#pragma once
#include <util/memory/alloc.h>
#include <util/digest/numeric.h>
#include <util/generic/string.h>
#include <util/generic/string_hash.h>
#include <util/generic/strbuf.h>
#include <util/generic/typetraits.h>
#include <functional>
#include <typeindex>
#include <utility>
namespace std {
template <>
struct less<const char*> {
bool operator()(const char* x, const char* y) const {
return strcmp(x, y) < 0;
}
};
template <>
struct equal_to<const char*> {
bool operator()(const char* x, const char* y) const {
return strcmp(x, y) == 0;
}
bool operator()(const char* x, const TStringBuf y) const {
return strlen(x) == y.size() && memcmp(x, y.data(), y.size()) == 0;
}
using is_transparent = void;
};
}
namespace NHashPrivate {
template <class T, bool needNumericHashing>
struct THashHelper {
inline size_t operator()(const T& t) const noexcept {
return (size_t)t; // If you have a compilation error here, look at explanation below:
// Probably error is caused by undefined template specialization of THash<T>
// You can find examples of specialization in this file
}
};
template <class T>
struct THashHelper<T, true> {
inline size_t operator()(const T& t) const noexcept {
return NumericHash(t);
}
};
template <typename C>
struct TStringHash {
using is_transparent = void;
inline size_t operator()(const TBasicStringBuf<C> s) const noexcept {
return NHashPrivate::ComputeStringHash(s.data(), s.size());
}
};
}
template <class T>
struct hash: public NHashPrivate::THashHelper<T, std::is_scalar<T>::value && !std::is_integral<T>::value> {
};
template <typename T>
struct hash<const T*> {
inline size_t operator()(const T* t) const noexcept {
return NumericHash(t);
}
};
template <class T>
struct hash<T*>: public ::hash<const T*> {
};
template <>
struct hash<const char*>: ::NHashPrivate::TStringHash<char> {
};
template <size_t n>
struct hash<char[n]>: ::NHashPrivate::TStringHash<char> {
};
template <>
struct THash<TStringBuf>: ::NHashPrivate::TStringHash<char> {
};
template <>
struct THash<std::string_view>: ::NHashPrivate::TStringHash<char> {
};
template <>
struct hash<TString>: ::NHashPrivate::TStringHash<char> {
};
template <>
struct hash<TUtf16String>: ::NHashPrivate::TStringHash<wchar16> {
};
template <>
struct THash<TWtringBuf>: ::NHashPrivate::TStringHash<wchar16> {
};
template <>
struct hash<TUtf32String>: ::NHashPrivate::TStringHash<wchar32> {
};
template <>
struct THash<TUtf32StringBuf>: ::NHashPrivate::TStringHash<wchar32> {
};
template <class C, class T, class A>
struct hash<std::basic_string<C, T, A>>: ::NHashPrivate::TStringHash<C> {
};
template <>
struct THash<std::type_index> {
inline size_t operator()(const std::type_index& index) const {
return index.hash_code();
}
};
namespace NHashPrivate {
template <typename T>
Y_FORCE_INLINE static size_t HashObject(const T& val) {
return THash<T>()(val);
}
template <size_t I, bool IsLastElement, typename... TArgs>
struct TupleHashHelper {
Y_FORCE_INLINE static size_t Hash(const std::tuple<TArgs...>& tuple) {
return CombineHashes(HashObject(std::get<I>(tuple)),
TupleHashHelper<I + 1, I + 2 >= sizeof...(TArgs), TArgs...>::Hash(tuple));
}
};
template <size_t I, typename... TArgs>
struct TupleHashHelper<I, true, TArgs...> {
Y_FORCE_INLINE static size_t Hash(const std::tuple<TArgs...>& tuple) {
return HashObject(std::get<I>(tuple));
}
};
}
template <typename... TArgs>
struct THash<std::tuple<TArgs...>> {
size_t operator()(const std::tuple<TArgs...>& tuple) const {
return NHashPrivate::TupleHashHelper<0, 1 >= sizeof...(TArgs), TArgs...>::Hash(tuple);
}
};
template <class T>
struct THash: public ::hash<T> {
};
namespace NHashPrivate {
template <class TFirst, class TSecond, bool IsEmpty = std::is_empty<THash<TFirst>>::value&& std::is_empty<THash<TSecond>>::value>
struct TPairHash {
private:
THash<TFirst> FirstHash;
THash<TSecond> SecondHash;
public:
template <class T>
inline size_t operator()(const T& pair) const {
return CombineHashes(FirstHash(pair.first), SecondHash(pair.second));
}
};
/**
* Specialization for the case where both hash functors are empty. Basically the
* only one we care about. We don't introduce additional specializations for
* cases where only one of the functors is empty as the code bloat is just not worth it.
*/
template <class TFirst, class TSecond>
struct TPairHash<TFirst, TSecond, true> {
template <class T>
inline size_t operator()(const T& pair) const {
// maps have TFirst = const TFoo, which would make for an undefined specialization
using TFirstClean = std::remove_cv_t<TFirst>;
using TSecondClean = std::remove_cv_t<TSecond>;
return CombineHashes(THash<TFirstClean>()(pair.first), THash<TSecondClean>()(pair.second));
}
};
}
template <class TFirst, class TSecond>
struct hash<std::pair<TFirst, TSecond>>: public NHashPrivate::TPairHash<TFirst, TSecond> {
};
template <class T>
struct TEqualTo: public std::equal_to<T> {
};
template <>
struct TEqualTo<TString>: public TEqualTo<TStringBuf> {
using is_transparent = void;
};
template <>
struct TEqualTo<TUtf16String>: public TEqualTo<TWtringBuf> {
using is_transparent = void;
};
template <>
struct TEqualTo<TUtf32String>: public TEqualTo<TUtf32StringBuf> {
using is_transparent = void;
};
template <class TFirst, class TSecond>
struct TEqualTo<std::pair<TFirst, TSecond>> {
template <class TOther>
inline bool operator()(const std::pair<TFirst, TSecond>& a, const TOther& b) const {
return TEqualTo<TFirst>()(a.first, b.first) && TEqualTo<TSecond>()(a.second, b.second);
}
using is_transparent = void;
};
template <class T>
struct TCIEqualTo {
};
template <>
struct TCIEqualTo<const char*> {
inline bool operator()(const char* a, const char* b) const {
return stricmp(a, b) == 0;
}
};
template <>
struct TCIEqualTo<TStringBuf> {
inline bool operator()(const TStringBuf a, const TStringBuf b) const {
return a.size() == b.size() && strnicmp(a.data(), b.data(), a.size()) == 0;
}
};
template <>
struct TCIEqualTo<TString> {
inline bool operator()(const TString& a, const TString& b) const {
return a.size() == b.size() && strnicmp(a.data(), b.data(), a.size()) == 0;
}
};
template <class T>
struct TLess: public std::less<T> {
};
template <>
struct TLess<TString>: public TLess<TStringBuf> {
using is_transparent = void;
};
template <>
struct TLess<TUtf16String>: public TLess<TWtringBuf> {
using is_transparent = void;
};
template <>
struct TLess<TUtf32String>: public TLess<TUtf32StringBuf> {
using is_transparent = void;
};
template <class T>
struct TGreater: public std::greater<T> {
};
template <>
struct TGreater<TString>: public TGreater<TStringBuf> {
using is_transparent = void;
};
template <>
struct TGreater<TUtf16String>: public TGreater<TWtringBuf> {
using is_transparent = void;
};
template <>
struct TGreater<TUtf32String>: public TGreater<TUtf32StringBuf> {
using is_transparent = void;
};