aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authoruzhas <uzhas@ydb.tech>2024-09-15 13:02:38 +0300
committeruzhas <uzhas@ydb.tech>2024-09-15 13:12:54 +0300
commitdbf2aed3f6d5c2cb919f9ace1b876025989f8ab1 (patch)
tree5708fae74a42e3cfdac955ff0c2488af63d7e80e
parent7144046677371d61f38b654e60c561e480cd34e4 (diff)
downloadydb-dbf2aed3f6d5c2cb919f9ace1b876025989f8ab1.tar.gz
add contrib/restricted/boost/rational/include to fix warning
commit_hash:804663433eb5a988140a4afdf332c597ad933686
-rw-r--r--contrib/restricted/boost/rational/include/boost/rational.hpp1046
1 files changed, 1046 insertions, 0 deletions
diff --git a/contrib/restricted/boost/rational/include/boost/rational.hpp b/contrib/restricted/boost/rational/include/boost/rational.hpp
new file mode 100644
index 0000000000..4b66aae7f7
--- /dev/null
+++ b/contrib/restricted/boost/rational/include/boost/rational.hpp
@@ -0,0 +1,1046 @@
+// Boost rational.hpp header file ------------------------------------------//
+
+// (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and
+// distribute this software is granted provided this copyright notice appears
+// in all copies. This software is provided "as is" without express or
+// implied warranty, and with no claim as to its suitability for any purpose.
+
+// boostinspect:nolicense (don't complain about the lack of a Boost license)
+// (Paul Moore hasn't been in contact for years, so there's no way to change the
+// license.)
+
+// See http://www.boost.org/libs/rational for documentation.
+
+// Credits:
+// Thanks to the boost mailing list in general for useful comments.
+// Particular contributions included:
+// Andrew D Jewell, for reminding me to take care to avoid overflow
+// Ed Brey, for many comments, including picking up on some dreadful typos
+// Stephen Silver contributed the test suite and comments on user-defined
+// IntType
+// Nickolay Mladenov, for the implementation of operator+=
+
+// Revision History
+// 12 Nov 20 Fix operators to work with C++20 rules (Glen Joseph Fernandes)
+// 02 Sep 13 Remove unneeded forward declarations; tweak private helper
+// function (Daryle Walker)
+// 30 Aug 13 Improve exception safety of "assign"; start modernizing I/O code
+// (Daryle Walker)
+// 27 Aug 13 Add cross-version constructor template, plus some private helper
+// functions; add constructor to exception class to take custom
+// messages (Daryle Walker)
+// 25 Aug 13 Add constexpr qualification wherever possible (Daryle Walker)
+// 05 May 12 Reduced use of implicit gcd (Mario Lang)
+// 05 Nov 06 Change rational_cast to not depend on division between different
+// types (Daryle Walker)
+// 04 Nov 06 Off-load GCD and LCM to Boost.Integer; add some invariant checks;
+// add std::numeric_limits<> requirement to help GCD (Daryle Walker)
+// 31 Oct 06 Recoded both operator< to use round-to-negative-infinity
+// divisions; the rational-value version now uses continued fraction
+// expansion to avoid overflows, for bug #798357 (Daryle Walker)
+// 20 Oct 06 Fix operator bool_type for CW 8.3 (Joaquín M López Muñoz)
+// 18 Oct 06 Use EXPLICIT_TEMPLATE_TYPE helper macros from Boost.Config
+// (Joaquín M López Muñoz)
+// 27 Dec 05 Add Boolean conversion operator (Daryle Walker)
+// 28 Sep 02 Use _left versions of operators from operators.hpp
+// 05 Jul 01 Recode gcd(), avoiding std::swap (Helmut Zeisel)
+// 03 Mar 01 Workarounds for Intel C++ 5.0 (David Abrahams)
+// 05 Feb 01 Update operator>> to tighten up input syntax
+// 05 Feb 01 Final tidy up of gcd code prior to the new release
+// 27 Jan 01 Recode abs() without relying on abs(IntType)
+// 21 Jan 01 Include Nickolay Mladenov's operator+= algorithm,
+// tidy up a number of areas, use newer features of operators.hpp
+// (reduces space overhead to zero), add operator!,
+// introduce explicit mixed-mode arithmetic operations
+// 12 Jan 01 Include fixes to handle a user-defined IntType better
+// 19 Nov 00 Throw on divide by zero in operator /= (John (EBo) David)
+// 23 Jun 00 Incorporate changes from Mark Rodgers for Borland C++
+// 22 Jun 00 Change _MSC_VER to BOOST_MSVC so other compilers are not
+// affected (Beman Dawes)
+// 6 Mar 00 Fix operator-= normalization, #include <string> (Jens Maurer)
+// 14 Dec 99 Modifications based on comments from the boost list
+// 09 Dec 99 Initial Version (Paul Moore)
+
+#ifndef BOOST_RATIONAL_HPP
+#define BOOST_RATIONAL_HPP
+
