diff options
| author | vitalyisaev <[email protected]> | 2023-11-14 09:58:56 +0300 |
|---|---|---|
| committer | vitalyisaev <[email protected]> | 2023-11-14 10:20:20 +0300 |
| commit | c2b2dfd9827a400a8495e172a56343462e3ceb82 (patch) | |
| tree | cd4e4f597d01bede4c82dffeb2d780d0a9046bd0 /contrib/clickhouse/src/Interpreters/InterpreterSelectQuery.cpp | |
| parent | d4ae8f119e67808cb0cf776ba6e0cf95296f2df7 (diff) | |
YQ Connector: move tests from yql to ydb (OSS)
Перенос папки с тестами на Коннектор из папки yql в папку ydb (синхронизируется с github).
Diffstat (limited to 'contrib/clickhouse/src/Interpreters/InterpreterSelectQuery.cpp')
| -rw-r--r-- | contrib/clickhouse/src/Interpreters/InterpreterSelectQuery.cpp | 3184 |
1 files changed, 3184 insertions, 0 deletions
diff --git a/contrib/clickhouse/src/Interpreters/InterpreterSelectQuery.cpp b/contrib/clickhouse/src/Interpreters/InterpreterSelectQuery.cpp new file mode 100644 index 00000000000..de2d34162a8 --- /dev/null +++ b/contrib/clickhouse/src/Interpreters/InterpreterSelectQuery.cpp @@ -0,0 +1,3184 @@ +#include <Access/AccessControl.h> + +#include <DataTypes/DataTypeAggregateFunction.h> +#include <DataTypes/DataTypeInterval.h> + +#include <Parsers/ASTFunction.h> +#include <Parsers/ASTIdentifier.h> +#include <Parsers/ASTLiteral.h> +#include <Parsers/ASTOrderByElement.h> +#include <Parsers/ASTInterpolateElement.h> +#include <Parsers/ASTSelectWithUnionQuery.h> +#include <Parsers/ASTSelectIntersectExceptQuery.h> +#include <Parsers/ASTTablesInSelectQuery.h> +#include <Parsers/ExpressionListParsers.h> +#include <Parsers/parseQuery.h> +#include <Parsers/FunctionParameterValuesVisitor.h> + +#include <Access/Common/AccessFlags.h> +#include <Access/ContextAccess.h> + +#include <AggregateFunctions/AggregateFunctionCount.h> + +#include <Interpreters/ApplyWithAliasVisitor.h> +#include <Interpreters/ApplyWithSubqueryVisitor.h> +#include <Interpreters/InterpreterSelectQuery.h> +#include <Interpreters/InterpreterSelectWithUnionQuery.h> +#include <Interpreters/InterpreterSetQuery.h> +#include <Interpreters/evaluateConstantExpression.h> +#include <Interpreters/convertFieldToType.h> +#include <Interpreters/addTypeConversionToAST.h> +#include <Interpreters/ExpressionAnalyzer.h> +#include <Interpreters/getTableExpressions.h> +#include <Interpreters/JoinToSubqueryTransformVisitor.h> +#include <Interpreters/CrossToInnerJoinVisitor.h> +#include <Interpreters/TableJoin.h> +#include <Interpreters/JoinedTables.h> +#include <Interpreters/OpenTelemetrySpanLog.h> +#include <Interpreters/QueryAliasesVisitor.h> +#include <Interpreters/QueryLog.h> +#include <Interpreters/replaceAliasColumnsInQuery.h> +#include <Interpreters/RewriteCountDistinctVisitor.h> +#include <Interpreters/getCustomKeyFilterForParallelReplicas.h> + +#include <QueryPipeline/Pipe.h> +#include <Processors/QueryPlan/AggregatingStep.h> +#include <Processors/QueryPlan/ArrayJoinStep.h> +#include <Processors/QueryPlan/CreateSetAndFilterOnTheFlyStep.h> +#include <Processors/QueryPlan/CreatingSetsStep.h> +#include <Processors/QueryPlan/CubeStep.h> +#include <Processors/QueryPlan/DistinctStep.h> +#include <Processors/QueryPlan/ExpressionStep.h> +#include <Processors/QueryPlan/ExtremesStep.h> +#include <Processors/QueryPlan/FillingStep.h> +#include <Processors/QueryPlan/FilterStep.h> +#include <Processors/QueryPlan/JoinStep.h> +#include <Processors/QueryPlan/LimitByStep.h> +#include <Processors/QueryPlan/LimitStep.h> +#include <Processors/QueryPlan/SortingStep.h> +#include <Processors/QueryPlan/MergingAggregatedStep.h> +#include <Processors/QueryPlan/OffsetStep.h> +#include <Processors/QueryPlan/QueryPlan.h> +#include <Processors/QueryPlan/ReadFromPreparedSource.h> +#include <Processors/QueryPlan/ReadNothingStep.h> +#include <Processors/QueryPlan/RollupStep.h> +#include <Processors/QueryPlan/TotalsHavingStep.h> +#include <Processors/QueryPlan/WindowStep.h> +#include <Processors/QueryPlan/Optimizations/QueryPlanOptimizationSettings.h> +#include <Processors/Sources/NullSource.h> +#include <Processors/Sources/SourceFromSingleChunk.h> +#include <Processors/Transforms/AggregatingTransform.h> +#include <Processors/Transforms/FilterTransform.h> +#include <QueryPipeline/QueryPipelineBuilder.h> + +#include <Storages/IStorage.h> +#include <Storages/MergeTree/MergeTreeWhereOptimizer.h> +#include <Storages/StorageDistributed.h> +#include <Storages/StorageValues.h> +#include <Storages/StorageView.h> + +#include <Columns/Collator.h> +#include <Core/ColumnNumbers.h> +#include <Core/Field.h> +#include <Core/ProtocolDefines.h> +#include <Functions/IFunction.h> +#include <Interpreters/Aggregator.h> +#include <Interpreters/IJoin.h> +#include <QueryPipeline/SizeLimits.h> +#include <base/map.h> +#include <Common/FieldVisitorToString.h> +#include <Common/FieldVisitorsAccurateComparison.h> +#include <Common/checkStackSize.h> +#include <Common/scope_guard_safe.h> +#include <Common/typeid_cast.h> +#include <Common/ProfileEvents.h> + + +namespace ProfileEvents +{ + extern const Event SelectQueriesWithSubqueries; + extern const Event QueriesWithSubqueries; +} + +namespace DB +{ + +namespace ErrorCodes +{ + extern const int TOO_DEEP_SUBQUERIES; + extern const int SAMPLING_NOT_SUPPORTED; + extern const int ILLEGAL_FINAL; + extern const int ILLEGAL_PREWHERE; + extern const int TOO_MANY_COLUMNS; + extern const int LOGICAL_ERROR; + extern const int NOT_IMPLEMENTED; + extern const int PARAMETER_OUT_OF_BOUND; + extern const int INVALID_LIMIT_EXPRESSION; + extern const int INVALID_WITH_FILL_EXPRESSION; + extern const int ACCESS_DENIED; + extern const int UNKNOWN_IDENTIFIER; + extern const int BAD_ARGUMENTS; + extern const int SUPPORT_IS_DISABLED; +} + +/// Assumes `storage` is set and the table filter (row-level security) is not empty. +FilterDAGInfoPtr generateFilterActions( + const StorageID & table_id, + const ASTPtr & row_policy_filter_expression, + const ContextPtr & context, + const StoragePtr & storage, + const StorageSnapshotPtr & storage_snapshot, + const StorageMetadataPtr & metadata_snapshot, + Names & prerequisite_columns, + PreparedSetsPtr prepared_sets) +{ + auto filter_info = std::make_shared<FilterDAGInfo>(); + + const auto & db_name = table_id.getDatabaseName(); + const auto & table_name = table_id.getTableName(); + + /// TODO: implement some AST builders for this kind of stuff + ASTPtr query_ast = std::make_shared<ASTSelectQuery>(); + auto * select_ast = query_ast->as<ASTSelectQuery>(); + + select_ast->setExpression(ASTSelectQuery::Expression::SELECT, std::make_shared<ASTExpressionList>()); + auto expr_list = select_ast->select(); + + /// The first column is our filter expression. + /// the row_policy_filter_expression should be cloned, because it may be changed by TreeRewriter. + /// which make it possible an invalid expression, although it may be valid in whole select. + expr_list->children.push_back(row_policy_filter_expression->clone()); + + /// Keep columns that are required after the filter actions. + for (const auto & column_str : prerequisite_columns) + { + ParserExpression expr_parser; + /// We should add back quotes around column name as it can contain dots. + expr_list->children.push_back(parseQuery(expr_parser, backQuoteIfNeed(column_str), 0, context->getSettingsRef().max_parser_depth)); + } + + select_ast->setExpression(ASTSelectQuery::Expression::TABLES, std::make_shared<ASTTablesInSelectQuery>()); + auto tables = select_ast->tables(); + auto tables_elem = std::make_shared<ASTTablesInSelectQueryElement>(); + auto table_expr = std::make_shared<ASTTableExpression>(); + tables->children.push_back(tables_elem); + tables_elem->table_expression = table_expr; + tables_elem->children.push_back(table_expr); + table_expr->database_and_table_name = std::make_shared<ASTTableIdentifier>(db_name, table_name); + table_expr->children.push_back(table_expr->database_and_table_name); + + /// Using separate expression analyzer to prevent any possible alias injection + auto syntax_result = TreeRewriter(context).analyzeSelect(query_ast, TreeRewriterResult({}, storage, storage_snapshot)); + SelectQueryExpressionAnalyzer analyzer(query_ast, syntax_result, context, metadata_snapshot, {}, false, {}, prepared_sets); + filter_info->actions = analyzer.simpleSelectActions(); + + filter_info->column_name = expr_list->children.at(0)->getColumnName(); + filter_info->actions->removeUnusedActions(NameSet{filter_info->column_name}); + filter_info->actions->projectInput(false); + + for (const auto * node : filter_info->actions->getInputs()) + filter_info->actions->getOutputs().push_back(node); + + auto required_columns_from_filter = filter_info->actions->getRequiredColumns(); + + for (const auto & column : required_columns_from_filter) + { + if (prerequisite_columns.end() == std::find(prerequisite_columns.begin(), prerequisite_columns.end(), column.name)) + prerequisite_columns.push_back(column.name); + } + + return filter_info; +} + +InterpreterSelectQuery::InterpreterSelectQuery( + const ASTPtr & query_ptr_, + const ContextPtr & context_, + const SelectQueryOptions & options_, + const Names & required_result_column_names_) + : InterpreterSelectQuery(query_ptr_, context_, std::nullopt, nullptr, options_, required_result_column_names_) +{} + +InterpreterSelectQuery::InterpreterSelectQuery( + const ASTPtr & query_ptr_, + const ContextMutablePtr & context_, + const SelectQueryOptions & options_, + const Names & required_result_column_names_) + : InterpreterSelectQuery(query_ptr_, context_, std::nullopt, nullptr, options_, required_result_column_names_) +{} + +InterpreterSelectQuery::InterpreterSelectQuery( + const ASTPtr & query_ptr_, + const ContextPtr & context_, + Pipe input_pipe_, + const SelectQueryOptions & options_) + : InterpreterSelectQuery(query_ptr_, context_, std::move(input_pipe_), nullptr, options_.copy().noSubquery()) +{} + +InterpreterSelectQuery::InterpreterSelectQuery( + const ASTPtr & query_ptr_, + const ContextPtr & context_, + const StoragePtr & storage_, + const StorageMetadataPtr & metadata_snapshot_, + const SelectQueryOptions & options_) + : InterpreterSelectQuery(query_ptr_, context_, std::nullopt, storage_, options_.copy().noSubquery(), {}, metadata_snapshot_) +{} + +InterpreterSelectQuery::InterpreterSelectQuery( + const ASTPtr & query_ptr_, + const ContextPtr & context_, + const SelectQueryOptions & options_, + PreparedSetsPtr prepared_sets_) + : InterpreterSelectQuery( + query_ptr_, context_, std::nullopt, nullptr, options_, {}, {}, prepared_sets_) +{} + +InterpreterSelectQuery::~InterpreterSelectQuery() = default; + + +namespace +{ + +/** There are no limits on the maximum size of the result for the subquery. + * Since the result of the query is not the result of the entire query. + */ +ContextPtr getSubqueryContext(const ContextPtr & context) +{ + auto subquery_context = Context::createCopy(context); + Settings subquery_settings = context->getSettings(); + subquery_settings.max_result_rows = 0; + subquery_settings.max_result_bytes = 0; + /// The calculation of extremes does not make sense and is not necessary (if you do it, then the extremes of the subquery can be taken for whole query). + subquery_settings.extremes = false; + subquery_context->setSettings(subquery_settings); + return subquery_context; +} + +void rewriteMultipleJoins(ASTPtr & query, const TablesWithColumns & tables, const String & database, const Settings & settings) +{ + ASTSelectQuery & select = query->as<ASTSelectQuery &>(); + + Aliases aliases; + if (ASTPtr with = select.with()) + QueryAliasesNoSubqueriesVisitor(aliases).visit(with); + QueryAliasesNoSubqueriesVisitor(aliases).visit(select.select()); + + CrossToInnerJoinVisitor::Data cross_to_inner{tables, aliases, database}; + cross_to_inner.cross_to_inner_join_rewrite = static_cast<UInt8>(std::min<UInt64>(settings.cross_to_inner_join_rewrite, 2)); + CrossToInnerJoinVisitor(cross_to_inner).visit(query); + + JoinToSubqueryTransformVisitor::Data join_to_subs_data{tables, aliases}; + join_to_subs_data.try_to_keep_original_names = settings.multiple_joins_try_to_keep_original_names; + + JoinToSubqueryTransformVisitor(join_to_subs_data).visit(query); +} + +/// Checks that the current user has the SELECT privilege. +void checkAccessRightsForSelect( + const ContextPtr & context, + const StorageID & table_id, + const StorageMetadataPtr & table_metadata, + const TreeRewriterResult & syntax_analyzer_result) +{ + if (!syntax_analyzer_result.has_explicit_columns && table_metadata && !table_metadata->getColumns().empty()) + { + /// For a trivial query like "SELECT count() FROM table" access is granted if at least + /// one column is accessible. + /// In this case just checking access for `required_columns` doesn't work correctly + /// because `required_columns` will contain the name of a column of minimum size (see TreeRewriterResult::collectUsedColumns()) + /// which is probably not the same column as the column the current user has access to. + auto access = context->getAccess(); + for (const auto & column : table_metadata->getColumns()) + { + if (access->isGranted(AccessType::SELECT, table_id.database_name, table_id.table_name, column.name)) + return; + } + throw Exception( + ErrorCodes::ACCESS_DENIED, + "{}: Not enough privileges. To execute this query, it's necessary to have the grant SELECT for at least one column on {}", + context->getUserName(), + table_id.getFullTableName()); + } + + /// General check. + context->checkAccess(AccessType::SELECT, table_id, syntax_analyzer_result.requiredSourceColumnsForAccessCheck()); +} + +ASTPtr parseAdditionalFilterConditionForTable( + const Map & additional_table_filters, + const DatabaseAndTableWithAlias & target, + const Context & context) +{ + for (const auto & additional_filter : additional_table_filters) + { + const auto & tuple = additional_filter.safeGet<const Tuple &>(); + auto & table = tuple.at(0).safeGet<String>(); + auto & filter = tuple.at(1).safeGet<String>(); + + if (table == target.alias || + (table == target.table && context.getCurrentDatabase() == target.database) || + (table == target.database + '.' + target.table)) + { + /// Try to parse expression + ParserExpression parser; + const auto & settings = context.getSettingsRef(); + return parseQuery( + parser, filter.data(), filter.data() + filter.size(), + "additional filter", settings.max_query_size, settings.max_parser_depth); + } + } + + return nullptr; +} + +/// Returns true if we should ignore quotas and limits for a specified table in the system database. +bool shouldIgnoreQuotaAndLimits(const StorageID & table_id) +{ + if (table_id.database_name == DatabaseCatalog::SYSTEM_DATABASE) + { + static const boost::container::flat_set<String> tables_ignoring_quota{"quotas", "quota_limits", "quota_usage", "quotas_usage", "one"}; + if (tables_ignoring_quota.count(table_id.table_name)) + return true; + } + return false; +} + +} + +InterpreterSelectQuery::InterpreterSelectQuery( + const ASTPtr & query_ptr_, + const ContextPtr & context_, + std::optional<Pipe> input_pipe_, + const StoragePtr & storage_, + const SelectQueryOptions & options_, + const Names & required_result_column_names, + const StorageMetadataPtr & metadata_snapshot_, + PreparedSetsPtr prepared_sets_) + : InterpreterSelectQuery( + query_ptr_, + Context::createCopy(context_), + std::move(input_pipe_), + storage_, + options_, + required_result_column_names, + metadata_snapshot_, + prepared_sets_) +{} + +InterpreterSelectQuery::InterpreterSelectQuery( + const