aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorvnik <vnik@yandex-team.ru>2022-02-10 16:50:11 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:50:11 +0300
commiteeb44fff3b21a0abc3a28ecf80df8ea214338f2a (patch)
tree5d5cb817648f650d76cf1076100726fd9b8448e8
parent82dd4d47353b9ff187773dd251163024db870e2a (diff)
downloadydb-eeb44fff3b21a0abc3a28ecf80df8ea214338f2a.tar.gz
Restoring authorship annotation for <vnik@yandex-team.ru>. Commit 2 of 2.
-rw-r--r--library/cpp/linear_regression/linear_model.h6
-rw-r--r--library/cpp/linear_regression/linear_regression.cpp18
-rw-r--r--library/cpp/linear_regression/linear_regression.h16
3 files changed, 20 insertions, 20 deletions
diff --git a/library/cpp/linear_regression/linear_model.h b/library/cpp/linear_regression/linear_model.h
index 649ccd6988..8bb050cff7 100644
--- a/library/cpp/linear_regression/linear_model.h
+++ b/library/cpp/linear_regression/linear_model.h
@@ -7,7 +7,7 @@
#include <utility>
-class TLinearModel {
+class TLinearModel {
private:
TVector<double> Coefficients;
double Intercept;
@@ -30,11 +30,11 @@ public:
const TVector<double>& GetCoefficients() const {
return Coefficients;
}
-
+
double GetIntercept() const {
return Intercept;
}
-
+
template <typename T>
double Prediction(const TVector<T>& features) const {
return InnerProduct(Coefficients, features, Intercept);
diff --git a/library/cpp/linear_regression/linear_regression.cpp b/library/cpp/linear_regression/linear_regression.cpp
index e19c4a8736..150f9d214e 100644
--- a/library/cpp/linear_regression/linear_regression.cpp
+++ b/library/cpp/linear_regression/linear_regression.cpp
@@ -41,8 +41,8 @@ bool TFastLinearRegressionSolver::Add(const TVector<double>& features, const dou
*olsVectorElement += weightedGoal;
SumSquaredGoals += goal * goal * weight;
-
- return true;
+
+ return true;
}
bool TLinearRegressionSolver::Add(const TVector<double>& features, const double goal, const double weight) {
@@ -59,7 +59,7 @@ bool TLinearRegressionSolver::Add(const TVector<double>& features, const double
SumWeights += weight;
if (!SumWeights.Get()) {
- return false;
+ return false;
}
for (size_t featureNumber = 0; featureNumber < featuresCount; ++featureNumber) {
@@ -109,8 +109,8 @@ bool TLinearRegressionSolver::Add(const TVector<double>& features, const double
const double oldGoalsMean = GoalsMean;
GoalsMean += weight * (goal - GoalsMean) / SumWeights.Get();
GoalsDeviation += weight * (goal - oldGoalsMean) * (goal - GoalsMean);
-
- return true;
+
+ return true;
}
TLinearModel TFastLinearRegressionSolver::Solve() const {
@@ -147,10 +147,10 @@ double TLinearRegressionSolver::SumSquaredErrors() const {
return ::SumSquaredErrors(LinearizedOLSMatrix, OLSVector, coefficients, GoalsDeviation);
}
-bool TSLRSolver::Add(const double feature, const double goal, const double weight) {
+bool TSLRSolver::Add(const double feature, const double goal, const double weight) {
SumWeights += weight;
if (!SumWeights.Get()) {
- return false;
+ return false;
}
const double weightedFeatureDiff = weight * (feature - FeaturesMean);
@@ -163,8 +163,8 @@ bool TSLRSolver::Add(const double feature, const double goal, const double weigh
GoalsDeviation += weightedGoalDiff * (goal - GoalsMean);
Covariation += weightedFeatureDiff * (goal - GoalsMean);
-
- return true;
+
+ return true;
}
bool TSLRSolver::Add(const double* featuresBegin,
diff --git a/library/cpp/linear_regression/linear_regression.h b/library/cpp/linear_regression/linear_regression.h
index 7e37e1b9b3..e57de5ff6c 100644
--- a/library/cpp/linear_regression/linear_regression.h
+++ b/library/cpp/linear_regression/linear_regression.h
@@ -56,7 +56,7 @@ private:
TStoreType SumWeights = TStoreType();
public:
- bool Add(const double feature, const double goal, const double weight = 1.) {
+ bool Add(const double feature, const double goal, const double weight = 1.) {
SumFeatures += feature * weight;
SumSquaredFeatures += feature * feature * weight;
@@ -66,8 +66,8 @@ public:
SumProducts += goal * feature * weight;
SumWeights += weight;
-
- return true;
+
+ return true;
}
template <typename TFloatType>
@@ -140,7 +140,7 @@ private:
double Covariation = 0.;
public:
- bool Add(const double feature, const double goal, const double weight = 1.);
+ bool Add(const double feature, const double goal, const double weight = 1.);
bool Add(const double* featuresBegin, const double* featuresEnd, const double* goalsBegin);
bool Add(const double* featuresBegin, const double* featuresEnd, const double* goalsBegin, const double* weightsBegin);
@@ -188,8 +188,8 @@ public:
for (size_t featureNumber = 0; featureNumber < features.size(); ++featureNumber) {
SLRSolvers[featureNumber].Add(features[featureNumber], goal, weight);
}
-
- return true;
+
+ return true;
}
TLinearModel Solve(const double regularizationParameter = 0.1) const {
@@ -201,9 +201,9 @@ public:
}
TVector<double> coefficients(SLRSolvers.size());
- double intercept = 0.0;
+ double intercept = 0.0;
if (bestSolver) {
- bestSolver->Solve(coefficients[bestSolver - SLRSolvers.begin()], intercept, regularizationParameter);
+ bestSolver->Solve(coefficients[bestSolver - SLRSolvers.begin()], intercept, regularizationParameter);
}
TLinearModel model(std::move(coefficients), intercept);