#pragma once
#include <util/generic/string.h>
#include <util/generic/strbuf.h>
#include <util/generic/set.h>
#include <util/generic/list.h>
#include <util/generic/vector.h>
#include <util/generic/bitops.h>
#include <array>
// Data serialization strategy class.
// Default realization can pack only limited range of types, but you can pack any data other using your own strategy class.
template <class T>
class TNullPacker { // Very effective package class - pack any data into zero bytes :)
public:
void UnpackLeaf(const char*, T& t) const {
t = T();
}
void PackLeaf(char*, const T&, size_t) const {
}
size_t MeasureLeaf(const T&) const {
return 0;
}
size_t SkipLeaf(const char*) const {
return 0;
}
};
template <typename T>
class TAsIsPacker { // this packer is not really a packer...
public:
void UnpackLeaf(const char* p, T& t) const {
memcpy(&t, p, sizeof(T));
}
void PackLeaf(char* buffer, const T& data, size_t computedSize) const {
Y_ASSERT(computedSize == sizeof(data));
memcpy(buffer, &data, sizeof(T));
}
size_t MeasureLeaf(const T& data) const {
Y_UNUSED(data);
return sizeof(T);
}
size_t SkipLeaf(const char*) const {
return sizeof(T);
}
};
// Implementation
namespace NPackers {
template <class T>
inline ui64 ConvertIntegral(const T& data);
template <>
inline ui64 ConvertIntegral(const i64& data) {
if (data < 0) {
return (static_cast<ui64>(-1 * data) << 1) | 1;
} else {
return static_cast<ui64>(data) << 1;
}
}
namespace NImpl {
template <class T, bool isSigned>
struct TConvertImpl {
static inline ui64 Convert(const T& data);
};
template <class T>
struct TConvertImpl<T, true> {
static inline ui64 Convert(const T& data) {
return ConvertIntegral<i64>(static_cast<i64>(data));
}
};
template <class T>
struct TConvertImpl<T, false> {
static inline ui64 Convert(const T& data) {
return data;
}
};
}
template <class T>
inline ui64 ConvertIntegral(const T& data) {
static_assert(std::is_integral<T>::value, "T must be integral type");
return NImpl::TConvertImpl<T, std::is_signed<T>::value>::Convert(data);
}
//---------------------------------
// TIntegralPacker --- for integral types.
template <class T>
class TIntegralPacker { // can pack only integral types <= ui64
public:
void UnpackLeaf(const char* p, T& t) const;
void PackLeaf(char* buffer, const T& data, size_t size) const;
size_t MeasureLeaf(const T& data) const;
size_t SkipLeaf(const char* p) const;
};
template <>
inline size_t TIntegralPacker<ui64>::MeasureLeaf(const ui64& val) const {
constexpr size_t MAX_SIZE = sizeof(ui64) + sizeof(ui64) / 8;
ui64 value = val;
size_t len = 1;
value >>= 7;
for (; value && len < MAX_SIZE; value >>= 7)
++len;
return len;
}
template <>
inline void TIntegralPacker<ui64>::PackLeaf(char* buffer, const ui64& val, size_t len) const {
ui64 value = val;
int lenmask = 0;
for (size_t i = len - 1; i; --i) {
buffer[i] = (char)(value & 0xFF);
value >>= 8;
lenmask = ((lenmask >> 1) | (1 << 7));
}
buffer[0] = (char)(lenmask | value);
}
extern const ui8 SkipTable[];
template <>
inline void TIntegralPacker<ui64>::UnpackLeaf(const char* p, ui64& result) const {
unsigned char ch = *(p++);
size_t taillen = SkipTable[ch] - 1;
result = (ch & (0x7F >> taillen));
while (taillen--)
result = ((result << 8) | (*(p++) & 0xFF));
}
template <>
inline size_t TIntegralPacker<ui64>::SkipLeaf(const char* p) const {
return SkipTable[(ui8)*p];
}
namespace NImpl {
template <class T, bool isSigned>
struct TUnpackLeafImpl {
inline void UnpackLeaf(const char* p, T& t) const;
};
template <class T>
struct TUnpackLeafImpl<T, true> {
inline void UnpackLeaf(const char* p, T& t) const {
ui64 val;
TIntegralPacker<ui64>().UnpackLeaf(p, val);
if (val & 1) {
t = -1 * static_cast<i64>(val >> 1);
} else {
t = static_cast<T>(val >> 1);
}
}
};
template <class T>
struct TUnpackLeafImpl<T, false> {
inline void UnpackLeaf(const char* p, T& t) const {
ui64 tmp;
TIntegralPacker<ui64>().UnpackLeaf(p, tmp);
t = static_cast<T>(tmp);
}
};
}
template <class T>
inline void TIntegralPacker<T>::UnpackLeaf(const char* p, T& t) const {
NImpl::TUnpackLeafImpl<T, std::is_signed<T>::value>().UnpackLeaf(p, t);
}
template <class T>
inline void TIntegralPacker<T>::PackLeaf(char* buffer, const T& data, size_t size) const {
TIntegralPacker<ui64>().PackLeaf(buffer, ConvertIntegral<T>(data), size);
}
template <class T>