ASTPtr & query_ptr_, + const ContextMutablePtr & context_, + std::optional<Pipe> input_pipe_, + const StoragePtr & storage_, + const SelectQueryOptions & options_, + const Names & required_result_column_names, + const StorageMetadataPtr & metadata_snapshot_, + PreparedSetsPtr prepared_sets_) + /// NOTE: the query almost always should be cloned because it will be modified during analysis. + : IInterpreterUnionOrSelectQuery(options_.modify_inplace ? query_ptr_ : query_ptr_->clone(), context_, options_) + , storage(storage_) + , input_pipe(std::move(input_pipe_)) + , log(&Poco::Logger::get("InterpreterSelectQuery")) + , metadata_snapshot(metadata_snapshot_) + , prepared_sets(prepared_sets_) +{ + checkStackSize(); + + if (!prepared_sets) + prepared_sets = std::make_shared<PreparedSets>(); + + query_info.ignore_projections = options.ignore_projections; + query_info.is_projection_query = options.is_projection_query; + query_info.is_internal = options.is_internal; + + initSettings(); + const Settings & settings = context->getSettingsRef(); + + if (settings.max_subquery_depth && options.subquery_depth > settings.max_subquery_depth) + throw Exception(ErrorCodes::TOO_DEEP_SUBQUERIES, "Too deep subqueries. Maximum: {}", + settings.max_subquery_depth.toString()); + + bool has_input = input_pipe != std::nullopt; + if (input_pipe) + { + /// Read from prepared input. + source_header = input_pipe->getHeader(); + } + + // Only propagate WITH elements to subqueries if we're not a subquery + if (!options.is_subquery) + { + if (context->getSettingsRef().enable_global_with_statement) + ApplyWithAliasVisitor().visit(query_ptr); + ApplyWithSubqueryVisitor().visit(query_ptr); + } + + query_info.query = query_ptr->clone(); + query_info.original_query = query_ptr->clone(); + + if (settings.count_distinct_optimization) + { + RewriteCountDistinctFunctionMatcher::Data data_rewrite_countdistinct; + RewriteCountDistinctFunctionVisitor(data_rewrite_countdistinct).visit(query_ptr); + } + + JoinedTables joined_tables(getSubqueryContext(context), getSelectQuery(), options.with_all_cols, options_.is_create_parameterized_view); + + bool got_storage_from_query = false; + if (!has_input && !storage) + { + storage = joined_tables.getLeftTableStorage(); + // Mark uses_view_source if the returned storage is the same as the one saved in viewSource + uses_view_source |= storage && storage == context->getViewSource(); + got_storage_from_query = true; + } + + if (storage) + { + table_lock = storage->lockForShare(context->getInitialQueryId(), context->getSettingsRef().lock_acquire_timeout); + table_id = storage->getStorageID(); + if (!metadata_snapshot) + metadata_snapshot = storage->getInMemoryMetadataPtr(); + + if (options.only_analyze) + storage_snapshot = storage->getStorageSnapshotWithoutData(metadata_snapshot, context); + else + storage_snapshot = storage->getStorageSnapshotForQuery(metadata_snapshot, query_ptr, context); + } + + if (has_input || !joined_tables.resolveTables()) + joined_tables.makeFakeTable(storage, metadata_snapshot, source_header); + + if (context->getCurrentTransaction() && context->getSettingsRef().throw_on_unsupported_query_inside_transaction) + { + if (storage) + checkStorageSupportsTransactionsIfNeeded(storage, context, /* is_readonly_query */ true); + for (const auto & table : joined_tables.tablesWithColumns()) + { + if (table.table.table.empty()) + continue; + auto maybe_storage = DatabaseCatalog::instance().tryGetTable({table.table.database, table.table.table}, context); + if (!maybe_storage) + continue; + checkStorageSupportsTransactionsIfNeeded(storage, context, /* is_readonly_query */ true); + } + } + + /// Check support for JOIN for parallel replicas with custom key + if (joined_tables.tablesCount() > 1 && !settings.parallel_replicas_custom_key.value.empty()) + { + LOG_DEBUG(log, "JOINs are not supported with parallel_replicas_custom_key. Query will be executed without using them."); + context->setSetting("parallel_replicas_custom_key", String{""}); + } + + /// Check support for FINAL for parallel replicas + bool is_query_with_final = isQueryWithFinal(query_info); + if (is_query_with_final && (!settings.parallel_replicas_custom_key.value.empty() || settings.allow_experimental_parallel_reading_from_replicas > 0)) + { + if (settings.allow_experimental_parallel_reading_from_replicas == 1) + { + LOG_DEBUG(log, "FINAL modifier is not supported with parallel replicas. Query will be executed without using them."); + context->setSetting("allow_experimental_parallel_reading_from_replicas", Field(0)); + context->setSetting("parallel_replicas_custom_key", String{""}); + } + else if (settings.allow_experimental_parallel_reading_from_replicas == 2) + { + throw Exception(ErrorCodes::SUPPORT_IS_DISABLED, "FINAL modifier is not supported with parallel replicas"); + } + } + + /// Check support for parallel replicas for non-replicated storage (plain MergeTree) + bool is_plain_merge_tree = storage && storage->isMergeTree() && !storage->supportsReplication(); + if (is_plain_merge_tree && settings.allow_experimental_parallel_reading_from_replicas > 0 && !settings.parallel_replicas_for_non_replicated_merge_tree) + { + if (settings.allow_experimental_parallel_reading_from_replicas == 1) + { + LOG_DEBUG(log, "To use parallel replicas with plain MergeTree tables please enable setting `parallel_replicas_for_non_replicated_merge_tree`. For now query will be executed without using them."); + context->setSetting("allow_experimental_parallel_reading_from_replicas", Field(0)); + } + else if (settings.allow_experimental_parallel_reading_from_replicas == 2) + { + throw Exception(ErrorCodes::SUPPORT_IS_DISABLED, "To use parallel replicas with plain MergeTree tables please enable setting `parallel_replicas_for_non_replicated_merge_tree`"); + } + } + + /// Rewrite JOINs + if (!has_input && joined_tables.tablesCount() > 1) + { + rewriteMultipleJoins(query_ptr, joined_tables.tablesWithColumns(), context->getCurrentDatabase(), context->getSettingsRef()); + + joined_tables.reset(getSelectQuery()); + joined_tables.resolveTables(); + if (auto view_source = context->getViewSource()) + { + // If we are using a virtual block view to replace a table and that table is used + // inside the JOIN then we need to update uses_view_source accordingly so we avoid propagating scalars that we can't cache + const auto & storage_values = static_cast<const StorageValues &>(*view_source); + auto tmp_table_id = storage_values.getStorageID(); + for (const auto & t : joined_tables.tablesWithColumns()) + uses_view_source |= (t.table.database == tmp_table_id.database_name && t.table.table == tmp_table_id.table_name); + } + + if (storage && joined_tables.isLeftTableSubquery()) + { + /// Rewritten with subquery. Free storage locks here. + storage = nullptr; + table_lock.reset(); + table_id = StorageID::createEmpty(); + metadata_snapshot = nullptr; + storage_snapshot = nullptr; + } + } + + if (!has_input) + { + interpreter_subquery = joined_tables.makeLeftTableSubquery(options.subquery()); + if (interpreter_subquery) + { + source_header = interpreter_subquery->getSampleBlock(); + uses_view_source |= interpreter_subquery->usesViewSource(); + } + } + + joined_tables.rewriteDistributedInAndJoins(query_ptr); + + max_streams = settings.max_threads; + ASTSelectQuery & query = getSelectQuery(); + std::shared_ptr<TableJoin> table_join = joined_tables.makeTableJoin(query); + + if (storage) + row_policy_filter = context->getRowPolicyFilter(table_id.getDatabaseName(), table_id.getTableName(), RowPolicyFilterType::SELECT_FILTER); + + StorageView * view = nullptr; + if (storage) + view = dynamic_cast<StorageView *>(storage.get()); + + if (!settings.additional_table_filters.value.empty() && storage && !joined_tables.tablesWithColumns().empty()) + query_info.additional_filter_ast = parseAdditionalFilterConditionForTable( + settings.additional_table_filters, joined_tables.tablesWithColumns().front().table, *context); + + ASTPtr parallel_replicas_custom_filter_ast = nullptr; + if (storage && context->getParallelReplicasMode() == Context::ParallelReplicasMode::CUSTOM_KEY && !joined_tables.tablesWithColumns().empty()) + { + if (settings.parallel_replicas_count > 1) + { + if (auto custom_key_ast = parseCustomKeyForTable(settings.parallel_replicas_custom_key, *context)) + { + LOG_TRACE(log, "Processing query on a replica using custom_key '{}'", settings.parallel_replicas_custom_key.value); + + parallel_replicas_custom_filter_ast = getCustomKeyFilterForParallelReplica( + settings.parallel_replicas_count, + settings.parallel_replica_offset, + std::move(custom_key_ast), + settings.parallel_replicas_custom_key_filter_type, + *storage, + context); + } + else if (settings.parallel_replica_offset > 0) + { + throw Exception( + ErrorCodes::BAD_ARGUMENTS, + "Parallel replicas processing with custom_key has been requested " + "(setting 'max_parallel_replicas') but the table does not have custom_key defined for it " + "or it's invalid (settings `parallel_replicas_custom_key`)"); + } + } + else if (auto * distributed = dynamic_cast<StorageDistributed *>(storage.get()); + distributed && canUseCustomKey(settings, *distributed->getCluster(), *context)) + { + query_info.use_custom_key = true; + context->setSetting("distributed_group_by_no_merge", 2); + } + } + + if (autoFinalOnQuery(query)) + { + query.setFinal(); + } + + auto analyze = [&] (bool try_move_to_prewhere) + { + /// Allow push down and other optimizations for VIEW: replace with subquery and rewrite it. + ASTPtr view_table; + if (view) + { + query_info.is_parameterized_view = view->isParameterizedView(); + view->replaceWithSubquery(getSelectQuery(), view_table, metadata_snapshot, view->isParameterizedView()); + } + + syntax_analyzer_result = TreeRewriter(context).analyzeSelect( + query_ptr, + TreeRewriterResult(source_header.getNamesAndTypesList(), storage, storage_snapshot), + options, + joined_tables.tablesWithColumns(), + required_result_column_names, + table_join); + + + query_info.syntax_analyzer_result = syntax_analyzer_result; + context->setDistributed(syntax_analyzer_result->is_remote_storage); + + if (storage && !query.final() && storage->needRewriteQueryWithFinal(syntax_analyzer_result->requiredSourceColumns())) + query.setFinal(); + + /// Save scalar sub queries's results in the query context + /// Note that we are only saving scalars and not local_scalars since the latter can't be safely shared across contexts + if (!options.only_analyze && context->hasQueryContext()) + for (const auto & it : syntax_analyzer_result->getScalars()) + context->getQueryContext()->addScalar(it.first, it.second); + + if (view) + { + /// Restore original view name. Save rewritten subquery for future usage in StorageView. + query_info.view_query = view->restoreViewName(getSelectQuery(), view_table); + view = nullptr; + } + + if (try_move_to_prewhere + && storage && storage->canMoveConditionsToPrewhere() + && query.where() && !query.prewhere() + && !query.hasJoin()) /// Join may produce rows with nulls or default values, it's difficult to analyze if they affected or not. + { + /// PREWHERE optimization: transfer some condition from WHERE to PREWHERE if enabled and viable + if (const auto & column_sizes = storage->getColumnSizes(); !column_sizes.empty()) + { + /// Extract column compressed sizes. + std::unordered_map<std::string, UInt64> column_compressed_sizes; + for (const auto & [name, sizes] : column_sizes) + column_compressed_sizes[name] = sizes.data_compressed; + + SelectQueryInfo current_info; + current_info.query = query_ptr; + current_info.syntax_analyzer_result = syntax_analyzer_result; + + Names queried_columns = syntax_analyzer_result->requiredSourceColumns(); + const auto & supported_prewhere_columns = storage->supportedPrewhereColumns(); + + MergeTreeWhereOptimizer where_optimizer{ + std::move(column_compressed_sizes), + metadata_snapshot, + queried_columns, + supported_prewhere_columns, + log}; + + where_optimizer.optimize(current_info, context); + } + } + + if (query.prewhere() && query.where()) + { + /// Filter block in WHERE instead to get better performance + query.setExpression( + ASTSelectQuery::Expression::WHERE, makeASTFunction("and", query.prewhere()->clone(), query.where()->clone())); + } + + query_analyzer = std::make_unique<SelectQueryExpressionAnalyzer>( + query_ptr, + syntax_analyzer_result, + context, + metadata_snapshot, + required_result_column_names, + !options.only_analyze, + options, + prepared_sets); + + if (!options.only_analyze) + { + if (query.sampleSize() && (input_pipe || !storage || !storage->supportsSampling())) + throw Exception(ErrorCodes::SAMPLING_NOT_SUPPORTED, "Illegal SAMPLE: table doesn't support sampling"); + + if (query.final() && (input_pipe || !storage || !storage->supportsFinal())) + { + if (!input_pipe && storage) + throw Exception(ErrorCodes::ILLEGAL_FINAL, "Storage {} doesn't support FINAL", storage->getName()); + else + throw Exception(ErrorCodes::ILLEGAL_FINAL, "Illegal FINAL"); + } + + if (query.prewhere() && (input_pipe || !storage || !storage->supportsPrewhere())) + { + if (!input_pipe && storage) + throw Exception(ErrorCodes::ILLEGAL_PREWHERE, "Storage {} doesn't support PREWHERE", storage->getName()); + else + throw Exception(ErrorCodes::ILLEGAL_PREWHERE, "Illegal PREWHERE"); + } + + /// Save the new temporary tables in the query context + for (const auto & it : query_analyzer->getExternalTables()) + if (!context->tryResolveStorageID({"", it.first}, Context::ResolveExternal)) + context->addExternalTable(it.first, std::move(*it.second)); + } + + if (!options.only_analyze || options.modify_inplace) + { + if (syntax_analyzer_result->rewrite_subqueries) + { + /// remake interpreter_subquery when PredicateOptimizer rewrites subqueries and main table is subquery + interpreter_subquery = joined_tables.makeLeftTableSubquery(options.subquery()); + } + } + + if (interpreter_subquery) + { + /// If there is an aggregation in the outer query, WITH TOTALS is ignored in the subquery. + if (query_analyzer->hasAggregation()) + interpreter_subquery->ignoreWithTotals(); + uses_view_source |= interpreter_subquery->usesViewSource(); + } + + required_columns = syntax_analyzer_result->requiredSourceColumns(); + + if (storage) + { + query_info.filter_asts.clear(); + + /// Fix source_header for filter actions. + if (row_policy_filter && !row_policy_filter->empty()) + { + filter_info = generateFilterActions( + table_id, row_policy_filter->expression, context, storage, storage_snapshot, metadata_snapshot, required_columns, + prepared_sets); + + query_info.filter_asts.push_back(row_policy_filter->expression); + } + + if (query_info.additional_filter_ast) + { + additional_filter_info = generateFilterActions( + table_id, query_info.additional_filter_ast, context, storage, storage_snapshot, metadata_snapshot, required_columns, + prepared_sets); + + additional_filter_info->do_remove_column = true; + + query_info.filter_asts.push_back(query_info.additional_filter_ast); + } + + if (parallel_replicas_custom_filter_ast) + { + parallel_replicas_custom_filter_info = generateFilterActions( + table_id, parallel_replicas_custom_filter_ast, context, storage, storage_snapshot, metadata_snapshot, required_columns, + prepared_sets); + + parallel_replicas_custom_filter_info->do_remove_column = true; + query_info.filter_asts.push_back(parallel_replicas_custom_filter_ast); + } + + source_header = storage_snapshot->getSampleBlockForColumns(required_columns); + } + + /// Calculate structure of the result. + result_header = getSampleBlockImpl(); + }; + + analyze(shouldMoveToPrewhere()); + + bool need_analyze_again = false; + bool can_analyze_again = false; + if (context->hasQueryContext()) + { + /// Check number of calls of 'analyze' function. + /// If it is too big, we will not analyze the query again not to have exponential blowup. + std::atomic<size_t> & current_query_analyze_count = context->getQueryContext()->kitchen_sink.analyze_counter; + ++current_query_analyze_count; + can_analyze_again = settings.max_analyze_depth == 0 || current_query_analyze_count < settings.max_analyze_depth; + } + + if (can_analyze_again && (analysis_result.prewhere_constant_filter_description.always_false || + analysis_result.prewhere_constant_filter_description.always_true)) + { + if (analysis_result.prewhere_constant_filter_description.always_true) + query.setExpression(ASTSelectQuery::Expression::PREWHERE, {}); + else + query.setExpression(ASTSelectQuery::Expression::PREWHERE, std::make_shared<ASTLiteral>(0u)); + need_analyze_again = true; + } + + if (can_analyze_again && (analysis_result.where_constant_filter_description.always_false || + analysis_result.where_constant_filter_description.always_true)) + { + if (analysis_result.where_constant_filter_description.always_true) + query.setExpression(ASTSelectQuery::Expression::WHERE, {}); + else + query.setExpression(ASTSelectQuery::Expression::WHERE, std::make_shared<ASTLiteral>(0u)); + need_analyze_again = true; + } + + if (can_analyze_again + && settings.max_parallel_replicas > 1 + && settings.allow_experimental_parallel_reading_from_replicas > 0 + && settings.parallel_replicas_custom_key.value.empty() + && getTrivialCount(0).has_value()) + { + /// The query could use trivial count if it didn't use parallel replicas, so let's disable it and reanalyze + context->setSetting("allow_experimental_parallel_reading_from_replicas", Field(0)); + context->setSetting("max_parallel_replicas", UInt64{0}); + need_analyze_again = true; + LOG_TRACE(log, "Disabling parallel replicas to be able to use a trivial count optimization"); + } + + if (need_analyze_again) + { + size_t current_query_analyze_count = context->getQueryContext()->kitchen_sink.analyze_counter.load(); + LOG_TRACE(log, "Running 'analyze' second time (current analyze depth: {})", current_query_analyze_count); + + /// Reuse already built sets for multiple passes of analysis + prepared_sets = query_analyzer->getPreparedSets(); + + /// Do not try move conditions to PREWHERE for the second time. + /// Otherwise, we won't be able to fallback from inefficient PREWHERE to WHERE later. + analyze(/* try_move_to_prewhere = */ false); + } + + /// If there is no WHERE, filter blocks as usual + if (query.prewhere() && !query.where()) + analysis_result.prewhere_info->need_filter = true; + + if (table_id && got_storage_from_query && !joined_tables.isLeftTableFunction()) + { + /// The current user should have the SELECT privilege. If this table_id is for a table + /// function we don't check access rights here because in this case they have been already + /// checked in ITableFunction::execute(). + checkAccessRightsForSelect(context, table_id, metadata_snapshot, *syntax_analyzer_result); + + /// Remove limits for some tables in the `system` database. + if (shouldIgnoreQuotaAndLimits(table_id) && (joined_tables.tablesCount() <= 1)) + { + options.ignore_quota = true; + options.ignore_limits = true; + } + } + + /// Add prewhere actions with alias columns and record needed columns from storage. + if (storage) + { + addPrewhereAliasActions(); + analysis_result.required_columns = required_columns; + } + + if (query_info.projection) + storage_snapshot->addProjection(query_info.projection->desc); + + /// Blocks used in expression analysis contains size 1 const columns for constant folding and + /// null non-const columns to avoid useless memory allocations. However, a valid block sample + /// requires all columns to be of size 0, thus we need to sanitize the block here. + sanitizeBlock(result_header, true); +} + +void InterpreterSelectQuery::buildQueryPlan(QueryPlan & query_plan) +{ + executeImpl(query_plan, std::move(input_pipe)); + + /// We must guarantee that result structure is the same as in getSampleBlock() + /// + /// But if it's a projection query, plan header does not match result_header. + /// TODO: add special stage for InterpreterSelectQuery? + if (!options.is_projection_query && !blocksHaveEqualStructure(query_plan.getCurrentDataStream().header, result_header)) + { + auto convert_actions_dag = ActionsDAG::makeConvertingActions( + query_plan.getCurrentDataStream().header.getColumnsWithTypeAndName(), + result_header.getColumnsWithTypeAndName(), + ActionsDAG::MatchColumnsMode::Name, + true); + + auto converting = std::make_unique<ExpressionStep>(query_plan.getCurrentDataStream(), convert_actions_dag); + query_plan.addStep(std::move(converting)); + } + + /// Extend lifetime of context, table lock, storage. + query_plan.addInterpreterContext(context); + if (table_lock) + query_plan.addTableLock(std::move(table_lock)); + if (storage) + query_plan.addStorageHolder(storage); +} + +BlockIO InterpreterSelectQuery::execute() +{ + BlockIO res; + QueryPlan query_plan; + + buildQueryPlan(query_plan); + + auto builder = query_plan.buildQueryPipeline( + QueryPlanOptimizationSettings::fromContext(context), BuildQueryPipelineSettings::fromContext(context)); + + res.pipeline = QueryPipelineBuilder::getPipeline(std::move(*builder)); + + setQuota(res.pipeline); + + return res; +} + +Block InterpreterSelectQuery::getSampleBlockImpl() +{ + auto & select_query = getSelectQuery(); + + query_info.query = query_ptr; + + /// NOTE: this is required for getQueryProcessingStage(), so should be initialized before ExpressionAnalysisResult. + query_info.has_window = query_analyzer->hasWindow(); + /// NOTE: this is required only for IStorage::read(), and to be precise MergeTreeData::read(), in case of projections. + query_info.has_order_by = select_query.orderBy() != nullptr; + query_info.need_aggregate = query_analyzer->hasAggregation(); + + if (storage && !options.only_analyze) + { + query_info.prepared_sets = query_analyzer->getPreparedSets(); + from_stage = storage->getQueryProcessingStage(context, options.to_stage, storage_snapshot, query_info); + } + + /// Do I need to perform the first part of the pipeline? + /// Running on remote servers during distributed processing or if query is not distributed. + /// + /// Also note that with distributed_group_by_no_merge=1 or when there is + /// only one remote server, it is equal to local query in terms of query + /// stages (or when due to optimize_distributed_group_by_sharding_key the query was processed up to Complete stage). + bool first_stage = from_stage < QueryProcessingStage::WithMergeableState + && options.to_stage >= QueryProcessingStage::WithMergeableState; + /// Do I need to execute the second part of the pipeline? + /// Running on the initiating server during distributed processing or if query is not distributed. + /// + /// Also note that with distributed_group_by_no_merge=2 (i.e. when optimize_distributed_group_by_sharding_key takes place) + /// the query on the remote server will be processed up to WithMergeableStateAfterAggregationAndLimit, + /// So it will do partial second stage (second_stage=true), and initiator will do the final part. + bool second_stage = from_stage <= QueryProcessingStage::WithMergeableState + && options.to_stage > QueryProcessingStage::WithMergeableState; + + analysis_result = ExpressionAnalysisResult( + *query_analyzer, metadata_snapshot, first_stage, second_stage, options.only_analyze, filter_info, additional_filter_info, source_header); + + if (options.to_stage == QueryProcessingStage::Enum::FetchColumns) + { + auto header = source_header; + + if (analysis_result.prewhere_info) + { + header = analysis_result.prewhere_info->prewhere_actions->updateHeader(header); + if (analysis_result.prewhere_info->remove_prewhere_column) + header.erase(analysis_result.prewhere_info->prewhere_column_name); + } + return header; + } + + if (options.to_stage == QueryProcessingStage::Enum::WithMergeableState) + { + if (!analysis_result.need_aggregate) + { + // What's the difference with selected_columns? + // Here we calculate the header we want from remote server after it + // executes query up to WithMergeableState. When there is an ORDER BY, + // it is executed on remote server firstly, then we execute merge + // sort on initiator. To execute ORDER BY, we need to calculate the + // ORDER BY keys. These keys might be not present among the final + // SELECT columns given by the `selected_column`. This is why we have + // to use proper keys given by the result columns of the + // `before_order_by` expression actions. + // Another complication is window functions -- if we have them, they + // are calculated on initiator, before ORDER BY columns. In this case, + // the shard has to return columns required for window function + // calculation and further steps, given by the `before_window` + // expression actions. + // As of 21.6 this is broken: the actions in `before_window` might + // not contain everything required for the ORDER BY step, but this + // is a responsibility of ExpressionAnalyzer and is not a problem + // with this code. See + // https://github.com/ClickHouse/ClickHouse/issues/19857 for details. + if (analysis_result.before_window) + return analysis_result.before_window->getResultColumns(); + + return analysis_result.before_order_by->getResultColumns(); + } + + Block header = analysis_result.before_aggregation->getResultColumns(); + + Block res; + + if (analysis_result.use_grouping_set_key) + res.insert({ nullptr, std::make_shared<DataTypeUInt64>(), "__grouping_set" }); + + if (context->getSettingsRef().group_by_use_nulls && analysis_result.use_grouping_set_key) + { + for (const auto & key : query_analyzer->aggregationKeys()) + res.insert({nullptr, makeNullableSafe(header.getByName(key.name).type), key.name}); + } + else + { + for (const auto & key : query_analyzer->aggregationKeys()) + res.insert({nullptr, header.getByName(key.name).type, key.name}); + } + + for (const auto & aggregate : query_analyzer->aggregates()) + { + size_t arguments_size = aggregate.argument_names.size(); + DataTypes argument_types(arguments_size); + for (size_t j = 0; j < arguments_size; ++j) + argument_types[j] = header.getByName(aggregate.argument_names[j]).type; + + DataTypePtr type = std::make_shared<DataTypeAggregateFunction>(aggregate.function, argument_types, aggregate.parameters); + + res.insert({nullptr, type, aggregate.column_name}); + } + + return res; + } + + if (options.to_stage >= QueryProcessingStage::Enum::WithMergeableStateAfterAggregation) + { + // It's different from selected_columns, see the comment above for + // WithMergeableState stage. + if (analysis_result.before_window) + return analysis_result.before_window->getResultColumns(); + + return analysis_result.before_order_by->getResultColumns(); + } + + return analysis_result.final_projection->getResultColumns(); +} + + +static std::pair<Field, DataTypePtr> getWithFillFieldValue(const ASTPtr & node, ContextPtr context) +{ + auto field_type = evaluateConstantExpression(node, context); + + if (!isColumnedAsNumber(field_type.second)) + throw Exception(ErrorCodes::INVALID_WITH_FILL_EXPRESSION, + "Illegal type {} of WITH FILL expression, must be numeric type", field_type.second->getName()); + + return field_type; +} + +static std::pair<Field, std::optional<IntervalKind>> getWithFillStep(const ASTPtr & node, const ContextPtr & context) +{ + auto [field, type] = evaluateConstantExpression(node, context); + + if (const auto * type_interval = typeid_cast<const DataTypeInterval *>(type.get())) + return std::make_pair(std::move(field), type_interval->getKind()); + + if (isColumnedAsNumber(type)) + return std::make_pair(std::move(field), std::nullopt); + + throw Exception(ErrorCodes::INVALID_WITH_FILL_EXPRESSION, + "Illegal type {} of WITH FILL expression, must be numeric type", type->getName()); +} + +static FillColumnDescription getWithFillDescription(const ASTOrderByElement & order_by_elem, const ContextPtr & context) +{ + FillColumnDescription descr; + + if (order_by_elem.fill_from) + std::tie(descr.fill_from, descr.fill_from_type) = getWithFillFieldValue(order_by_elem.fill_from, context); + if (order_by_elem.fill_to) + std::tie(descr.fill_to, descr.fill_to_type) = getWithFillFieldValue(order_by_elem.fill_to, context); + + if (order_by_elem.fill_step) + std::tie(descr.fill_step, descr.step_kind) = getWithFillStep(order_by_elem.fill_step, context); + else + descr.fill_step = order_by_elem.direction; + + if (applyVisitor(FieldVisitorAccurateEquals(), descr.fill_step, Field{0})) + throw Exception(ErrorCodes::INVALID_WITH_FILL_EXPRESSION, "WITH FILL STEP value cannot be zero"); + + if (order_by_elem.direction == 1) + { + if (applyVisitor(FieldVisitorAccurateLess(), descr.fill_step, Field{0})) + throw Exception(ErrorCodes::INVALID_WITH_FILL_EXPRESSION, "WITH FILL STEP value cannot be negative for sorting in ascending direction"); + + if (!descr.fill_from.isNull() && !descr.fill_to.isNull() && + applyVisitor(FieldVisitorAccurateLess(), descr.fill_to, descr.fill_from)) + { + throw Exception(ErrorCodes::INVALID_WITH_FILL_EXPRESSION, + "WITH FILL TO value cannot be less than FROM value for sorting in ascending direction"); + } + } + else + { + if (applyVisitor(FieldVisitorAccurateLess(), Field{0}, descr.fill_step)) + throw Exception(ErrorCodes::INVALID_WITH_FILL_EXPRESSION, "WITH FILL STEP value cannot be positive for sorting in descending direction"); + + if (!descr.fill_from.isNull() && !descr.fill_to.isNull() && + applyVisitor(FieldVisitorAccurateLess(), descr.fill_from, descr.fill_to)) + { + throw Exception(ErrorCodes::INVALID_WITH_FILL_EXPRESSION, + "WITH FILL FROM value cannot be less than TO value for sorting in descending direction"); + } + } + + return descr; +} + +SortDescription InterpreterSelectQuery::getSortDescription(const ASTSelectQuery & query, const ContextPtr & context_) +{ + SortDescription order_descr; + order_descr.reserve(query.orderBy()->children.size()); + + for (const auto & elem : query.orderBy()->children) + { + const String & column_name = elem->children.front()->getColumnName(); + const auto & order_by_elem = elem->as<ASTOrderByElement &>(); + + std::shared_ptr<Collator> collator; + if (order_by_elem.collation) + collator = std::make_shared<Collator>(order_by_elem.collation->as<ASTLiteral &>().value.get<String>()); + + if (order_by_elem.with_fill) + { + FillColumnDescription fill_desc = getWithFillDescription(order_by_elem, context_); + order_descr.emplace_back(column_name, order_by_elem.direction, order_by_elem.nulls_direction, collator, true, fill_desc); + } + else + order_descr.emplace_back(column_name, order_by_elem.direction, order_by_elem.nulls_direction, collator); + } + + order_descr.compile_sort_description = context_->getSettingsRef().compile_sort_description; + order_descr.min_count_to_compile_sort_description = context_->getSettingsRef().min_count_to_compile_sort_description; + + return order_descr; +} + +static InterpolateDescriptionPtr getInterpolateDescription( + const ASTSelectQuery & query, const Block & source_block, const Block & result_block, const Aliases & aliases, ContextPtr context) +{ + InterpolateDescriptionPtr interpolate_descr; + if (query.interpolate()) + { + NamesAndTypesList source_columns; + ColumnsWithTypeAndName result_columns; + ASTPtr exprs = std::make_shared<ASTExpressionList>(); + + if (query.interpolate()->children.empty()) + { + std::unordered_map<String, DataTypePtr> column_names; + for (const auto & column : result_block.getColumnsWithTypeAndName()) + column_names[column.name] = column.type; + for (const auto & elem : query.orderBy()->children) + if (elem->as<ASTOrderByElement>()->with_fill) + column_names.erase(elem->as<ASTOrderByElement>()->children.front()->getColumnName()); + for (const auto & [name, type] : column_names) + { + source_columns.emplace_back(name, type); + result_columns.emplace_back(type, name); + exprs->children.emplace_back(std::make_shared<ASTIdentifier>(name)); + } + } + else + { + NameSet col_set; + for (const auto & elem : query.interpolate()->children) + { + const auto & interpolate = elem->as<ASTInterpolateElement &>(); + + if (const ColumnWithTypeAndName *result_block_column = result_block.findByName(interpolate.column)) + { + if (!col_set.insert(result_block_column->name).second) + throw Exception(ErrorCodes::INVALID_WITH_FILL_EXPRESSION, + "Duplicate INTERPOLATE column '{}'", interpolate.column); + + result_columns.emplace_back(result_block_column->type, result_block_column->name); + } + else + throw Exception(ErrorCodes::UNKNOWN_IDENTIFIER, + "Missing column '{}' as an INTERPOLATE expression target", interpolate.column); + + exprs->children.emplace_back(interpolate.expr->clone()); + } + + col_set.clear(); + for (const auto & column : result_block) + { + source_columns.emplace_back(column.name, column.type); + col_set.insert(column.name); + } + for (const auto & column : source_block) + if (!col_set.contains(column.name)) + source_columns.emplace_back(column.name, column.type); + } + + auto syntax_result = TreeRewriter(context).analyze(exprs, source_columns); + ExpressionAnalyzer analyzer(exprs, syntax_result, context); + ActionsDAGPtr actions = analyzer.getActionsDAG(true); + ActionsDAGPtr conv_dag = ActionsDAG::makeConvertingActions(actions->getResultColumns(), + result_columns, ActionsDAG::MatchColumnsMode::Position, true); + ActionsDAGPtr merge_dag = ActionsDAG::merge(std::move(*actions->clone()), std::move(*conv_dag)); + + interpolate_descr = std::make_shared<InterpolateDescription>(merge_dag, aliases); + } + + return interpolate_descr; +} + +static SortDescription getSortDescriptionFromGroupBy(const ASTSelectQuery & query) +{ + if (!query.groupBy()) + return {}; + + SortDescription order_descr; + order_descr.reserve(query.groupBy()->children.size()); + + for (const auto & elem : query.groupBy()->children) + { + String name = elem->getColumnName(); + order_descr.emplace_back(name, 1, 1); + } + + return order_descr; +} + +static UInt64 getLimitUIntValue(const ASTPtr & node, const ContextPtr & context, const std::string & expr) +{ + const auto & [field, type] = evaluateConstantExpression(node, context); + + if (!isNativeNumber(type)) + throw Exception(ErrorCodes::INVALID_LIMIT_EXPRESSION, "Illegal type {} of {} expression, must be numeric type", + type->getName(), expr); + + Field converted = convertFieldToType(field, DataTypeUInt64()); + if (converted.isNull()) + throw Exception(ErrorCodes::INVALID_LIMIT_EXPRESSION, "The value {} of {} expression is not representable as UInt64", + applyVisitor(FieldVisitorToString(), field), expr); + + return converted.safeGet<UInt64>(); +} + + +static std::pair<UInt64, UInt64> getLimitLengthAndOffset(const ASTSelectQuery & query, const ContextPtr & context) +{ + UInt64 length = 0; + UInt64 offset = 0; + + if (query.limitLength()) + { + length = getLimitUIntValue(query.limitLength(), context, "LIMIT"); + if (query.limitOffset() && length) + offset = getLimitUIntValue(query.limitOffset(), context, "OFFSET"); + } + else if (query.limitOffset()) + offset = getLimitUIntValue(query.limitOffset(), context, "OFFSET"); + return {length, offset}; +} + + +UInt64 InterpreterSelectQuery::getLimitForSorting(const ASTSelectQuery & query, const ContextPtr & context_) +{ + /// Partial sort can be done if there is LIMIT but no DISTINCT or LIMIT BY, neither ARRAY JOIN. + if (!query.distinct && !query.limitBy() && !query.limit_with_ties && !query.arrayJoinExpressionList().first && query.limitLength()) + { + auto [limit_length, limit_offset] = getLimitLengthAndOffset(query, context_); + if (limit_length > std::numeric_limits<UInt64>::max() - limit_offset) + return 0; + + return limit_length + limit_offset; + } + return 0; +} + + +static bool hasWithTotalsInAnySubqueryInFromClause(const ASTSelectQuery & query) +{ + if (query.group_by_with_totals) + return true; + + /** NOTE You can also check that the table in the subquery is distributed, and that it only looks at one shard. + * In other cases, totals will be computed on the initiating server of the query, and it is not necessary to read the data to the end. + */ + if (auto query_table = extractTableExpression(query, 0)) + { + if (const auto * ast_union = query_table->as<ASTSelectWithUnionQuery>()) + { + /** NOTE + * 1. For ASTSelectWithUnionQuery after normalization for union child node the height of the AST tree is at most 2. + * 2. For ASTSelectIntersectExceptQuery after normalization in case there are intersect or except nodes, + * the height of the AST tree can have any depth (each intersect/except adds a level), but the + * number of children in those nodes is always 2. + */ + std::function<bool(ASTPtr)> traverse_recursively = [&](ASTPtr child_ast) -> bool + { + if (const auto * select_child = child_ast->as <ASTSelectQuery>()) + { + if (hasWithTotalsInAnySubqueryInFromClause(select_child->as<ASTSelectQuery &>())) + return true; + } + else if (const auto * union_child = child_ast->as<ASTSelectWithUnionQuery>()) + { + for (const auto & subchild : union_child->list_of_selects->children) + if (traverse_recursively(subchild)) + return true; + } + else if (const auto * intersect_child = child_ast->as<ASTSelectIntersectExceptQuery>()) + { + auto selects = intersect_child->getListOfSelects(); + for (const auto & subchild : selects) + if (traverse_recursively(subchild)) + return true; + } + return false; + }; + + for (const auto & elem : ast_union->list_of_selects->children) + if (traverse_recursively(elem)) + return true; + } + } + + return false; +} + + +void InterpreterSelectQuery::executeImpl(QueryPlan & query_plan, std::optional<Pipe> prepared_pipe) +{ + ProfileEvents::increment(ProfileEvents::SelectQueriesWithSubqueries); + ProfileEvents::increment(ProfileEvents::QueriesWithSubqueries); + + /** Streams of data. When the query is executed in parallel, we have several data streams. + * If there is no GROUP BY, then perform all operations before ORDER BY and LIMIT in parallel, then + * if there is an ORDER BY, then glue the streams using ResizeProcessor, and then MergeSorting transforms, + * if not, then glue it using ResizeProcessor, + * then apply LIMIT. + * If there is GROUP BY, then we will perform all operations up to GROUP BY, inclusive, in parallel; + * a parallel GROUP BY will glue streams into one, + * then perform the remaining operations with one resulting stream. + */ + + /// Now we will compose block streams that perform the necessary actions. + auto & query = getSelectQuery(); + const Settings & settings = context->getSettingsRef(); + auto & expressions = analysis_result; + bool intermediate_stage = false; + bool to_aggregation_stage = false; + bool from_aggregation_stage = false; + + /// Do I need to aggregate in a separate row that has not passed max_rows_to_group_by? + bool aggregate_overflow_row = + expressions.need_aggregate && + query.group_by_with_totals && + settings.max_rows_to_group_by && + settings.group_by_overflow_mode == OverflowMode::ANY && + settings.totals_mode != TotalsMode::AFTER_HAVING_EXCLUSIVE; + + /// Do I need to immediately finalize the aggregate functions after the aggregation? + bool aggregate_final = + expressions.need_aggregate && + options.to_stage > QueryProcessingStage::WithMergeableState && + !query.group_by_with_totals && !query.group_by_with_rollup && !query.group_by_with_cube; + + bool use_grouping_set_key = expressions.use_grouping_set_key; + + if (query.group_by_with_grouping_sets && query.group_by_with_totals) + throw Exception(ErrorCodes::NOT_IMPLEMENTED, "WITH TOTALS and GROUPING SETS are not supported together"); + + if (query.group_by_with_grouping_sets && (query.group_by_with_rollup || query.group_by_with_cube)) + throw Exception(ErrorCodes::NOT_IMPLEMENTED, "GROUPING SETS are not supported together with ROLLUP and CUBE"); + + if (expressions.hasHaving() && query.group_by_with_totals && (query.group_by_with_rollup || query.group_by_with_cube)) + throw Exception(ErrorCodes::NOT_IMPLEMENTED, "WITH TOTALS and WITH ROLLUP or CUBE are not supported together in presence of HAVING"); + + if (query_info.projection && query_info.projection->desc->type == ProjectionDescription::Type::Aggregate) + { + query_info.projection->aggregate_overflow_row = aggregate_overflow_row; + query_info.projection->aggregate_final = aggregate_final; + } + + if (options.only_analyze) + { + auto read_nothing = std::make_unique<ReadNothingStep>(source_header); + query_plan.addStep(std::move(read_nothing)); + + if (expressions.filter_info) + { + auto row_level_security_step = std::make_unique<FilterStep>( + query_plan.getCurrentDataStream(), + expressions.filter_info->actions, + expressions.filter_info->column_name, + expressions.filter_info->do_remove_column); + + row_level_security_step->setStepDescription("Row-level security filter"); + query_plan.addStep(std::move(row_level_security_step)); + } + + if (expressions.prewhere_info) + { + if (expressions.prewhere_info->row_level_filter) + { + auto row_level_filter_step = std::make_unique<FilterStep>( + query_plan.getCurrentDataStream(), + expressions.prewhere_info->row_level_filter, + expressions.prewhere_info->row_level_column_name, + true); + + row_level_filter_step->setStepDescription("Row-level security filter (PREWHERE)"); + query_plan.addStep(std::move(row_level_filter_step)); + } + + auto prewhere_step = std::make_unique<FilterStep>( + query_plan.getCurrentDataStream(), + expressions.prewhere_info->prewhere_actions, + expressions.prewhere_info->prewhere_column_name, + expressions.prewhere_info->remove_prewhere_column); + + prewhere_step->setStepDescription("PREWHERE"); + query_plan.addStep(std::move(prewhere_step)); + } + } + else + { + if (prepared_pipe) + { + auto prepared_source_step = std::make_unique<ReadFromPreparedSource>(std::move(*prepared_pipe)); + query_plan.addStep(std::move(prepared_source_step)); + query_plan.addInterpreterContext(context); + } + + if (from_stage == QueryProcessingStage::WithMergeableState && + options.to_stage == QueryProcessingStage::WithMergeableState) + intermediate_stage = true; + + /// Support optimize_distributed_group_by_sharding_key + /// Is running on the initiating server during distributed processing? + if (from_stage >= QueryProcessingStage::WithMergeableStateAfterAggregation) + from_aggregation_stage = true; + /// Is running on remote servers during distributed processing? + if (options.to_stage >= QueryProcessingStage::WithMergeableStateAfterAggregation) + to_aggregation_stage = true; + + /// Read the data from Storage. from_stage - to what stage the request was completed in Storage. + executeFetchColumns(from_stage, query_plan); + + LOG_TRACE(log, "{} -> {}", QueryProcessingStage::toString(from_stage), QueryProcessingStage::toString(options.to_stage)); + } + + if (query_info.projection && query_info.projection->input_order_info && query_info.input_order_info) + throw Exception(ErrorCodes::LOGICAL_ERROR, "InputOrderInfo is set for projection and for query"); + InputOrderInfoPtr input_order_info_for_order; + if (!expressions.need_aggregate) + input_order_info_for_order = query_info.projection ? query_info.projection->input_order_info : query_info.input_order_info; + + if (options.to_stage > QueryProcessingStage::FetchColumns) + { + auto preliminary_sort = [&]() + { + /** For distributed query processing, + * if no GROUP, HAVING set, + * but there is an ORDER or LIMIT, + * then we will perform the preliminary sorting and LIMIT on the remote server. + */ + if (!expressions.second_stage + && !expressions.need_aggregate + && !expressions.hasHaving() + && !expressions.has_window) + { + if (expressions.has_order_by) + executeOrder(query_plan, input_order_info_for_order); + + /// pre_distinct = false, because if we have limit and distinct, + /// we need to merge streams to one and calculate overall distinct. + /// Otherwise we can take several equal values from different streams + /// according to limit and skip some distinct values. + if (query.limitLength()) + executeDistinct(query_plan, false, expressions.selected_columns, false); + + if (expressions.hasLimitBy()) + { + executeExpression(query_plan, expressions.before_limit_by, "Before LIMIT BY"); + executeLimitBy(query_plan); + } + + if (query.limitLength()) + executePreLimit(query_plan, true); + } + }; + + if (intermediate_stage) + { + if (expressions.first_stage || expressions.second_stage) + throw Exception(ErrorCodes::LOGICAL_ERROR, "Query with intermediate stage cannot have any other stages"); + + preliminary_sort(); + if (expressions.need_aggregate) + executeMergeAggregated(query_plan, aggregate_overflow_row, aggregate_final, use_grouping_set_key); + } + + if (from_aggregation_stage) + { + if (intermediate_stage || expressions.first_stage || expressions.second_stage) + throw Exception(ErrorCodes::LOGICAL_ERROR, "Query with after aggregation stage cannot have any other stages"); + } + + if (expressions.first_stage) + { + // If there is a storage that supports prewhere, this will always be nullptr + // Thus, we don't actually need to check if projection is active. + if (!query_info.projection && expressions.filter_info) + { + auto row_level_security_step = std::make_unique<FilterStep>( + query_plan.getCurrentDataStream(), + expressions.filter_info->actions, + expressions.filter_info->column_name, + expressions.filter_info->do_remove_column); + + row_level_security_step->setStepDescription("Row-level security filter"); + query_plan.addStep(std::move(row_level_security_step)); + } + + const auto add_filter_step = [&](const auto & new_filter_info, const std::string & description) + { + auto filter_step = std::make_unique<FilterStep>( + query_plan.getCurrentDataStream(), + new_filter_info->actions, + new_filter_info->column_name, + new_filter_info->do_remove_column); + + filter_step->setStepDescription(description); + query_plan.addStep(std::move(filter_step)); + }; + + if (additional_filter_info) + add_filter_step(additional_filter_info, "Additional filter"); + + if (parallel_replicas_custom_filter_info) + add_filter_step(parallel_replicas_custom_filter_info, "Parallel replica custom key filter"); + + if (expressions.before_array_join) + { + QueryPlanStepPtr