+#include <boost/config.hpp> // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC, etc
+#ifndef BOOST_NO_IOSTREAM
+#include <iomanip> // for std::setw
+#include <ios> // for std::noskipws, streamsize
+#include <istream> // for std::istream
+#include <ostream> // for std::ostream
+#include <sstream> // for std::ostringstream
+#endif
+#include <cstddef> // for NULL
+#include <stdexcept> // for std::domain_error
+#include <string> // for std::string implicit constructor
+#include <cstdlib> // for std::abs
+#include <boost/call_traits.hpp> // for boost::call_traits
+#include <boost/detail/workaround.hpp> // for BOOST_WORKAROUND
+#include <boost/assert.hpp> // for BOOST_ASSERT
+#include <boost/integer/common_factor_rt.hpp> // for boost::integer::gcd, lcm
+#include <limits> // for std::numeric_limits
+#include <boost/static_assert.hpp> // for BOOST_STATIC_ASSERT
+#include <boost/throw_exception.hpp>
+#include <boost/utility/enable_if.hpp>
+#include <boost/type_traits/is_convertible.hpp>
+#include <boost/type_traits/is_class.hpp>
+#include <boost/type_traits/is_same.hpp>
+#include <boost/type_traits/is_array.hpp>
+
+// Control whether depreciated GCD and LCM functions are included (default: yes)
+#ifndef BOOST_CONTROL_RATIONAL_HAS_GCD
+#define BOOST_CONTROL_RATIONAL_HAS_GCD 1
+#endif
+
+namespace boost {
+
+#if BOOST_CONTROL_RATIONAL_HAS_GCD
+template <typename IntType>
+IntType gcd(IntType n, IntType m)
+{
+ // Defer to the version in Boost.Integer
+ return integer::gcd( n, m );
+}
+
+template <typename IntType>
+IntType lcm(IntType n, IntType m)
+{
+ // Defer to the version in Boost.Integer
+ return integer::lcm( n, m );
+}
+#endif // BOOST_CONTROL_RATIONAL_HAS_GCD
+
+namespace rational_detail{
+
+ template <class FromInt, class ToInt, typename Enable = void>
+ struct is_compatible_integer;
+
+ template <class FromInt, class ToInt>
+ struct is_compatible_integer<FromInt, ToInt, typename enable_if_c<!is_array<FromInt>::value>::type>
+ {
+ BOOST_STATIC_CONSTANT(bool, value = ((std::numeric_limits<FromInt>::is_specialized && std::numeric_limits<FromInt>::is_integer
+ && (std::numeric_limits<FromInt>::digits <= std::numeric_limits<ToInt>::digits)
+ && (std::numeric_limits<FromInt>::radix == std::numeric_limits<ToInt>::radix)
+ && ((std::numeric_limits<FromInt>::is_signed == false) || (std::numeric_limits<ToInt>::is_signed == true))
+ && is_convertible<FromInt, ToInt>::value)
+ || is_same<FromInt, ToInt>::value)
+ || (is_class<ToInt>::value && is_class<FromInt>::value && is_convertible<FromInt, ToInt>::value));
+ };
+
+ template <class FromInt, class ToInt>
+ struct is_compatible_integer<FromInt, ToInt, typename enable_if_c<is_array<FromInt>::value>::type>
+ {
+ BOOST_STATIC_CONSTANT(bool, value = false);
+ };
+
+ template <class FromInt, class ToInt, typename Enable = void>
+ struct is_backward_compatible_integer;
+
+ template <class FromInt, class ToInt>
+ struct is_backward_compatible_integer<FromInt, ToInt, typename enable_if_c<!is_array<FromInt>::value>::type>
+ {
+ BOOST_STATIC_CONSTANT(bool, value = (std::numeric_limits<FromInt>::is_specialized && std::numeric_limits<FromInt>::is_integer
+ && !is_compatible_integer<FromInt, ToInt>::value
+ && (std::numeric_limits<FromInt>::radix == std::numeric_limits<ToInt>::radix)
+ && is_convertible<FromInt, ToInt>::value));
+ };
+
+ template <class FromInt, class ToInt>
+ struct is_backward_compatible_integer<FromInt, ToInt, typename enable_if_c<is_array<FromInt>::value>::type>
+ {
+ BOOST_STATIC_CONSTANT(bool, value = false);
+ };
+}
+
+class bad_rational : public std::domain_error
+{
+public:
+ explicit bad_rational() : std::domain_error("bad rational: zero denominator") {}
+ explicit bad_rational( char const *what ) : std::domain_error( what ) {}
+};
+
+template <typename IntType>
+class rational
+{
+ // Class-wide pre-conditions
+ BOOST_STATIC_ASSERT( ::std::numeric_limits<IntType>::is_specialized );
+
+ // Helper types
+ typedef typename boost::call_traits<IntType>::param_type param_type;
+
+ struct helper { IntType parts[2]; };
+ typedef IntType (helper::* bool_type)[2];
+
+public:
+ // Component type
+ typedef IntType int_type;
+
+ BOOST_CONSTEXPR
+ rational() : num(0), den(1) {}
+
+ template <class T>//, typename enable_if_c<!is_array<T>::value>::type>
+ BOOST_CONSTEXPR rational(const T& n, typename enable_if_c<
+ rational_detail::is_compatible_integer<T, IntType>::value
+ >::type const* = 0) : num(n), den(1) {}
