#include "systime.h"
#include <util/system/yassert.h>
#include <util/system/defaults.h>
#ifdef _win_
void FileTimeToTimeval(const FILETIME* ft, timeval* tv) {
const i64 NANOINTERVAL = LL(116444736000000000); // Number of 100 nanosecond units from 1/1/1601 to 1/1/1970
union {
ui64 ft_scalar;
FILETIME ft_struct;
} nt_time;
nt_time.ft_struct = *ft;
tv->tv_sec = (long)((nt_time.ft_scalar - NANOINTERVAL) / LL(10000000));
tv->tv_usec = (i32)((nt_time.ft_scalar / LL(10)) % LL(1000000));
}
int gettimeofday(timeval* tp, void*) {
FILETIME ft;
GetSystemTimeAsFileTime(&ft);
FileTimeToTimeval(&ft, tp);
return 0;
}
tm* localtime_r(const time_t* clock, tm* result) {
tzset();
tm* res = localtime(clock);
if (res) {
memcpy(result, res, sizeof(tm));
return result;
}
return 0;
}
tm* gmtime_r(const time_t* clock, tm* result) {
return gmtime_s(result, clock) == 0 ? result : 0;
}
char* ctime_r(const time_t* clock, char* buf) {
char* res = ctime(clock);
if (res) {
memcpy(buf, res, 26);
return buf;
}
return 0;
}
#endif /* _win_ */
namespace {
constexpr int STRUCT_TM_BASE_YEAR = 1900;
constexpr int UNIX_TIME_BASE_YEAR = 1970;
constexpr long SECONDS_PER_DAY = (24L * 60L * 60L);
constexpr bool IsLeapYear(int year) {
if (year % 4 != 0) {
return false;
}
if (year % 100 != 0) {
return true;
}
return year % 400 == 0;
}
constexpr ui16 YEAR_PER_YEAR = 365;
constexpr ui16 YEAR_PER_LEAP_YEAR = 366;
constexpr ui16 YearSize(int year) {
return IsLeapYear(year) ? YEAR_PER_LEAP_YEAR : YEAR_PER_YEAR;
}
constexpr ui64 FOUR_CENTURIES = (400 * 365 + 100 - 3);
constexpr ui16 MONTH_TO_DAYS[12] = {
0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334};
constexpr ui16 MONTH_TO_DAYS_LEAP[12] = {
0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335};
template <ui8 DaysInFeb>
constexpr int DayOfYearToMonth(ui64& day) {
Y_ASSERT(day >= 0);
Y_ASSERT(day < 366);
constexpr ui8 JanDays = 31;
constexpr ui8 FebDays = JanDays + DaysInFeb;
constexpr ui8 MarDays = FebDays + 31;
constexpr ui8 AprDays = MarDays + 30;
constexpr ui8 MayDays = AprDays + 31;
constexpr ui8 JunDays = MayDays + 30;
constexpr ui8 JulDays = JunDays + 31;
constexpr ui16 AugDays = JulDays + 31;
constexpr ui16 SepDays = AugDays + 30;
constexpr ui16 OctDays = SepDays + 31;
constexpr ui16 NovDays = OctDays + 30;
// hard-coded binary search
// this approach is faster that lookup in array using std::lower_bound()
// GmTimeR takes ~40 cycles vs ~60 cycles using std::lower_bound version
if (day < JunDays) {
if (day < MarDays) {
if (day < JanDays) {
return 0;
} else if (day < FebDays) {
day -= JanDays;
return 1;
} else {
day -= FebDays;
return 2;
}
} else {
if (day < AprDays) {
day -= MarDays;
return 3;
} else if (day < MayDays) {
day -= AprDays;
return 4;
} else {
day -= MayDays;
return 5;
}
}
} else {
if (day < SepDays) {
if (day < JulDays) {
day -= JunDays;
return 6;
} else if (day < AugDays) {
day -= JulDays;
return 7;
} else {
day -= AugDays;
return 8;
}
} else {
if (day < OctDays) {
day -= SepDays;
return 9;
} else if (day < NovDays) {
day -= OctDays;
return 10;
} else {
day -= NovDays;
return 11;
}
}
}
}
class TDayNoToYearLookupTable {
private:
static constexpr int TableSize = 128;
// lookup table for years in [1970, 1970 + 128 = 2098] range
ui16 DaysSinceEpoch[TableSize] = {};
public:
constexpr TDayNoToYearLookupTable() {
DaysSinceEpoch[0] = YearSize(UNIX_TIME_BASE_YEAR);
for (int year = UNIX_TIME_BASE_YEAR + 1; year < UNIX_TIME_BASE_YEAR + TableSize; ++year) {
DaysSinceEpoch[year - UNIX_TIME_BASE_YEAR] = DaysSinceEpoch[year - UNIX_TIME_BASE_YEAR - 1] + YearSize(year);
}
}
// lookup year by days since epoch, decrement day counter to the corresponding amount of days.