before_array_join_step + = std::make_unique<ExpressionStep>(query_plan.getCurrentDataStream(), expressions.before_array_join); + before_array_join_step->setStepDescription("Before ARRAY JOIN"); + query_plan.addStep(std::move(before_array_join_step)); + } + + if (expressions.array_join) + { + QueryPlanStepPtr array_join_step + = std::make_unique<ArrayJoinStep>(query_plan.getCurrentDataStream(), expressions.array_join); + + array_join_step->setStepDescription("ARRAY JOIN"); + query_plan.addStep(std::move(array_join_step)); + } + + if (expressions.before_join) + { + QueryPlanStepPtr before_join_step = std::make_unique<ExpressionStep>( + query_plan.getCurrentDataStream(), + expressions.before_join); + before_join_step->setStepDescription("Before JOIN"); + query_plan.addStep(std::move(before_join_step)); + } + + /// Optional step to convert key columns to common supertype. + if (expressions.converting_join_columns) + { + QueryPlanStepPtr convert_join_step = std::make_unique<ExpressionStep>( + query_plan.getCurrentDataStream(), + expressions.converting_join_columns); + convert_join_step->setStepDescription("Convert JOIN columns"); + query_plan.addStep(std::move(convert_join_step)); + } + + if (expressions.hasJoin()) + { + if (expressions.join->isFilled()) + { + QueryPlanStepPtr filled_join_step = std::make_unique<FilledJoinStep>( + query_plan.getCurrentDataStream(), + expressions.join, + settings.max_block_size); + + filled_join_step->setStepDescription("JOIN"); + query_plan.addStep(std::move(filled_join_step)); + } + else + { + auto joined_plan = query_analyzer->getJoinedPlan(); + + if (!joined_plan) + throw Exception(ErrorCodes::LOGICAL_ERROR, "There is no joined plan for query"); + + auto add_sorting = [&settings, this] (QueryPlan & plan, const Names & key_names, JoinTableSide join_pos) + { + SortDescription order_descr; + order_descr.reserve(key_names.size()); + for (const auto & key_name : key_names) + order_descr.emplace_back(key_name); + + SortingStep::Settings sort_settings(*context); + + auto sorting_step = std::make_unique<SortingStep>( + plan.getCurrentDataStream(), + std::move(order_descr), + 0 /* LIMIT */, sort_settings, + settings.optimize_sorting_by_input_stream_properties); + sorting_step->setStepDescription(fmt::format("Sort {} before JOIN", join_pos)); + plan.addStep(std::move(sorting_step)); + }; + + auto crosswise_connection = CreateSetAndFilterOnTheFlyStep::createCrossConnection(); + auto add_create_set = [&settings, crosswise_connection](QueryPlan & plan, const Names & key_names, JoinTableSide join_pos) + { + auto creating_set_step = std::make_unique<CreateSetAndFilterOnTheFlyStep>( + plan.getCurrentDataStream(), key_names, settings.max_rows_in_set_to_optimize_join, crosswise_connection, join_pos); + creating_set_step->setStepDescription(fmt::format("Create set and filter {} joined stream", join_pos)); + + auto * step_raw_ptr = creating_set_step.get(); + plan.addStep(std::move(creating_set_step)); + return step_raw_ptr; + }; + + if (expressions.join->pipelineType() == JoinPipelineType::YShaped) + { + const auto & table_join = expressions.join->getTableJoin(); + const auto & join_clause = table_join.getOnlyClause(); + + auto join_kind = table_join.kind(); + bool kind_allows_filtering = isInner(join_kind) || isLeft(join_kind) || isRight(join_kind); + + auto has_non_const = [](const Block & block, const auto & keys) + { + for (const auto & key : keys) + { + const auto & column = block.getByName(key).column; + if (column && !isColumnConst(*column)) + return true; + } + return false; + }; + /// This optimization relies on the sorting that should buffer the whole stream before emitting any rows. + /// It doesn't hold such a guarantee for streams with const keys. + /// Note: it's also doesn't work with the read-in-order optimization. + /// No checks here because read in order is not applied if we have `CreateSetAndFilterOnTheFlyStep` in the pipeline between the reading and sorting steps. + bool has_non_const_keys = has_non_const(query_plan.getCurrentDataStream().header, join_clause.key_names_left) + && has_non_const(joined_plan->getCurrentDataStream().header, join_clause.key_names_right); + + if (settings.max_rows_in_set_to_optimize_join > 0 && kind_allows_filtering && has_non_const_keys) + { + auto * left_set = add_create_set(query_plan, join_clause.key_names_left, JoinTableSide::Left); + auto * right_set = add_create_set(*joined_plan, join_clause.key_names_right, JoinTableSide::Right); + + if (isInnerOrLeft(join_kind)) + right_set->setFiltering(left_set->getSet()); + + if (isInnerOrRight(join_kind)) + left_set->setFiltering(right_set->getSet()); + } + + add_sorting(query_plan, join_clause.key_names_left, JoinTableSide::Left); + add_sorting(*joined_plan, join_clause.key_names_right, JoinTableSide::Right); + } + + QueryPlanStepPtr join_step = std::make_unique<JoinStep>( + query_plan.getCurrentDataStream(), + joined_plan->getCurrentDataStream(), + expressions.join, + settings.max_block_size, + max_streams, + analysis_result.optimize_read_in_order); + + join_step->setStepDescription(fmt::format("JOIN {}", expressions.join->pipelineType())); + std::vector<QueryPlanPtr> plans; + plans.emplace_back(std::make_unique<QueryPlan>(std::move(query_plan))); + plans.emplace_back(std::move(joined_plan)); + + query_plan = QueryPlan(); + query_plan.unitePlans(std::move(join_step), {std::move(plans)}); + } + } + + if (!query_info.projection && expressions.hasWhere()) + executeWhere(query_plan, expressions.before_where, expressions.remove_where_filter); + + if (expressions.need_aggregate) + executeAggregation( + query_plan, expressions.before_aggregation, aggregate_overflow_row, aggregate_final, query_info.input_order_info); + + // Now we must execute: + // 1) expressions before window functions, + // 2) window functions, + // 3) expressions after window functions, + // 4) preliminary distinct. + // This code decides which part we execute on shard (first_stage) + // and which part on initiator (second_stage). See also the counterpart + // code for "second_stage" that has to execute the rest. + if (expressions.need_aggregate) + { + // We have aggregation, so we can't execute any later-stage + // expressions on shards, neither "before window functions" nor + // "before ORDER BY". + } + else + { + // We don't have aggregation. + // Window functions must be executed on initiator (second_stage). + // ORDER BY and DISTINCT might depend on them, so if we have + // window functions, we can't execute ORDER BY and DISTINCT + // now, on shard (first_stage). + if (query_analyzer->hasWindow()) + { + executeExpression(query_plan, expressions.before_window, "Before window functions"); + } + else + { + // We don't have window functions, so we can execute the + // expressions before ORDER BY and the preliminary DISTINCT + // now, on shards (first_stage). + assert(!expressions.before_window); + executeExpression(query_plan, expressions.before_order_by, "Before ORDER BY"); + executeDistinct(query_plan, true, expressions.selected_columns, true); + } + } + + preliminary_sort(); + } + + if (expressions.second_stage || from_aggregation_stage) + { + if (from_aggregation_stage) + { + /// No need to aggregate anything, since this was done on remote shards. + } + else if (expressions.need_aggregate) + { + /// If you need to combine aggregated results from multiple servers + if (!expressions.first_stage) + executeMergeAggregated(query_plan, aggregate_overflow_row, aggregate_final, use_grouping_set_key); + + if (!aggregate_final) + { + if (query.group_by_with_totals) + { + bool final = !query.group_by_with_rollup && !query.group_by_with_cube; + executeTotalsAndHaving( + query_plan, expressions.hasHaving(), expressions.before_having, expressions.remove_having_filter, aggregate_overflow_row, final); + } + + if (query.group_by_with_rollup) + executeRollupOrCube(query_plan, Modificator::ROLLUP); + else if (query.group_by_with_cube) + executeRollupOrCube(query_plan, Modificator::CUBE); + + if ((query.group_by_with_rollup || query.group_by_with_cube || query.group_by_with_grouping_sets) && expressions.hasHaving()) + executeHaving(query_plan, expressions.before_having, expressions.remove_having_filter); + } + else if (expressions.hasHaving()) + executeHaving(query_plan, expressions.before_having, expressions.remove_having_filter); + } + else if (query.group_by_with_totals || query.group_by_with_rollup || query.group_by_with_cube || query.group_by_with_grouping_sets) + throw Exception(ErrorCodes::NOT_IMPLEMENTED, "WITH TOTALS, ROLLUP, CUBE or GROUPING SETS are not supported without aggregation"); + + // Now we must execute: + // 1) expressions before window functions, + // 2) window functions, + // 3) expressions after window functions, + // 4) preliminary distinct. + // Some of these were already executed at the shards (first_stage), + // see the counterpart code and comments there. + if (from_aggregation_stage) + { + if (query_analyzer->hasWindow()) + throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Window functions does not support processing from WithMergeableStateAfterAggregation"); + } + else if (expressions.need_aggregate) + { + executeExpression(query_plan, expressions.before_window, + "Before window functions"); + executeWindow(query_plan); + executeExpression(query_plan, expressions.before_order_by, "Before ORDER BY"); + executeDistinct(query_plan, true, expressions.selected_columns, true); + } + else + { + if (query_analyzer->hasWindow()) + { + executeWindow(query_plan); + executeExpression(query_plan, expressions.before_order_by, "Before ORDER BY"); + executeDistinct(query_plan, true, expressions.selected_columns, true); + } + else + { + // Neither aggregation nor windows, all expressions before + // ORDER BY executed on shards. + } + } + + if (expressions.has_order_by) + { + /** If there is an ORDER BY for distributed query processing, + * but there is no aggregation, then on the remote servers ORDER BY was made + * - therefore, we merge the sorted streams from remote servers. + * + * Also in case of remote servers was process the query up to WithMergeableStateAfterAggregationAndLimit + * (distributed_group_by_no_merge=2 or optimize_distributed_group_by_sharding_key=1 takes place), + * then merge the sorted streams is enough, since remote servers already did full ORDER BY. + */ + + if (from_aggregation_stage) + executeMergeSorted(query_plan, "after aggregation stage for ORDER BY"); + else if (!expressions.first_stage + && !expressions.need_aggregate + && !expressions.has_window + && !(query.group_by_with_totals && !aggregate_final)) + executeMergeSorted(query_plan, "for ORDER BY, without aggregation"); + else /// Otherwise, just sort. + executeOrder(query_plan, input_order_info_for_order); + } + + /** Optimization - if there are several sources and there is LIMIT, then first apply the preliminary LIMIT, + * limiting the number of rows in each up to `offset + limit`. + */ + bool has_withfill = false; + if (query.orderBy()) + { + SortDescription order_descr = getSortDescription(query, context); + for (auto & desc : order_descr) + if (desc.with_fill) + { + has_withfill = true; + break; + } + } + + bool apply_limit = options.to_stage != QueryProcessingStage::WithMergeableStateAfterAggregation; + bool apply_prelimit = apply_limit && + query.limitLength() && !query.limit_with_ties && + !hasWithTotalsInAnySubqueryInFromClause(query) && + !query.arrayJoinExpressionList().first && + !query.distinct && + !expressions.hasLimitBy() && + !settings.extremes && + !has_withfill; + bool apply_offset = options.to_stage != QueryProcessingStage::WithMergeableStateAfterAggregationAndLimit; + if (apply_prelimit) + { + executePreLimit(query_plan, /* do_not_skip_offset= */!apply_offset); + } + + /** If there was more than one stream, + * then DISTINCT needs to be performed once again after merging all streams. + */ + if (!from_aggregation_stage && query.distinct) + executeDistinct(query_plan, false, expressions.selected_columns, false); + + if (!from_aggregation_stage && expressions.hasLimitBy()) + { + executeExpression(query_plan, expressions.before_limit_by, "Before LIMIT BY"); + executeLimitBy(query_plan); + } + + executeWithFill(query_plan); + + /// If we have 'WITH TIES', we need execute limit before projection, + /// because in that case columns from 'ORDER BY' are used. + if (query.limit_with_ties && apply_offset) + { + executeLimit(query_plan); + } + + /// Projection not be done on the shards, since then initiator will not find column in blocks. + /// (significant only for WithMergeableStateAfterAggregation/WithMergeableStateAfterAggregationAndLimit). + if (!to_aggregation_stage) + { + /// We must do projection after DISTINCT because projection may remove some columns. + executeProjection(query_plan, expressions.final_projection); + } + + /// Extremes are calculated before LIMIT, but after LIMIT BY. This is Ok. + executeExtremes(query_plan); + + bool limit_applied = apply_prelimit || (query.limit_with_ties && apply_offset); + /// Limit is no longer needed if there is prelimit. + /// + /// NOTE: that LIMIT cannot be applied if OFFSET should not be applied, + /// since LIMIT will apply OFFSET too. + /// This is the case for various optimizations for distributed queries, + /// and when LIMIT cannot be applied it will be applied on the initiator anyway. + if (apply_limit && !limit_applied && apply_offset) + executeLimit(query_plan); + + if (apply_offset) + executeOffset(query_plan); + } + } + + executeSubqueriesInSetsAndJoins(query_plan); +} + +static void executeMergeAggregatedImpl( + QueryPlan & query_plan, + bool overflow_row, + bool final, + bool is_remote_storage, + bool has_grouping_sets, + const Settings & settings, + const NamesAndTypesList & aggregation_keys, + const AggregateDescriptions & aggregates, + bool should_produce_results_in_order_of_bucket_number, + SortDescription group_by_sort_description) +{ + auto keys = aggregation_keys.getNames(); + if (has_grouping_sets) + keys.insert(keys.begin(), "__grouping_set"); + + /** There are two modes of distributed aggregation. + * + * 1. In different threads read from the remote servers blocks. + * Save all the blocks in the RAM. Merge blocks. + * If the aggregation is two-level - parallelize to the number of buckets. + * + * 2. In one thread, read blocks from different servers in order. + * RAM stores only one block from each server. + * If the aggregation is a two-level aggregation, we consistently merge the blocks of each next level. + * + * The second option consumes less memory (up to 256 times less) + * in the case of two-level aggregation, which is used for large results after GROUP BY, + * but it can work more slowly. + */ + + Aggregator::Params params(keys, aggregates, overflow_row, settings.max_threads, settings.max_block_size); + + auto merging_aggregated = std::make_unique<MergingAggregatedStep>( + query_plan.getCurrentDataStream(), + params, + final, + /// Grouping sets don't work with distributed_aggregation_memory_efficient enabled (#43989) + settings.distributed_aggregation_memory_efficient && is_remote_storage && !has_grouping_sets, + settings.max_threads, + settings.aggregation_memory_efficient_merge_threads, + should_produce_results_in_order_of_bucket_number, + settings.max_block_size, + settings.aggregation_in_order_max_block_bytes, + std::move(group_by_sort_description), + settings.enable_memory_bound_merging_of_aggregation_results); + + query_plan.addStep(std::move(merging_aggregated)); +} + +void