+
+ template <class T, class U>
+ BOOST_CXX14_CONSTEXPR rational(const T& n, const U& d, typename enable_if_c<
+ rational_detail::is_compatible_integer<T, IntType>::value && rational_detail::is_compatible_integer<U, IntType>::value
+ >::type const* = 0) : num(n), den(d) {
+ normalize();
+ }
+
+ template < typename NewType >
+ BOOST_CONSTEXPR explicit
+ rational(rational<NewType> const &r, typename enable_if_c<rational_detail::is_compatible_integer<NewType, IntType>::value>::type const* = 0)
+ : num(r.numerator()), den(is_normalized(int_type(r.numerator()),
+ int_type(r.denominator())) ? r.denominator() :
+ (BOOST_THROW_EXCEPTION(bad_rational("bad rational: denormalized conversion")), 0)){}
+
+ template < typename NewType >
+ BOOST_CONSTEXPR explicit
+ rational(rational<NewType> const &r, typename disable_if_c<rational_detail::is_compatible_integer<NewType, IntType>::value>::type const* = 0)
+ : num(r.numerator()), den(is_normalized(int_type(r.numerator()),
+ int_type(r.denominator())) && is_safe_narrowing_conversion(r.denominator()) && is_safe_narrowing_conversion(r.numerator()) ? r.denominator() :
+ (BOOST_THROW_EXCEPTION(bad_rational("bad rational: denormalized conversion")), 0)){}
+ // Default copy constructor and assignment are fine
+
+ // Add assignment from IntType
+ template <class T>
+ BOOST_CXX14_CONSTEXPR typename enable_if_c<
+ rational_detail::is_compatible_integer<T, IntType>::value, rational &
+ >::type operator=(const T& n) { return assign(static_cast<IntType>(n), static_cast<IntType>(1)); }
+
+ // Assign in place
+ template <class T, class U>
+ BOOST_CXX14_CONSTEXPR typename enable_if_c<
+ rational_detail::is_compatible_integer<T, IntType>::value && rational_detail::is_compatible_integer<U, IntType>::value, rational &
+ >::type assign(const T& n, const U& d)
+ {
+ return *this = rational<IntType>(static_cast<IntType>(n), static_cast<IntType>(d));
+ }
+ //
+ // The following overloads should probably *not* be provided -
+ // but are provided for backwards compatibity reasons only.
+ // These allow for construction/assignment from types that
+ // are wider than IntType only if there is an implicit
+ // conversion from T to IntType, they will throw a bad_rational
+ // if the conversion results in loss of precision or undefined behaviour.
+ //
+ template <class T>//, typename enable_if_c<!is_array<T>::value>::type>
+ BOOST_CXX14_CONSTEXPR rational(const T& n, typename enable_if_c<
+ rational_detail::is_backward_compatible_integer<T, IntType>::value
+ >::type const* = 0)
+ {
+ assign(n, static_cast<T>(1));
+ }
+ template <class T, class U>
+ BOOST_CXX14_CONSTEXPR rational(const T& n, const U& d, typename enable_if_c<
+ (!rational_detail::is_compatible_integer<T, IntType>::value
+ || !rational_detail::is_compatible_integer<U, IntType>::value)
+ && std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer
+ && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)
+ && is_convertible<T, IntType>::value &&
+ std::numeric_limits<U>::is_specialized && std::numeric_limits<U>::is_integer
+ && (std::numeric_limits<U>::radix == std::numeric_limits<IntType>::radix)
+ && is_convertible<U, IntType>::value
+ >::type const* = 0)
+ {
+ assign(n, d);
+ }
+ template <class T>
+ BOOST_CXX14_CONSTEXPR typename enable_if_c<
+ std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer
+ && !rational_detail::is_compatible_integer<T, IntType>::value
+ && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)
+ && is_convertible<T, IntType>::value,
+ rational &
+ >::type operator=(const T& n) { return assign(n, static_cast<T>(1)); }
+
+ template <class T, class U>
+ BOOST_CXX14_CONSTEXPR typename enable_if_c<
+ (!rational_detail::is_compatible_integer<T, IntType>::value
+ || !rational_detail::is_compatible_integer<U, IntType>::value)
+ && std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer
+ && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)
+ && is_convertible<T, IntType>::value &&
+ std::numeric_limits<U>::is_specialized && std::numeric_limits<U>::is_integer
+ && (std::numeric_limits<U>::radix == std::numeric_limits<IntType>::radix)
+ && is_convertible<U, IntType>::value,
+ rational &
+ >::type assign(const T& n, const U& d)
+ {
+ if(!is_safe_narrowing_conversion(n) || !is_safe_narrowing_conversion(d))
+ BOOST_THROW_EXCEPTION(bad_rational());
+ return *this = rational<IntType>(static_cast<IntType>(n), static_cast<IntType>(d));