// The method returns the last year in the table, if year is too big
int GetYear(ui64& days) const {
size_t year = std::upper_bound(DaysSinceEpoch, Y_ARRAY_END(DaysSinceEpoch), days) - Y_ARRAY_BEGIN(DaysSinceEpoch);
if (year > 0) {
days -= DaysSinceEpoch[year - 1];
}
return year + UNIX_TIME_BASE_YEAR;
}
};
constexpr TDayNoToYearLookupTable DAYS_TO_YEAR_LOOKUP;
}
//! Inverse of gmtime: converts struct tm to time_t, assuming the data
//! in tm is UTC rather than local timezone. This implementation
//! returns the number of seconds since 1970-01-01, converted to time_t.
//! @note this code adopted from
//! http://osdir.com/ml/web.wget.patches/2005-07/msg00010.html
//! Subject: A more robust timegm - msg#00010
time_t TimeGM(const struct tm* t) {
// Only handles years after 1970
if (Y_UNLIKELY(t->tm_year < 70)) {
return (time_t)-1;
}
int days = 365 * (t->tm_year - 70);
// Take into account the leap days between 1970 and YEAR-1
days += (t->tm_year - 1 - 68) / 4 - ((t->tm_year - 1) / 100) + ((t->tm_year - 1 + 300) / 400);
if (Y_UNLIKELY(t->tm_mon < 0 || t->tm_mon >= 12)) {
return (time_t)-1;
}
if (IsLeapYear(1900 + t->tm_year)) {
days += MONTH_TO_DAYS_LEAP[t->tm_mon];
} else {
days += MONTH_TO_DAYS[t->tm_mon];
}
days += t->tm_mday - 1;
unsigned long secs = days * 86400ul + t->tm_hour * 3600 + t->tm_min * 60 + t->tm_sec;
return (time_t)secs;
}
struct tm* GmTimeR(const time_t* timer, struct tm* tmbuf) {
i64 time = static_cast<i64>(*timer);
ui64 dayclock, dayno;
int year = UNIX_TIME_BASE_YEAR;
if (Y_UNLIKELY(time < 0)) {
ui64 shift = (ui64)(-time - 1) / (FOUR_CENTURIES * SECONDS_PER_DAY) + 1;
time += shift * (FOUR_CENTURIES * SECONDS_PER_DAY);
year -= shift * 400;
}
dayclock = (ui64)time % SECONDS_PER_DAY;
dayno = (ui64)time / SECONDS_PER_DAY;
if (Y_UNLIKELY(dayno >= FOUR_CENTURIES)) {
year += 400 * (dayno / FOUR_CENTURIES);
dayno = dayno % FOUR_CENTURIES;
}
tmbuf->tm_sec = dayclock % 60;
tmbuf->tm_min = (dayclock % 3600) / 60;
tmbuf->tm_hour = dayclock / 3600;
tmbuf->tm_wday = (dayno + 4) % 7; // Day 0 was a thursday
if (Y_LIKELY(year == UNIX_TIME_BASE_YEAR)) {
year = DAYS_TO_YEAR_LOOKUP.GetYear(dayno);
}
for (;;) {
const ui16 yearSize = YearSize(year);
if (dayno < yearSize) {
break;
}
dayno -= yearSize;
++year;
}
tmbuf->tm_year = year - STRUCT_TM_BASE_YEAR;
tmbuf->tm_yday = dayno;
tmbuf->tm_mon = IsLeapYear(year)
? DayOfYearToMonth<29>(dayno)
: DayOfYearToMonth<28>(dayno);
tmbuf->tm_mday = dayno + 1;
tmbuf->tm_isdst = 0;
#ifndef _win_
tmbuf->tm_gmtoff = 0;
tmbuf->tm_zone = (char*)"UTC";
#endif
return tmbuf;
}
TString CTimeR(const time_t* timer) {
char sTime[32];
sTime[0] = 0;
ctime_r(timer, &sTime[0]);
return sTime;
}