InterpreterSelectQuery::addEmptySourceToQueryPlan( + QueryPlan & query_plan, const Block & source_header, const SelectQueryInfo & query_info, const ContextPtr & context_) +{ + Pipe pipe(std::make_shared<NullSource>(source_header)); + + PrewhereInfoPtr prewhere_info_ptr = query_info.projection ? query_info.projection->prewhere_info : query_info.prewhere_info; + if (prewhere_info_ptr) + { + auto & prewhere_info = *prewhere_info_ptr; + + if (prewhere_info.row_level_filter) + { + pipe.addSimpleTransform([&](const Block & header) + { + return std::make_shared<FilterTransform>(header, + std::make_shared<ExpressionActions>(prewhere_info.row_level_filter), + prewhere_info.row_level_column_name, true); + }); + } + + pipe.addSimpleTransform([&](const Block & header) + { + return std::make_shared<FilterTransform>( + header, std::make_shared<ExpressionActions>(prewhere_info.prewhere_actions), + prewhere_info.prewhere_column_name, prewhere_info.remove_prewhere_column); + }); + } + + auto read_from_pipe = std::make_unique<ReadFromPreparedSource>(std::move(pipe)); + read_from_pipe->setStepDescription("Read from NullSource"); + query_plan.addStep(std::move(read_from_pipe)); + + if (query_info.projection) + { + if (query_info.projection->before_where) + { + auto where_step = std::make_unique<FilterStep>( + query_plan.getCurrentDataStream(), + query_info.projection->before_where, + query_info.projection->where_column_name, + query_info.projection->remove_where_filter); + + where_step->setStepDescription("WHERE"); + query_plan.addStep(std::move(where_step)); + } + + if (query_info.projection->desc->type == ProjectionDescription::Type::Aggregate) + { + if (query_info.projection->before_aggregation) + { + auto expression_before_aggregation + = std::make_unique<ExpressionStep>(query_plan.getCurrentDataStream(), query_info.projection->before_aggregation); + expression_before_aggregation->setStepDescription("Before GROUP BY"); + query_plan.addStep(std::move(expression_before_aggregation)); + } + + // Let's just choose the safe option since we don't know the value of `to_stage` here. + const bool should_produce_results_in_order_of_bucket_number = true; + + // It is used to determine if we should use memory bound merging strategy. Maybe it makes sense for projections, but so far this case is just left untouched. + SortDescription group_by_sort_description; + + executeMergeAggregatedImpl( + query_plan, + query_info.projection->aggregate_overflow_row, + query_info.projection->aggregate_final, + false, + false, + context_->getSettingsRef(), + query_info.projection->aggregation_keys, + query_info.projection->aggregate_descriptions, + should_produce_results_in_order_of_bucket_number, + std::move(group_by_sort_description)); + } + } +} + +RowPolicyFilterPtr InterpreterSelectQuery::getRowPolicyFilter() const +{ + return row_policy_filter; +} + +void InterpreterSelectQuery::extendQueryLogElemImpl(QueryLogElement & elem, const ASTPtr & /*ast*/, ContextPtr /*context_*/) const +{ + for (const auto & row_policy : row_policy_filter->policies) + { + auto name = row_policy->getFullName().toString(); + elem.used_row_policies.emplace(std::move(name)); + } +} + +bool InterpreterSelectQuery::shouldMoveToPrewhere() +{ + const Settings & settings = context->getSettingsRef(); + const ASTSelectQuery & query = getSelectQuery(); + return settings.optimize_move_to_prewhere && (!query.final() || settings.optimize_move_to_prewhere_if_final); +} + +void InterpreterSelectQuery::addPrewhereAliasActions() +{ + auto & expressions = analysis_result; + if (expressions.filter_info) + { + if (!expressions.prewhere_info) + { + const bool does_storage_support_prewhere = !input_pipe && storage && storage->supportsPrewhere(); + if (does_storage_support_prewhere && shouldMoveToPrewhere()) + { + /// Execute row level filter in prewhere as a part of "move to prewhere" optimization. + expressions.prewhere_info = std::make_shared<PrewhereInfo>( + std::move(expressions.filter_info->actions), + std::move(expressions.filter_info->column_name)); + expressions.prewhere_info->prewhere_actions->projectInput(false); + expressions.prewhere_info->remove_prewhere_column = expressions.filter_info->do_remove_column; + expressions.prewhere_info->need_filter = true; + expressions.filter_info = nullptr; + } + } + else + { + /// Add row level security actions to prewhere. + expressions.prewhere_info->row_level_filter = std::move(expressions.filter_info->actions); + expressions.prewhere_info->row_level_column_name = std::move(expressions.filter_info->column_name); + expressions.prewhere_info->row_level_filter->projectInput(false); + expressions.filter_info = nullptr; + } + } + + auto & prewhere_info = analysis_result.prewhere_info; + auto & columns_to_remove_after_prewhere = analysis_result.columns_to_remove_after_prewhere; + + /// Detect, if ALIAS columns are required for query execution + auto alias_columns_required = false; + const ColumnsDescription & storage_columns = metadata_snapshot->getColumns(); + for (const auto & column_name : required_columns) + { + auto column_default = storage_columns.getDefault(column_name); + if (column_default && column_default->kind == ColumnDefaultKind::Alias) + { + alias_columns_required = true; + break; + } + } + + /// Set of all (including ALIAS) required columns for PREWHERE + auto get_prewhere_columns = [&]() + { + NameSet columns; + + if (prewhere_info) + { + /// Get some columns directly from PREWHERE expression actions + auto prewhere_required_columns = prewhere_info->prewhere_actions->getRequiredColumns().getNames(); + columns.insert(prewhere_required_columns.begin(), prewhere_required_columns.end()); + + if (prewhere_info->row_level_filter) + { + auto row_level_required_columns = prewhere_info->row_level_filter->getRequiredColumns().getNames(); + columns.insert(row_level_required_columns.begin(), row_level_required_columns.end()); + } + } + + return columns; + }; + + /// There are multiple sources of required columns: + /// - raw required columns, + /// - columns deduced from ALIAS columns, + /// - raw required columns from PREWHERE, + /// - columns deduced from ALIAS columns from PREWHERE. + /// PREWHERE is a special case, since we need to resolve it and pass directly to `IStorage::read()` + /// before any other executions. + if (alias_columns_required) + { + NameSet required_columns_from_prewhere = get_prewhere_columns(); + NameSet required_aliases_from_prewhere; /// Set of ALIAS required columns for PREWHERE + + /// Expression, that contains all raw required columns + ASTPtr required_columns_all_expr = std::make_shared<ASTExpressionList>(); + + /// Expression, that contains raw required columns for PREWHERE + ASTPtr required_columns_from_prewhere_expr = std::make_shared<ASTExpressionList>(); + + /// Sort out already known required columns between expressions, + /// also populate `required_aliases_from_prewhere`. + for (const auto & column : required_columns) + { + ASTPtr column_expr; + const auto column_default = storage_columns.getDefault(column); + bool is_alias = column_default && column_default->kind == ColumnDefaultKind::Alias; + if (is_alias) + { + auto column_decl = storage_columns.get(column); + column_expr = column_default->expression->clone(); + // recursive visit for alias to alias + replaceAliasColumnsInQuery( + column_expr, metadata_snapshot->getColumns(), syntax_analyzer_result->array_join_result_to_source, context); + + column_expr = addTypeConversionToAST( + std::move(column_expr), column_decl.type->getName(), metadata_snapshot->getColumns().getAll(), context); + column_expr = setAlias(column_expr, column); + } + else + column_expr = std::make_shared<ASTIdentifier>(column); + + if (required_columns_from_prewhere.contains(column)) + { + required_columns_from_prewhere_expr->children.emplace_back(std::move(column_expr)); + + if (is_alias) + required_aliases_from_prewhere.insert(column); + } + else + required_columns_all_expr->children.emplace_back(std::move(column_expr)); + } + + /// Columns, which we will get after prewhere and filter executions. + NamesAndTypesList required_columns_after_prewhere; + NameSet required_columns_after_prewhere_set; + + /// Collect required columns from prewhere expression actions. + if (prewhere_info) + { + NameSet columns_to_remove(columns_to_remove_after_prewhere.begin(), columns_to_remove_after_prewhere.end()); + Block prewhere_actions_result = prewhere_info->prewhere_actions->getResultColumns(); + + /// Populate required columns with the columns, added by PREWHERE actions and not removed afterwards. + /// XXX: looks hacky that we already know which columns after PREWHERE we won't need for sure. + for (const auto & column : prewhere_actions_result) + { + if (prewhere_info->remove_prewhere_column && column.name == prewhere_info->prewhere_column_name) + continue; + + if (columns_to_remove.contains(column.name)) + continue; + + required_columns_all_expr->children.emplace_back(std::make_shared<ASTIdentifier>(column.name)); + required_columns_after_prewhere.emplace_back(column.name, column.type); + } + + required_columns_after_prewhere_set + = collections::map<NameSet>(required_columns_after_prewhere, [](const auto & it) { return it.name; }); + } + + auto syntax_result + = TreeRewriter(context).analyze(required_columns_all_expr, required_columns_after_prewhere, storage, storage_snapshot, options.is_create_parameterized_view); + alias_actions = ExpressionAnalyzer(required_columns_all_expr, syntax_result, context).getActionsDAG(true); + + /// The set of required columns could be added as a result of adding an action to calculate ALIAS. + required_columns = alias_actions->getRequiredColumns().getNames(); + + /// Do not remove prewhere filter if it is a column which is used as alias. + if (prewhere_info && prewhere_info->remove_prewhere_column) + if (required_columns.end() != std::find(required_columns.begin(), required_columns.end(), prewhere_info->prewhere_column_name)) + prewhere_info->remove_prewhere_column = false; + + /// Remove columns which will be added by prewhere. + std::erase_if(required_columns, [&](const String & name) { return required_columns_after_prewhere_set.contains(name); }); + + if (prewhere_info) + { + /// Don't remove columns which are needed to be aliased. + for (const auto & name : required_columns) + prewhere_info->prewhere_actions->tryRestoreColumn(name); + + /// Add physical columns required by prewhere actions. + for (const auto & column : required_columns_from_prewhere) + if (!required_aliases_from_prewhere.contains(column)) + if (required_columns.end() == std::find(required_columns.begin(), required_columns.end(), column)) + required_columns.push_back(column); + } + } + + const auto & supported_prewhere_columns = storage->supportedPrewhereColumns(); + if (supported_prewhere_columns.has_value()) + { + NameSet required_columns_from_prewhere = get_prewhere_columns(); + + for (const auto & column_name : required_columns_from_prewhere) + { + if (!supported_prewhere_columns->contains(column_name)) + throw Exception(ErrorCodes::ILLEGAL_PREWHERE, "Storage {} doesn't support PREWHERE for {}", storage->getName(), column_name); + } + } +} + +/// Based on the query analysis, check if optimizing the count trivial count to use totalRows is possible +std::optional<UInt64> InterpreterSelectQuery::getTrivialCount(UInt64 max_parallel_replicas) +{ + const Settings & settings = context->getSettingsRef(); + bool optimize_trivial_count = + syntax_analyzer_result->optimize_trivial_count + && (max_parallel_replicas <= 1) + && !settings.allow_experimental_query_deduplication + && !settings.empty_result_for_aggregation_by_empty_set + && storage + && storage->supportsTrivialCountOptimization() + && query_info.filter_asts.empty() + && query_analyzer->hasAggregation() + && (query_analyzer->aggregates().size() == 1) + && typeid_cast<const AggregateFunctionCount *>(query_analyzer->aggregates()[0].function.get()); + + if (!optimize_trivial_count) + return {}; + + auto & query = getSelectQuery(); + if (!query.prewhere() && !query.where() && !context->getCurrentTransaction()) + { + /// Some storages can optimize trivial count in read() method instead of totalRows() because it still can + /// require reading some data (but much faster than reading columns). + /// Set a special flag in query info so the storage will see it and optimize count in read() method. + query_info.optimize_trivial_count = optimize_trivial_count; + return storage->totalRows(settings); + } + else + { + // It's possible to optimize count() given only partition predicates + SelectQueryInfo temp_query_info; + temp_query_info.query = query_ptr; + temp_query_info.syntax_analyzer_result = syntax_analyzer_result; + temp_query_info.prepared_sets = query_analyzer->getPreparedSets(); + + return storage->totalRowsByPartitionPredicate(temp_query_info, context); + } +} + +void InterpreterSelectQuery::executeFetchColumns(QueryProcessingStage::Enum processing_stage, QueryPlan & query_plan) +{ + auto & query = getSelectQuery(); + const Settings & settings = context->getSettingsRef(); + std::optional<UInt64> num_rows; + + /// Optimization for trivial query like SELECT count() FROM table. + if (processing_stage == QueryProcessingStage::FetchColumns && (num_rows = getTrivialCount(settings.max_parallel_replicas))) + { + const auto & desc = query_analyzer->aggregates()[0]; + const auto & func = desc.function; + const AggregateFunctionCount & agg_count = static_cast<const AggregateFunctionCount &>(*func); + + /// We will process it up to "WithMergeableState". + std::vector<char> state(agg_count.sizeOfData()); + AggregateDataPtr place = state.data(); + + agg_count.create(place); + SCOPE_EXIT_MEMORY_SAFE(agg_count.destroy(place)); + + agg_count.set(place, *num_rows); + + auto column = ColumnAggregateFunction::create(func); + column->insertFrom(place); + + Block header = analysis_result.before_aggregation->getResultColumns(); + size_t arguments_size = desc.argument_names.size(); + DataTypes argument_types(arguments_size); + for (size_t j = 0; j < arguments_size; ++j) + argument_types[j] = header.getByName(desc.argument_names[j]).type; + + Block block_with_count{ + {std::move(column), std::make_shared<DataTypeAggregateFunction>(func, argument_types, desc.parameters), desc.column_name}}; + + auto source = std::make_shared<SourceFromSingleChunk>(block_with_count); + auto prepared_count = std::make_unique<ReadFromPreparedSource>(Pipe(std::move(source))); + prepared_count->setStepDescription("Optimized trivial count"); + query_plan.addStep(std::move(prepared_count)); + from_stage = QueryProcessingStage::WithMergeableState; + analysis_result.first_stage = false; + return; + } + + /// Limitation on the number of columns to read. + /// It's not applied in 'only_analyze' mode, because the query could be analyzed without removal of unnecessary columns. + if (!options.only_analyze && settings.max_columns_to_read && required_columns.size() > settings.max_columns_to_read) + throw Exception( + ErrorCodes::TOO_MANY_COLUMNS, + "Limit for number of columns to read exceeded. Requested: {}, maximum: {}", + required_columns.size(), + settings.max_columns_to_read); + + /// General limit for the number of