+ }
+
+ // Access to representation
+ BOOST_CONSTEXPR
+ const IntType& numerator() const { return num; }
+ BOOST_CONSTEXPR
+ const IntType& denominator() const { return den; }
+
+ // Arithmetic assignment operators
+ BOOST_CXX14_CONSTEXPR rational& operator+= (const rational& r);
+ BOOST_CXX14_CONSTEXPR rational& operator-= (const rational& r);
+ BOOST_CXX14_CONSTEXPR rational& operator*= (const rational& r);
+ BOOST_CXX14_CONSTEXPR rational& operator/= (const rational& r);
+
+ template <class T>
+ BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator+= (const T& i)
+ {
+ num += i * den;
+ return *this;
+ }
+ template <class T>
+ BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator-= (const T& i)
+ {
+ num -= i * den;
+ return *this;
+ }
+ template <class T>
+ BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator*= (const T& i)
+ {
+ // Avoid overflow and preserve normalization
+ IntType gcd = integer::gcd(static_cast<IntType>(i), den);
+ num *= i / gcd;
+ den /= gcd;
+ return *this;
+ }
+ template <class T>
+ BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator/= (const T& i)
+ {
+ // Avoid repeated construction
+ IntType const zero(0);
+
+ if(i == zero) BOOST_THROW_EXCEPTION(bad_rational());
+ if(num == zero) return *this;
+
+ // Avoid overflow and preserve normalization
+ IntType const gcd = integer::gcd(num, static_cast<IntType>(i));
+ num /= gcd;
+ den *= i / gcd;
+
+ if(den < zero) {
+ num = -num;
+ den = -den;
+ }
+
+ return *this;
+ }
+
+ // Increment and decrement
+ BOOST_CXX14_CONSTEXPR const rational& operator++() { num += den; return *this; }
+ BOOST_CXX14_CONSTEXPR const rational& operator--() { num -= den; return *this; }
+
+ BOOST_CXX14_CONSTEXPR rational operator++(int)
+ {
+ rational t(*this);
+ ++(*this);
+ return t;
+ }
+ BOOST_CXX14_CONSTEXPR rational operator--(int)
+ {
+ rational t(*this);
+ --(*this);
+ return t;
+ }
+
+ // Operator not
+ BOOST_CONSTEXPR
+ bool operator!() const { return !num; }
+
+ // Boolean conversion
+
+#if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
+ // The "ISO C++ Template Parser" option in CW 8.3 chokes on the
+ // following, hence we selectively disable that option for the
+ // offending memfun.
+#pragma parse_mfunc_templ off
+#endif
+
+ BOOST_CONSTEXPR
+ operator bool_type() const { return operator !() ? 0 : &helper::parts; }
+
+#if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
+#pragma parse_mfunc_templ reset
+#endif
+
+ // Comparison operators
+ BOOST_CXX14_CONSTEXPR bool operator< (const rational& r) const;
+ BOOST_CXX14_CONSTEXPR bool operator> (const rational& r) const { return r < *this; }
+ BOOST_CONSTEXPR
+ bool operator== (const rational& r) const;
+
+ template <class T>
+ BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, bool>::type operator< (const T& i) const
+ {
+ // Avoid repeated construction
+ int_type const zero(0);
+
+ // Break value into mixed-fraction form, w/ always-nonnegative remainder
+ BOOST_ASSERT(this->den > zero);
+ int_type q = this->num / this->den, r = this->num % this->den;
+ while(r < zero) { r += this->den; --q; }
+
+ // Compare with just the quotient, since the remainder always bumps the
+ // value up. [Since q = floor(n/d), and if n/d < i then q < i, if n/d == i
+ // then q == i, if n/d == i + r/d then q == i, and if n/d >= i + 1 then
+ // q >= i + 1 > i; therefore n/d < i iff q < i.]
+ return q < i;
+ }
+ template <class T>
+ BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, bool>::type operator>(const T& i) const
+ {
+ return operator==(i) ? false : !operator<(i);
+ }
+ template <class T>
+ BOOST_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, bool>::type operator== (const T& i) const
+ {
+ return ((den == IntType(1)) && (num == i));
+ }
+
+private:
+ // Implementation - numerator and denominator (normalized).
+ // Other possibilities - separate whole-part, or sign, fields?
+ IntType num;
+ IntType den;
+
+ // Helper functions
+ static BOOST_CONSTEXPR
+ int_type inner_gcd( param_type a, param_type b, int_type const &zero =
+ int_type(0) )
+ { return b == zero ? a : inner_gcd(b, a % b, zero); }
+
+ static BOOST_CONSTEXPR
+ int_type inner_abs( param_type x, int_type const &zero = int_type(0) )
+ { return x < zero ? -x : +x; }
+
+ // Representation note: Fractions are kept in normalized form at all
+ // times. normalized form is defined as gcd(num,den) == 1 and den > 0.
