST_SRCS(example_test.go)
+
+IF (OS_LINUX)
+ GO_TEST_SRCS(handshake_unix_test.go)
+ENDIF()
+
+IF (OS_DARWIN)
+ GO_TEST_SRCS(handshake_unix_test.go)
+ENDIF()
+
+END()
+
+RECURSE(
+)