threads. + size_t max_threads_execute_query = settings.max_threads; + + /** With distributed query processing, almost no computations are done in the threads, + * but wait and receive data from remote servers. + * If we have 20 remote servers, and max_threads = 8, then it would not be very good + * connect and ask only 8 servers at a time. + * To simultaneously query more remote servers, + * instead of max_threads, max_distributed_connections is used. + */ + bool is_remote = false; + if (storage && storage->isRemote()) + { + is_remote = true; + max_threads_execute_query = max_streams = settings.max_distributed_connections; + } + + UInt64 max_block_size = settings.max_block_size; + + auto [limit_length, limit_offset] = getLimitLengthAndOffset(query, context); + + auto local_limits = getStorageLimits(*context, options); + + /** Optimization - if not specified DISTINCT, WHERE, GROUP, HAVING, ORDER, JOIN, LIMIT BY, WITH TIES + * but LIMIT is specified, and limit + offset < max_block_size, + * then as the block size we will use limit + offset (not to read more from the table than requested), + * and also set the number of threads to 1. + */ + if (!query.distinct + && !query.limit_with_ties + && !query.prewhere() + && !query.where() + && query_info.filter_asts.empty() + && !query.groupBy() + && !query.having() + && !query.orderBy() + && !query.limitBy() + && !query.join() + && !query_analyzer->hasAggregation() + && !query_analyzer->hasWindow() + && query.limitLength() + && limit_length <= std::numeric_limits<UInt64>::max() - limit_offset) + { + if (limit_length + limit_offset < max_block_size) + { + max_block_size = std::max<UInt64>(1, limit_length + limit_offset); + max_threads_execute_query = max_streams = 1; + } + if (limit_length + limit_offset < local_limits.local_limits.size_limits.max_rows) + { + query_info.limit = limit_length + limit_offset; + } + } + + if (!max_block_size) + throw Exception(ErrorCodes::PARAMETER_OUT_OF_BOUND, "Setting 'max_block_size' cannot be zero"); + + storage_limits.emplace_back(local_limits); + + /// Initialize the initial data streams to which the query transforms are superimposed. Table or subquery or prepared input? + if (query_plan.isInitialized()) + { + /// Prepared input. + } + else if (interpreter_subquery) + { + /// Subquery. + ASTPtr subquery = extractTableExpression(query, 0); + if (!subquery) + throw Exception(ErrorCodes::LOGICAL_ERROR, "Subquery expected"); + + interpreter_subquery = std::make_unique<InterpreterSelectWithUnionQuery>( + subquery, getSubqueryContext(context), + options.copy().subquery().noModify(), required_columns); + + interpreter_subquery->addStorageLimits(storage_limits); + + if (query_analyzer->hasAggregation()) + interpreter_subquery->ignoreWithTotals(); + + interpreter_subquery->buildQueryPlan(query_plan); + query_plan.addInterpreterContext(context); + } + else if (storage) + { + /// Table. + if (max_streams == 0) + max_streams = 1; + + /// If necessary, we request more sources than the number of threads - to distribute the work evenly over the threads. + if (max_streams > 1 && !is_remote) + max_streams = static_cast<size_t>(max_streams * settings.max_streams_to_max_threads_ratio); + + auto & prewhere_info = analysis_result.prewhere_info; + + if (prewhere_info) + query_info.prewhere_info = prewhere_info; + + bool optimize_read_in_order = analysis_result.optimize_read_in_order; + bool optimize_aggregation_in_order = analysis_result.optimize_aggregation_in_order && !query_analyzer->useGroupingSetKey(); + + /// Create optimizer with prepared actions. + /// Maybe we will need to calc input_order_info later, e.g. while reading from StorageMerge. + if ((optimize_read_in_order || optimize_aggregation_in_order) + && (!query_info.projection || query_info.projection->complete)) + { + if (optimize_read_in_order) + { + if (query_info.projection) + { + query_info.projection->order_optimizer = std::make_shared<ReadInOrderOptimizer>( + // TODO Do we need a projection variant for this field? + query, + analysis_result.order_by_elements_actions, + getSortDescription(query, context), + query_info.syntax_analyzer_result); + } + else + { + query_info.order_optimizer = std::make_shared<ReadInOrderOptimizer>( + query, + analysis_result.order_by_elements_actions, + getSortDescription(query, context), + query_info.syntax_analyzer_result); + } + } + else if (optimize_aggregation_in_order) + { + if (query_info.projection) + { + query_info.projection->order_optimizer = std::make_shared<ReadInOrderOptimizer>( + query, + query_info.projection->group_by_elements_actions, + query_info.projection->group_by_elements_order_descr, + query_info.syntax_analyzer_result); + } + else + { + query_info.order_optimizer = std::make_shared<ReadInOrderOptimizer>( + query, + analysis_result.group_by_elements_actions, + getSortDescriptionFromGroupBy(query), + query_info.syntax_analyzer_result); + } + } + + /// If we don't have filtration, we can pushdown limit to reading stage for optimizations. + UInt64 limit = (query.hasFiltration() || query.groupBy()) ? 0 : getLimitForSorting(query, context); + if (query_info.projection) + query_info.projection->input_order_info + = query_info.projection->order_optimizer->getInputOrder(query_info.projection->desc->metadata, context, limit); + else + query_info.input_order_info = query_info.order_optimizer->getInputOrder(metadata_snapshot, context, limit); + } + + query_info.storage_limits = std::make_shared<StorageLimitsList>(storage_limits); + + query_info.settings_limit_offset_done = options.settings_limit_offset_done; + storage->read(query_plan, required_columns, storage_snapshot, query_info, context, processing_stage, max_block_size, max_streams); + + if (context->hasQueryContext() && !options.is_internal) + { + const String view_name{}; + auto local_storage_id = storage->getStorageID(); + context->getQueryContext()->addQueryAccessInfo( + backQuoteIfNeed(local_storage_id.getDatabaseName()), + local_storage_id.getFullTableName(), + required_columns, + query_info.projection ? query_info.projection->desc->name : "", + view_name); + } + + /// Create step which reads from empty source if storage has no data. + if (!query_plan.isInitialized()) + { + auto header = storage_snapshot->getSampleBlockForColumns(required_columns); + addEmptySourceToQueryPlan(query_plan, header, query_info, context); + } + } + else + throw Exception(ErrorCodes::LOGICAL_ERROR, "Logical error in InterpreterSelectQuery: nowhere to read"); + + /// Specify the number of threads only if it wasn't specified in storage. + /// + /// But in case of remote query and prefer_localhost_replica=1 (default) + /// The inner local query (that is done in the same process, without + /// network interaction), it will setMaxThreads earlier and distributed + /// query will not update it. + if (!query_plan.getMaxThreads() || is_remote) + query_plan.setMaxThreads(max_threads_execute_query); + + query_plan.setConcurrencyControl(settings.use_concurrency_control); + + /// Aliases in table declaration. + if (processing_stage == QueryProcessingStage::FetchColumns && alias_actions) + { + auto table_aliases = std::make_unique<ExpressionStep>(query_plan.getCurrentDataStream(), alias_actions); + table_aliases->setStepDescription("Add table aliases"); + query_plan.addStep(std::move(table_aliases)); + } +} + +void InterpreterSelectQuery::executeWhere(QueryPlan & query_plan, const ActionsDAGPtr & expression, bool remove_filter) +{ + auto where_step = std::make_unique<FilterStep>( + query_plan.getCurrentDataStream(), expression, getSelectQuery().where()->getColumnName(), remove_filter); + + where_step->setStepDescription("WHERE"); + query_plan.addStep(std::move(where_step)); +} + +static Aggregator::Params getAggregatorParams( + const ASTPtr & query_ptr, + const SelectQueryExpressionAnalyzer & query_analyzer, + const Context & context, + const Names & keys, + const AggregateDescriptions & aggregates, + bool overflow_row, + const Settings & settings, + size_t group_by_two_level_threshold, + size_t group_by_two_level_threshold_bytes) +{ + const auto stats_collecting_params = Aggregator::Params::StatsCollectingParams( + query_ptr, + settings.collect_hash_table_stats_during_aggregation, + settings.max_entries_for_hash_table_stats, + settings.max_size_to_preallocate_for_aggregation); + + return Aggregator::Params + { + keys, + aggregates, + overflow_row, + settings.max_rows_to_group_by, + settings.group_by_overflow_mode, + group_by_two_level_threshold, + group_by_two_level_threshold_bytes, + settings.max_bytes_before_external_group_by, + settings.empty_result_for_aggregation_by_empty_set + || (settings.empty_result_for_aggregation_by_constant_keys_on_empty_set && keys.empty() + && query_analyzer.hasConstAggregationKeys()), + context.getTempDataOnDisk(), + settings.max_threads, + settings.min_free_disk_space_for_temporary_data, + settings.compile_aggregate_expressions, + settings.min_count_to_compile_aggregate_expression, + settings.max_block_size, + settings.enable_software_prefetch_in_aggregation, + /* only_merge */ false, + stats_collecting_params + }; +} + +static GroupingSetsParamsList getAggregatorGroupingSetsParams(const SelectQueryExpressionAnalyzer & query_analyzer, const Names & all_keys) +{ + GroupingSetsParamsList result; + if (query_analyzer.useGroupingSetKey()) + { + auto const & aggregation_keys_list = query_analyzer.aggregationKeysList(); + + for (const auto & aggregation_keys : aggregation_keys_list) + { + NameSet keys; + for (const auto & key : aggregation_keys) + keys.insert(key.name); + + Names missing_keys; + for (const auto & key : all_keys) + if (!keys.contains(key)) + missing_keys.push_back(key); + + result.emplace_back(aggregation_keys.getNames(), std::move(missing_keys)); + } + } + return result; +} + +void InterpreterSelectQuery::executeAggregation(QueryPlan & query_plan, const ActionsDAGPtr & expression, bool overflow_row, bool final, InputOrderInfoPtr group_by_info) +{ + auto expression_before_aggregation = std::make_unique<ExpressionStep>(query_plan.getCurrentDataStream(), expression); + expression_before_aggregation->setStepDescription("Before GROUP BY"); + query_plan.addStep(std::move(expression_before_aggregation)); + + if (options.is_projection_query) + return; + + AggregateDescriptions aggregates = query_analyzer->aggregates(); + + const Settings & settings = context->getSettingsRef(); + + const auto & keys = query_analyzer->aggregationKeys().getNames(); + + auto aggregator_params = getAggregatorParams( + query_ptr, + *query_analyzer, + *context, + keys, + aggregates, + overflow_row, + settings, + settings.group_by_two_level_threshold, + settings.group_by_two_level_threshold_bytes); + + auto grouping_sets_params = getAggregatorGroupingSetsParams(*query_analyzer, keys); + + SortDescription group_by_sort_description; + SortDescription sort_description_for_merging; + + if (group_by_info && settings.optimize_aggregation_in_order && !query_analyzer->useGroupingSetKey()) + { + group_by_sort_description = getSortDescriptionFromGroupBy(getSelectQuery()); + sort_description_for_merging = group_by_info->sort_description_for_merging; + } + else + group_by_info = nullptr; + + if (!group_by_info && settings.force_aggregation_in_order) + { + group_by_sort_description = getSortDescriptionFromGroupBy(getSelectQuery()); + sort_description_for_merging = group_by_sort_description; + } + + auto merge_threads = max_streams; + auto temporary_data_merge_threads = settings.aggregation_memory_efficient_merge_threads + ? static_cast<size_t>(settings.aggregation_memory_efficient_merge_threads) + : static_cast<size_t>(settings.max_threads); + + bool storage_has_evenly_distributed_read = storage && storage->hasEvenlyDistributedRead(); + + const bool should_produce_results_in_order_of_bucket_number = options.to_stage == QueryProcessingStage::WithMergeableState + && (settings.distributed_aggregation_memory_efficient || settings.enable_memory_bound_merging_of_aggregation_results); + + auto aggregating_step = std::make_unique<AggregatingStep>( + query_plan.getCurrentDataStream(), + std::move(aggregator_params), + std::move(grouping_sets_params), + final, + settings.max_block_size, + settings.aggregation_in_order_max_block_bytes, + merge_threads, + temporary_data_merge_threads, + storage_has_evenly_distributed_read, + settings.group_by_use_nulls, + std::move(sort_description_for_merging), + std::move(group_by_sort_description), + should_produce_results_in_order_of_bucket_number, + settings.enable_memory_bound_merging_of_aggregation_results, + !group_by_info && settings.force_aggregation_in_order); + query_plan.addStep(std::move(aggregating_step)); +} + +void InterpreterSelectQuery::executeMergeAggregated(QueryPlan & query_plan, bool overflow_row, bool final, bool has_grouping_sets) +{ + /// If aggregate projection was chosen for table, avoid adding MergeAggregated. + /// It is already added by storage (because of performance issues). + /// TODO: We should probably add another one processing stage for storage? + /// WithMergeableStateAfterAggregation is not ok because, e.g., it skips sorting after aggregation. + if (query_info.projection && query_info.projection->desc->type == ProjectionDescription::Type::Aggregate) + return; + + const Settings & settings = context->getSettingsRef(); + + /// Used to determine if we should use memory bound merging strategy. + auto group_by_sort_description + = !query_analyzer->useGroupingSetKey() ? getSortDescriptionFromGroupBy(getSelectQuery()) : SortDescription{}; + + const bool should_produce_results_in_order_of_bucket_number = options.to_stage == QueryProcessingStage::WithMergeableState + && (settings.distributed_aggregation_memory_efficient || settings.enable_memory_bound_merging_of_aggregation_results); + const bool parallel_replicas_from_merge_tree = storage->isMergeTree() && context->canUseParallelReplicasOnInitiator(); + + executeMergeAggregatedImpl( + query_plan, + overflow_row, + final, + storage && (storage->isRemote() || parallel_replicas_from_merge_tree), + has_grouping_sets, + context->getSettingsRef(), + query_analyzer->aggregationKeys(), + query_analyzer->aggregates(), + should_produce_results_in_order_of_bucket_number, + std::move(group_by_sort_description)); +} + + +void InterpreterSelectQuery::executeHaving(QueryPlan & query_plan, const ActionsDAGPtr & expression, bool remove_filter) +{ + auto having_step + = std::make_unique<FilterStep>(query_plan.getCurrentDataStream(), expression, getSelectQuery().having()->getColumnName(), remove_filter); + + having_step->setStepDescription("HAVING"); + query_plan.addStep(std::move(having_step)); +} + + +void InterpreterSelectQuery::executeTotalsAndHaving( + QueryPlan & query_plan, bool has_having, const ActionsDAGPtr & expression, bool remove_filter, bool overflow_row, bool final) +{ + const Settings & settings = context->getSettingsRef(); + + auto totals_having_step = std::make_unique<TotalsHavingStep>( + query_plan.getCurrentDataStream(), + query_analyzer->aggregates(), + overflow_row, + expression, + has_having ? getSelectQuery().having()->getColumnName() : "", + remove_filter, + settings.totals_mode, + settings.totals_auto_threshold, + final); + + query_plan.addStep(std::move(totals_having_step)); +} + +void InterpreterSelectQuery::executeRollupOrCube(QueryPlan & query_plan, Modificator modificator) +{ + const