+ // In particular, note that the implementation of abs() below relies
+ // on den always being positive.
+ BOOST_CXX14_CONSTEXPR bool test_invariant() const;
+ BOOST_CXX14_CONSTEXPR void normalize();
+
+ static BOOST_CONSTEXPR
+ bool is_normalized( param_type n, param_type d, int_type const &zero =
+ int_type(0), int_type const &one = int_type(1) )
+ {
+ return d > zero && ( n != zero || d == one ) && inner_abs( inner_gcd(n,
+ d, zero), zero ) == one;
+ }
+ //
+ // Conversion checks:
+ //
+ // (1) From an unsigned type with more digits than IntType:
+ //
+ template <class T>
+ BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits > std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T& val)
+ {
+ return val < (T(1) << std::numeric_limits<IntType>::digits);
+ }
+ //
+ // (2) From a signed type with more digits than IntType, and IntType also signed:
+ //
+ template <class T>
+ BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits > std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == true), bool>::type is_safe_narrowing_conversion(const T& val)
+ {
+ // Note that this check assumes IntType has a 2's complement representation,
+ // we don't want to try to convert a std::numeric_limits<IntType>::min() to
+ // a T because that conversion may not be allowed (this happens when IntType
+ // is from Boost.Multiprecision).
+ return (val < (T(1) << std::numeric_limits<IntType>::digits)) && (val >= -(T(1) << std::numeric_limits<IntType>::digits));
+ }
+ //
+ // (3) From a signed type with more digits than IntType, and IntType unsigned:
+ //
+ template <class T>
+ BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits > std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T& val)
+ {
+ return (val < (T(1) << std::numeric_limits<IntType>::digits)) && (val >= 0);
+ }
+ //
+ // (4) From a signed type with fewer digits than IntType, and IntType unsigned:
+ //
+ template <class T>
+ BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T& val)
+ {
+ return val >= 0;
+ }
+ //
+ // (5) From an unsigned type with fewer digits than IntType, and IntType signed:
+ //
+ template <class T>
+ BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == false) && (std::numeric_limits<IntType>::is_signed == true), bool>::type is_safe_narrowing_conversion(const T&)
+ {
+ return true;
+ }
+ //
+ // (6) From an unsigned type with fewer digits than IntType, and IntType unsigned:
+ //
+ template <class T>
+ BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == false) && (std::numeric_limits<IntType>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T&)
+ {
+ return true;
+ }
+ //
+ // (7) From an signed type with fewer digits than IntType, and IntType signed:
+ //
+ template <class T>
+ BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == true), bool>::type is_safe_narrowing_conversion(const T&)
+ {
+ return true;
+ }
+};
+
+// Unary plus and minus
+template <typename IntType>
+BOOST_CONSTEXPR
+inline rational<IntType> operator+ (const rational<IntType>& r)
+{
+ return r;
+}
+
+template <typename IntType>
+BOOST_CXX14_CONSTEXPR
+inline rational<IntType> operator- (const rational<IntType>& r)
+{
+ return rational<IntType>(static_cast<IntType>(-r.numerator()), r.denominator());
+}
+
+// Arithmetic assignment operators
+template <typename IntType>
+BOOST_CXX14_CONSTEXPR rational<IntType>& rational<IntType>::operator+= (const rational<IntType>& r)
+{
+ // This calculation avoids overflow, and minimises the number of expensive
+ // calculations. Thanks to Nickolay Mladenov for this algorithm.
+ //
+ // Proof:
+ // We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1.
+ // Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1
+ //
+ // The result is (a*d1 + c*b1) / (b1*d1*g).
+ // Now we have to normalize this ratio.
+ // Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1
+ // If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a.
+ // But since gcd(a,b1)=1 we have h=1.
+ // Similarly h|d1 leads to h=1.