Settings & settings = context->getSettingsRef(); + + const auto & keys = query_analyzer->aggregationKeys().getNames(); + + // Arguments will not be present in Rollup / Cube input header and they don't actually needed 'cause these steps will work with AggregateFunctionState-s anyway. + auto aggregates = query_analyzer->aggregates(); + for (auto & aggregate : aggregates) + aggregate.argument_names.clear(); + + auto params = getAggregatorParams(query_ptr, *query_analyzer, *context, keys, aggregates, false, settings, 0, 0); + const bool final = true; + + QueryPlanStepPtr step; + if (modificator == Modificator::ROLLUP) + step = std::make_unique<RollupStep>(query_plan.getCurrentDataStream(), std::move(params), final, settings.group_by_use_nulls); + else if (modificator == Modificator::CUBE) + step = std::make_unique<CubeStep>(query_plan.getCurrentDataStream(), std::move(params), final, settings.group_by_use_nulls); + + query_plan.addStep(std::move(step)); +} + +void InterpreterSelectQuery::executeExpression(QueryPlan & query_plan, const ActionsDAGPtr & expression, const std::string & description) +{ + if (!expression) + return; + + auto expression_step = std::make_unique<ExpressionStep>(query_plan.getCurrentDataStream(), expression); + + expression_step->setStepDescription(description); + query_plan.addStep(std::move(expression_step)); +} + +static bool windowDescriptionComparator(const WindowDescription * _left, const WindowDescription * _right) +{ + const auto & left = _left->full_sort_description; + const auto & right = _right->full_sort_description; + + for (size_t i = 0; i < std::min(left.size(), right.size()); ++i) + { + if (left[i].column_name < right[i].column_name) + return true; + else if (left[i].column_name > right[i].column_name) + return false; + else if (left[i].direction < right[i].direction) + return true; + else if (left[i].direction > right[i].direction) + return false; + else if (left[i].nulls_direction < right[i].nulls_direction) + return true; + else if (left[i].nulls_direction > right[i].nulls_direction) + return false; + + assert(left[i] == right[i]); + } + + // Note that we check the length last, because we want to put together the + // sort orders that have common prefix but different length. + return left.size() > right.size(); +} + +static bool sortIsPrefix(const WindowDescription & _prefix, + const WindowDescription & _full) +{ + const auto & prefix = _prefix.full_sort_description; + const auto & full = _full.full_sort_description; + + if (prefix.size() > full.size()) + return false; + + for (size_t i = 0; i < prefix.size(); ++i) + { + if (full[i] != prefix[i]) + return false; + } + + return true; +} + +void InterpreterSelectQuery::executeWindow(QueryPlan & query_plan) +{ + // Try to sort windows in such an order that the window with the longest + // sort description goes first, and all window that use its prefixes follow. + std::vector<const WindowDescription *> windows_sorted; + for (const auto & [_, window] : query_analyzer->windowDescriptions()) + windows_sorted.push_back(&window); + + ::sort(windows_sorted.begin(), windows_sorted.end(), windowDescriptionComparator); + + const Settings & settings = context->getSettingsRef(); + for (size_t i = 0; i < windows_sorted.size(); ++i) + { + const auto & window = *windows_sorted[i]; + + // We don't need to sort again if the input from previous window already + // has suitable sorting. Also don't create sort steps when there are no + // columns to sort by, because the sort nodes are confused by this. It + // happens in case of `over ()`. + if (!window.full_sort_description.empty() && (i == 0 || !sortIsPrefix(window, *windows_sorted[i - 1]))) + { + SortingStep::Settings sort_settings(*context); + + auto sorting_step = std::make_unique<SortingStep>( + query_plan.getCurrentDataStream(), + window.full_sort_description, + 0 /* LIMIT */, + sort_settings, + settings.optimize_sorting_by_input_stream_properties); + sorting_step->setStepDescription("Sorting for window '" + window.window_name + "'"); + query_plan.addStep(std::move(sorting_step)); + } + + auto window_step = std::make_unique<WindowStep>(query_plan.getCurrentDataStream(), window, window.window_functions); + window_step->setStepDescription("Window step for window '" + window.window_name + "'"); + + query_plan.addStep(std::move(window_step)); + } +} + + +void InterpreterSelectQuery::executeOrderOptimized(QueryPlan & query_plan, InputOrderInfoPtr input_sorting_info, UInt64 limit, SortDescription & output_order_descr) +{ + const Settings & settings = context->getSettingsRef(); + + auto finish_sorting_step = std::make_unique<SortingStep>( + query_plan.getCurrentDataStream(), + input_sorting_info->sort_description_for_merging, + output_order_descr, + settings.max_block_size, + limit); + + query_plan.addStep(std::move(finish_sorting_step)); +} + +void InterpreterSelectQuery::executeOrder(QueryPlan & query_plan, InputOrderInfoPtr input_sorting_info) +{ + auto & query = getSelectQuery(); + SortDescription output_order_descr = getSortDescription(query, context); + UInt64 limit = getLimitForSorting(query, context); + + if (input_sorting_info) + { + /* Case of sorting with optimization using sorting key. + * We have several threads, each of them reads batch of parts in direct + * or reverse order of sorting key using one input stream per part + * and then merge them into one sorted stream. + * At this stage we merge per-thread streams into one. + */ + executeOrderOptimized(query_plan, input_sorting_info, limit, output_order_descr); + return; + } + + const Settings & settings = context->getSettingsRef(); + + SortingStep::Settings sort_settings(*context); + + /// Merge the sorted blocks. + auto sorting_step = std::make_unique<SortingStep>( + query_plan.getCurrentDataStream(), + output_order_descr, + limit, + sort_settings, + settings.optimize_sorting_by_input_stream_properties); + + sorting_step->setStepDescription("Sorting for ORDER BY"); + query_plan.addStep(std::move(sorting_step)); +} + + +void InterpreterSelectQuery::executeMergeSorted(QueryPlan & query_plan, const std::string & description) +{ + const auto & query = getSelectQuery(); + SortDescription sort_description = getSortDescription(query, context); + const UInt64 limit = getLimitForSorting(query, context); + const auto max_block_size = context->getSettingsRef().max_block_size; + const auto exact_rows_before_limit = context->getSettingsRef().exact_rows_before_limit; + + auto merging_sorted = std::make_unique<SortingStep>( + query_plan.getCurrentDataStream(), std::move(sort_description), max_block_size, limit, exact_rows_before_limit); + merging_sorted->setStepDescription("Merge sorted streams " + description); + query_plan.addStep(std::move(merging_sorted)); +} + + +void InterpreterSelectQuery::executeProjection(QueryPlan & query_plan, const ActionsDAGPtr & expression) +{ + auto projection_step = std::make_unique<ExpressionStep>(query_plan.getCurrentDataStream(), expression); + projection_step->setStepDescription("Projection"); + query_plan.addStep(std::move(projection_step)); +} + + +void InterpreterSelectQuery::executeDistinct(QueryPlan & query_plan, bool before_order, Names columns, bool pre_distinct) +{ + auto & query = getSelectQuery(); + if (query.distinct) + { + const Settings & settings = context->getSettingsRef(); + + UInt64 limit_for_distinct = 0; + + /// If after this stage of DISTINCT, + /// (1) ORDER BY is not executed + /// (2) there is no LIMIT BY (todo: we can check if DISTINCT and LIMIT BY expressions are match) + /// then you can get no more than limit_length + limit_offset of different rows. + if ((!query.orderBy() || !before_order) && !query.limitBy()) + { + auto [limit_length, limit_offset] = getLimitLengthAndOffset(query, context); + if (limit_length <= std::numeric_limits<UInt64>::max() - limit_offset) + limit_for_distinct = limit_length + limit_offset; + } + + SizeLimits limits(settings.max_rows_in_distinct, settings.max_bytes_in_distinct, settings.distinct_overflow_mode); + + auto distinct_step = std::make_unique<DistinctStep>( + query_plan.getCurrentDataStream(), + limits, + limit_for_distinct, + columns, + pre_distinct, + settings.optimize_distinct_in_order); + + if (pre_distinct) + distinct_step->setStepDescription("Preliminary DISTINCT"); + + query_plan.addStep(std::move(distinct_step)); + } +} + + +/// Preliminary LIMIT - is used in every source, if there are several sources, before they are combined. +void InterpreterSelectQuery::executePreLimit(QueryPlan & query_plan, bool do_not_skip_offset) +{ + auto & query = getSelectQuery(); + /// If there is LIMIT + if (query.limitLength()) + { + auto [limit_length, limit_offset] = getLimitLengthAndOffset(query, context); + + if (do_not_skip_offset) + { + if (limit_length > std::numeric_limits<UInt64>::max() - limit_offset) + return; + + limit_length += limit_offset; + limit_offset = 0; + } + + const Settings & settings = context->getSettingsRef(); + + auto limit = std::make_unique<LimitStep>(query_plan.getCurrentDataStream(), limit_length, limit_offset, settings.exact_rows_before_limit); + if (do_not_skip_offset) + limit->setStepDescription("preliminary LIMIT (with OFFSET)"); + else + limit->setStepDescription("preliminary LIMIT (without OFFSET)"); + + query_plan.addStep(std::move(limit)); + } +} + + +void InterpreterSelectQuery::executeLimitBy(QueryPlan & query_plan) +{ + auto & query = getSelectQuery(); + if (!query.limitByLength() || !query.limitBy()) + return; + + Names columns; + for (const auto & elem : query.limitBy()->children) + columns.emplace_back(elem->getColumnName()); + + UInt64 length = getLimitUIntValue(query.limitByLength(), context, "LIMIT"); + UInt64 offset = (query.limitByOffset() ? getLimitUIntValue(query.limitByOffset(), context, "OFFSET") : 0); + + auto limit_by = std::make_unique<LimitByStep>(query_plan.getCurrentDataStream(), length, offset, columns); + query_plan.addStep(std::move(limit_by)); +} + +void InterpreterSelectQuery::executeWithFill(QueryPlan & query_plan) +{ + auto & query = getSelectQuery(); + if (query.orderBy()) + { + SortDescription sort_description = getSortDescription(query, context); + SortDescription fill_description; + for (auto & desc : sort_description) + { + if (desc.with_fill) + fill_description.push_back(desc); + } + + if (fill_description.empty()) + return; + + InterpolateDescriptionPtr interpolate_descr = + getInterpolateDescription(query, source_header, result_header, syntax_analyzer_result->aliases, context); + + const Settings & settings = context->getSettingsRef(); + auto filling_step = std::make_unique<FillingStep>( + query_plan.getCurrentDataStream(), + std::move(sort_description), + std::move(fill_description), + interpolate_descr, + settings.use_with_fill_by_sorting_prefix); + query_plan.addStep(std::move(filling_step)); + } +} + + +void InterpreterSelectQuery::executeLimit(QueryPlan & query_plan) +{ + auto & query = getSelectQuery(); + /// If there is LIMIT + if (query.limitLength()) + { + /** Rare case: + * if there is no WITH TOTALS and there is a subquery in FROM, and there is WITH TOTALS on one of the levels, + * then when using LIMIT, you should read the data to the end, rather than cancel the query earlier, + * because if you cancel the query, we will not get `totals` data from the remote server. + * + * Another case: + * if there is WITH TOTALS and there is no ORDER BY, then read the data to the end, + * otherwise TOTALS is counted according to incomplete data. + */ + const Settings & settings = context->getSettingsRef(); + bool always_read_till_end = settings.exact_rows_before_limit; + + if (query.group_by_with_totals && !query.orderBy()) + always_read_till_end = true; + + if (!query.group_by_with_totals && hasWithTotalsInAnySubqueryInFromClause(query)) + always_read_till_end = true; + + UInt64 limit_length; + UInt64 limit_offset; + std::tie(limit_length, limit_offset) = getLimitLengthAndOffset(query, context); + + SortDescription order_descr; + if (query.limit_with_ties) + { + if (!query.orderBy()) + throw Exception(ErrorCodes::LOGICAL_ERROR, "LIMIT WITH TIES without ORDER BY"); + order_descr = getSortDescription(query, context); + } + + auto limit = std::make_unique<LimitStep>( + query_plan.getCurrentDataStream(), + limit_length, limit_offset, always_read_till_end, query.limit_with_ties, order_descr); + + if (query.limit_with_ties) + limit->setStepDescription("LIMIT WITH TIES"); + + query_plan.addStep(std::move(limit)); + } +} + + +void InterpreterSelectQuery::executeOffset(QueryPlan & query_plan) +{ + auto & query = getSelectQuery(); + /// If there is not a LIMIT but an offset + if (!query.limitLength() && query.limitOffset()) + { + UInt64 limit_length; + UInt64 limit_offset; + std::tie(limit_length, limit_offset) = getLimitLengthAndOffset(query, context); + + auto offsets_step = std::make_unique<OffsetStep>(query_plan.getCurrentDataStream(), limit_offset); + query_plan.addStep(std::move(offsets_step)); + } +} + +void InterpreterSelectQuery::executeExtremes(QueryPlan & query_plan) +{ + if (!context->getSettingsRef().extremes) + return; + + auto extremes_step = std::make_unique<ExtremesStep>(query_plan.getCurrentDataStream()); + query_plan.addStep(std::move(extremes_step)); +} + +void InterpreterSelectQuery::executeSubqueriesInSetsAndJoins(QueryPlan & query_plan) +{ + auto subqueries = prepared_sets->getSubqueries(); + + if (!subqueries.empty()) + { + auto step = std::make_unique<DelayedCreatingSetsStep>( + query_plan.getCurrentDataStream(), + std::move(subqueries), + context); + + query_plan.addStep(std::move(step)); + } +} + + +void InterpreterSelectQuery::ignoreWithTotals() +{ + getSelectQuery().group_by_with_totals = false; +} + +bool InterpreterSelectQuery::autoFinalOnQuery(ASTSelectQuery & query) +{ + // query.tables() is required because not all queries have tables in it, it could be a function. + bool is_auto_final_setting_on = context->getSettingsRef().final; + bool is_final_supported = storage && storage->supportsFinal() && !storage->isRemote() && query.tables(); + bool is_query_already_final = query.final(); + + return is_auto_final_setting_on && !is_query_already_final && is_final_supported; +} + +void InterpreterSelectQuery::initSettings() +{ + auto & query = getSelectQuery(); + if (query.settings()) + InterpreterSetQuery(query.settings(), context).executeForCurrentContext(options.ignore_setting_constraints); + + const auto & client_info = context->getClientInfo(); + auto min_major = DBMS_MIN_MAJOR_VERSION_WITH_CURRENT_AGGREGATION_VARIANT_SELECTION_METHOD; + auto min_minor = DBMS_MIN_MINOR_VERSION_WITH_CURRENT_AGGREGATION_VARIANT_SELECTION_METHOD; + + if (client_info.query_kind == ClientInfo::QueryKind::SECONDARY_QUERY && + std::forward_as_tuple(client_info.connection_client_version_major, client_info.connection_client_version_minor) < std::forward_as_tuple(min_major, min_minor)) + { + /// Disable two-level aggregation due to version incompatibility. + context->setSetting("group_by_two_level_threshold", Field(0)); + context->setSetting("group_by_two_level_threshold_bytes", Field(0)); + + } +} + +bool InterpreterSelectQuery::isQueryWithFinal(const SelectQueryInfo & info) +{ + bool result = info.query->as<ASTSelectQuery &>().final(); + if (info.table_expression_modifiers) + result |= info.table_expression_modifiers->hasFinal(); + + return result; +} + + +} |