+ // So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g
+ // Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g)
+ // Which proves that instead of normalizing the result, it is better to
+ // divide num and den by gcd((a*d1 + c*b1), g)
+
+ // Protect against self-modification
+ IntType r_num = r.num;
+ IntType r_den = r.den;
+
+ IntType g = integer::gcd(den, r_den);
+ den /= g; // = b1 from the calculations above
+ num = num * (r_den / g) + r_num * den;
+ g = integer::gcd(num, g);
+ num /= g;
+ den *= r_den/g;
+
+ return *this;
+}
+
+template <typename IntType>
+BOOST_CXX14_CONSTEXPR rational<IntType>& rational<IntType>::operator-= (const rational<IntType>& r)
+{
+ // Protect against self-modification
+ IntType r_num = r.num;
+ IntType r_den = r.den;
+
+ // This calculation avoids overflow, and minimises the number of expensive
+ // calculations. It corresponds exactly to the += case above
+ IntType g = integer::gcd(den, r_den);
+ den /= g;
+ num = num * (r_den / g) - r_num * den;
+ g = integer::gcd(num, g);
+ num /= g;
+ den *= r_den/g;
+
+ return *this;
+}
+
+template <typename IntType>
+BOOST_CXX14_CONSTEXPR rational<IntType>& rational<IntType>::operator*= (const rational<IntType>& r)
+{
+ // Protect against self-modification
+ IntType r_num = r.num;
+ IntType r_den = r.den;
+
+ // Avoid overflow and preserve normalization
+ IntType gcd1 = integer::gcd(num, r_den);
+ IntType gcd2 = integer::gcd(r_num, den);
+ num = (num/gcd1) * (r_num/gcd2);
+ den = (den/gcd2) * (r_den/gcd1);
+ return *this;
+}
+
+template <typename IntType>
+BOOST_CXX14_CONSTEXPR rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r)
+{
+ // Protect against self-modification
+ IntType r_num = r.num;
+ IntType r_den = r.den;
+
+ // Avoid repeated construction
+ IntType zero(0);
+
+ // Trap division by zero
+ if (r_num == zero)
+ BOOST_THROW_EXCEPTION(bad_rational());
+ if (num == zero)
+ return *this;
+
+ // Avoid overflow and preserve normalization
+ IntType gcd1 = integer::gcd(num, r_num);
+ IntType gcd2 = integer::gcd(r_den, den);
+ num = (num/gcd1) * (r_den/gcd2);
+ den = (den/gcd2) * (r_num/gcd1);
+
+ if (den < zero) {
+ num = -num;
+ den = -den;
+ }
+ return *this;
+}
+
+
+//
+// Non-member operators: previously these were provided by Boost.Operator, but these had a number of
+// drawbacks, most notably, that in order to allow inter-operability with IntType code such as this:
+//
+// rational<int> r(3);
+// assert(r == 3.5); // compiles and passes!!
+//
+// Happens to be allowed as well :-(
+//
+// There are three possible cases for each operator:
+// 1) rational op rational.
+// 2) rational op integer
+// 3) integer op rational
+// Cases (1) and (2) are folded into the one function.
+//
+template <class IntType, class Arg>
+BOOST_CXX14_CONSTEXPR
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
+ operator + (const rational<IntType>& a, const Arg& b)
+{
+ rational<IntType> t(a);
+ return t += b;
+}
+template <class Arg, class IntType>
+BOOST_CXX14_CONSTEXPR
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
+ operator + (const Arg& b, const rational<IntType>& a)
+{
+ rational<IntType> t(a);
+ return t += b;
+}
+
+template <class IntType, class Arg>
+BOOST_CXX14_CONSTEXPR
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
+ operator - (const rational<IntType>& a, const Arg& b)
+{
+ rational<IntType> t(a);
+ return t -= b;
+}
+template <class Arg, class IntType>
+BOOST_CXX14_CONSTEXPR
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
+ operator - (const Arg& b, const rational<IntType>& a)
+{
+ rational<IntType> t(a);
+ return -(t -= b);
+}
+
+template <class IntType, class Arg>
+BOOST_CXX14_CONSTEXPR
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
+ operator * (const rational<IntType>& a, const Arg& b)
+{
+ rational<IntType> t(a);
+ return t *= b;
+}
+template <class Arg, class IntType>
+BOOST_CXX14_CONSTEXPR
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
+ operator * (const Arg& b, const rational<IntType>& a)
+{
+ rational<IntType> t(a);
+ return t *= b;
+}
+
+template <class IntType, class Arg>
+BOOST_CXX14_CONSTEXPR
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
+ operator / (const rational<IntType>& a, const Arg& b)
+{
+ rational<IntType> t(a);
+ return t /= b;
+}
+template <class Arg, class IntType>
+BOOST_CXX14_CONSTEXPR
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
+ operator / (const Arg& b, const rational<IntType>& a)
+{
+ rational<IntType> t(b);
+ return t /= a;
+}
+
+template <class IntType, class Arg>
+BOOST_CXX14_CONSTEXPR
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, bool>::type
+ operator <= (const rational<IntType>& a, const Arg& b)
+{
+ return !a.operator>(b);
+}
+template <class Arg, class IntType>
+BOOST_CXX14_CONSTEXPR
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
+ operator <= (const Arg& b, const rational<IntType>& a)
+{
+ return a >= b;
+}
+
+template <class IntType, class Arg>
+BOOST_CXX14_CONSTEXPR
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, bool>::type
+ operator >= (const rational<IntType>& a, const Arg& b)
+{
+ return !a.operator<(b);
+}
+template <class Arg, class IntType>
+BOOST_CXX14_CONSTEXPR
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
+ operator >= (const Arg& b, const rational<IntType>& a)
+{
+ return a <= b;
+}
+
+template <class IntType, class Arg>
+BOOST_CONSTEXPR
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, bool>::type
+ operator != (const rational<IntType>& a, const Arg& b)
+{
+ return !a.operator==(b);
+}
+template <class Arg, class IntType>
+BOOST_CONSTEXPR
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
+ operator != (const Arg& b, const rational<IntType>& a)
+{
+ return !(b == a);
+}
+
+template <class Arg, class IntType>
+BOOST_CXX14_CONSTEXPR
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
+ operator < (const Arg& b, const rational<IntType>& a)
+{
+ return a.operator>(b);
+}
+template <class Arg, class IntType>
+BOOST_CXX14_CONSTEXPR
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
+ operator > (const Arg& b, const rational<IntType>& a)
+{
+ return a.operator<(b);
+}
+template <class Arg, class IntType>
+BOOST_CONSTEXPR
+inline typename boost::enable_if_c <
+ rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
+ operator == (const Arg& b, const rational<IntType>& a)
+{
+ return a.operator==(b);
+}
+
+// Comparison operators
+template <typename IntType>
+BOOST_CXX14_CONSTEXPR
+bool rational<IntType>::operator< (const rational<IntType>& r) const
+{
+ // Avoid repeated construction
+ int_type const zero( 0 );
+
+ // This should really be a class-wide invariant. The reason for these
+ // checks is that for 2's complement systems, INT_MIN has no corresponding
+ // positive, so negating it during normalization keeps it INT_MIN, which
+ // is bad for later calculations that assume a positive denominator.
+ BOOST_ASSERT( this->den > zero );
+ BOOST_ASSERT( r.den > zero );
+
+ // Determine relative order by expanding each value to its simple continued
+ // fraction representation using the Euclidian GCD algorithm.
+ struct { int_type n, d, q, r; }
+ ts = { this->num, this->den, static_cast<int_type>(this->num / this->den),
+ static_cast<int_type>(this->num % this->den) },
+ rs = { r.num, r.den, static_cast<int_type>(r.num / r.den),
+ static_cast<int_type>(r.num % r.den) };
+ unsigned reverse = 0u;
+
+ // Normalize negative moduli by repeatedly adding the (positive) denominator
+ // and decrementing the quotient. Later cycles should have all positive
+ // values, so this only has to be done for the first cycle. (The rules of
+ // C++ require a nonnegative quotient & remainder for a nonnegative dividend
+ // & positive divisor.)
+ while ( ts.r < zero ) { ts.r += ts.d; --ts.q; }
+ while ( rs.r < zero ) { rs.r += rs.d; --rs.q; }
+
+ // Loop through and compare each variable's continued-fraction components
+ for ( ;; )
+ {
+ // The quotients of the current cycle are the continued-fraction
+ // components. Comparing two c.f. is comparing their sequences,
+ // stopping at the first difference.
+ if ( ts.q != rs.q )
+ {
+ // Since reciprocation changes the relative order of two variables,
+ // and c.f. use reciprocals, the less/greater-than test reverses
+ // after each index. (Start w/ non-reversed @ whole-number place.)
+ return reverse ? ts.q > rs.q : ts.q < rs.q;
+ }
+
+ // Prepare the next cycle
+ reverse ^= 1u;
+
+ if ( (ts.r == zero) || (rs.r == zero) )
+ {
+ // At least one variable's c.f. expansion has ended
+ break;
+ }
+
+ ts.n = ts.d; ts.d = ts.r;
+ ts.q = ts.n / ts.d; ts.r = ts.n % ts.d;
+ rs.n = rs.d; rs.d = rs.r;
+ rs.q = rs.n / rs.d; rs.r = rs.n % rs.d;
+ }
+
+ // Compare infinity-valued components for otherwise equal sequences
+ if ( ts.r == rs.r )
+ {
+ // Both remainders are zero, so the next (and subsequent) c.f.
+ // components for both sequences are infinity. Therefore, the sequences
+ // and their corresponding values are equal.
+ return false;
+ }
+ else
+ {
+#ifdef BOOST_MSVC
+#pragma warning(push)
+#pragma warning(disable:4800)
+#endif
+ // Exactly one of the remainders is zero, so all following c.f.
+ // components of that variable are infinity, while the other variable
+ // has a finite next c.f. component. So that other variable has the
+ // lesser value (modulo the reversal flag!).
+ return ( ts.r != zero ) != static_cast<bool>( reverse );
+#ifdef BOOST_MSVC
+#pragma warning(pop)
+#endif
+ }
+}
+
+template <typename IntType>
+BOOST_CONSTEXPR
+inline bool rational<IntType>::operator== (const rational<IntType>& r) const
+{
+ return ((num == r.num) && (den == r.den));
+}
+
+// Invariant check
+template <typename IntType>
+BOOST_CXX14_CONSTEXPR
+inline bool rational<IntType>::test_invariant() const
+{
+ return ( this->den > int_type(0) ) && ( integer::gcd(this->num, this->den) ==
+ int_type(1) );
+}
+
+// Normalisation
+template <typename IntType>
+BOOST_CXX14_CONSTEXPR void rational<IntType>::normalize()
+{
+ // Avoid repeated construction
+ IntType zero(0);
+
+ if (den == zero)
+ BOOST_THROW_EXCEPTION(bad_rational());
+
+ // Handle the case of zero separately, to avoid division by zero
+ if (num == zero) {
+ den = IntType(1);
+ return;
+ }
+
+ IntType g = integer::gcd(num, den);
+
+ num /= g;
+ den /= g;
+
+ if (den < -(std::numeric_limits<IntType>::max)()) {
+ BOOST_THROW_EXCEPTION(bad_rational("bad rational: non-zero singular denominator"));
+ }
+
+ // Ensure that the denominator is positive
+ if (den < zero) {
+ num = -num;
+ den = -den;
+ }
+
+ BOOST_ASSERT( this->test_invariant() );
+}
+
+#ifndef BOOST_NO_IOSTREAM
+namespace detail {
+
+ // A utility class to reset the format flags for an istream at end
+ // of scope, even in case of exceptions
+ struct resetter {
+ resetter(std::istream& is) : is_(is), f_(is.flags()) {}
+ ~resetter() { is_.flags(f_); }
+ std::istream& is_;
+ std::istream::fmtflags f_; // old GNU c++ lib has no ios_base
+ };
+
+}
+
+// Input and output
+template <typename IntType>
+std::istream& operator>> (std::istream& is, rational<IntType>& r)
+{
+ using std::ios;
+
+ IntType n = IntType(0), d = IntType(1);
+ char c = 0;
+ detail::resetter sentry(is);
+
+ if ( is >> n )
+ {
+ if ( is.get(c) )
+ {
+ if ( c == '/' )
+ {
+ if ( is >> std::noskipws >> d )
+ try {
+ r.assign( n, d );
+ } catch ( bad_rational & ) { // normalization fail
+ try { is.setstate(ios::failbit); }
+ catch ( ... ) {} // don't throw ios_base::failure...
+ if ( is.exceptions() & ios::failbit )
+ throw; // ...but the original exception instead
+ // ELSE: suppress the exception, use just error flags
+ }
+ }
+ else
+ is.setstate( ios::failbit );
+ }
+ }
+
+ return is;
+}
+
+// Add manipulators for output format?
+template <typename IntType>
+std::ostream& operator<< (std::ostream& os, const rational<IntType>& r)
+{
+ // The slash directly precedes the denominator, which has no prefixes.
+ std::ostringstream ss;
+
+ ss.copyfmt( os );
+ ss.tie( NULL );
+ ss.exceptions( std::ios::goodbit );
+ ss.width( 0 );
+ ss << std::noshowpos << std::noshowbase << '/' << r.denominator();
+
+ // The numerator holds the showpos, internal, and showbase flags.
+ std::string const tail = ss.str();
+ std::streamsize const w =
+ os.width() - static_cast<std::streamsize>( tail.size() );
+
+ ss.clear();
+ ss.str( "" );
+ ss.flags( os.flags() );
+ ss << std::setw( w < 0 || (os.flags() & std::ios::adjustfield) !=
+ std::ios::internal ? 0 : w ) << r.numerator();
+ return os << ss.str() + tail;
+}
+#endif // BOOST_NO_IOSTREAM
+
+// Type conversion
+template <typename T, typename IntType>
+BOOST_CONSTEXPR
+inline T rational_cast(const rational<IntType>& src)
+{
+ return static_cast<T>(src.numerator())/static_cast<T>(src.denominator());
+}
+
+// Do not use any abs() defined on IntType - it isn't worth it, given the
+// difficulties involved (Koenig lookup required, there may not *be* an abs()
+// defined, etc etc).
+template <typename IntType>
+BOOST_CXX14_CONSTEXPR
+inline rational<IntType> abs(const rational<IntType>& r)
+{
+ return r.numerator() >= IntType(0)? r: -r;
+}
+
+namespace integer {
+
+template <typename IntType>
+struct gcd_evaluator< rational<IntType> >
+{
+ typedef rational<IntType> result_type,
+ first_argument_type, second_argument_type;
+ result_type operator() ( first_argument_type const &a
+ , second_argument_type const &b
+ ) const
+ {
+ return result_type(integer::gcd(a.numerator(), b.numerator()),
+ integer::lcm(a.denominator(), b.denominator()));
+ }
+};
+
+template <typename IntType>
+struct lcm_evaluator< rational<IntType> >
+{
+ typedef rational<IntType> result_type,
+ first_argument_type, second_argument_type;
+ result_type operator() ( first_argument_type const &a
+ , second_argument_type const &b
+ ) const
+ {
+ return result_type(integer::lcm(a.numerator(), b.numerator()),
+ integer::gcd(a.denominator(), b.denominator()));
+ }
+};
+
+} // namespace integer
+
+} // namespace boost
+
+#endif // BOOST_RATIONAL_HPP