inline size_t TIntegralPacker<T>::MeasureLeaf(const T& data) const {
return TIntegralPacker<ui64>().MeasureLeaf(ConvertIntegral<T>(data));
}
template <class T>
inline size_t TIntegralPacker<T>::SkipLeaf(const char* p) const {
return TIntegralPacker<ui64>().SkipLeaf(p);
}
//-------------------------------------------
// TFPPacker --- for float/double
namespace NImpl {
template <class TFloat, class TUInt>
class TFPPackerBase {
protected:
typedef TIntegralPacker<TUInt> TPacker;
union THelper {
TFloat F;
TUInt U;
};
TFloat FromUInt(TUInt u) const {
THelper h;
h.U = ReverseBytes(u);
return h.F;
}
TUInt ToUInt(TFloat f) const {
THelper h;
h.F = f;
return ReverseBytes(h.U);
}
public:
void UnpackLeaf(const char* c, TFloat& t) const {
TUInt u = 0;
TPacker().UnpackLeaf(c, u);
t = FromUInt(u);
}
void PackLeaf(char* c, const TFloat& t, size_t sz) const {
TPacker().PackLeaf(c, ToUInt(t), sz);
}
size_t MeasureLeaf(const TFloat& t) const {
return TPacker().MeasureLeaf(ToUInt(t));
}
size_t SkipLeaf(const char* c) const {
return TPacker().SkipLeaf(c);
}
};
}
class TFloatPacker: public NImpl::TFPPackerBase<float, ui32> {
};
class TDoublePacker: public NImpl::TFPPackerBase<double, ui64> {
};
//-------------------------------------------
// TStringPacker --- for TString/TUtf16String and TStringBuf.
template <class TStringType>
class TStringPacker {
public:
void UnpackLeaf(const char* p, TStringType& t) const;
void PackLeaf(char* buffer, const TStringType& data, size_t size) const;
size_t MeasureLeaf(const TStringType& data) const;
size_t SkipLeaf(const char* p) const;
};
template <class TStringType>
inline void TStringPacker<TStringType>::UnpackLeaf(const char* buf, TStringType& t) const {
size_t len;
TIntegralPacker<size_t>().UnpackLeaf(buf, len);
size_t start = TIntegralPacker<size_t>().SkipLeaf(buf);
t = TStringType((const typename TStringType::char_type*)(buf + start), len);
}
template <class TStringType>
inline void TStringPacker<TStringType>::PackLeaf(char* buf, const TStringType& str, size_t size) const {
size_t len = str.size();
size_t lenChar = len * sizeof(typename TStringType::char_type);
size_t start = size - lenChar;
TIntegralPacker<size_t>().PackLeaf(buf, len, TIntegralPacker<size_t>().MeasureLeaf(len));
memcpy(buf + start, str.data(), lenChar);
}
template <class TStringType>
inline size_t TStringPacker<TStringType>::MeasureLeaf(const TStringType& str) const {
size_t len = str.size();
return TIntegralPacker<size_t>().MeasureLeaf(len) + len * sizeof(typename TStringType::char_type);
}
template <class TStringType>
inline size_t TStringPacker<TStringType>::SkipLeaf(const char* buf) const {
size_t result = TIntegralPacker<size_t>().SkipLeaf(buf);
{
size_t len;
TIntegralPacker<size_t>().UnpackLeaf(buf, len);
result += len * sizeof(typename TStringType::char_type);
}
return result;
}
template <class T>
class TPacker;
// TContainerPacker --- for any container
// Requirements to class C:
// - has method size() (returns size_t)
// - has subclass C::value_type
// - has subclass C::const_iterator
// - has methods begin() and end() (return C::const_iterator)
// - has method insert(C::const_iterator, const C::value_type&)
// Examples: TVector, TList, TSet
// Requirements to class EP: has methods as in any packer (UnpackLeaf, PackLeaf, MeasureLeaf, SkipLeaf) that
// are applicable to C::value_type
template <typename T>
struct TContainerInfo {
enum {
IsVector = 0
};
};
template <typename T>
struct TContainerInfo<std::vector<T>> {
enum {
IsVector = 1
};
};
template <typename T>
struct TContainerInfo<TVector<T>> {
enum {
IsVector = 1
};
};
template <bool IsVector>
class TContainerPackerHelper {
};
template <>
class TContainerPackerHelper<false> {
public:
template <class Packer, class Container>
static void UnpackLeaf(Packer& p, const char* buffer, Container& c) {
p.UnpackLeafSimple(buffer, c);
}
};
template <>
class TContainerPackerHelper<true> {
public:
template <class Packer, class Container>
static void UnpackLeaf(Packer& p, const char* buffer, Container& c) {
p.UnpackLeafVector(buffer, c);
}
};
template <class C, class EP = TPacker<typename C::value_type>>
class TContainerPacker {
private:
typedef C TContainer;
typedef EP TElementPacker;
typedef typename TContainer::const_iterator TElementIterator;
void UnpackLeafSimple(const char* buffer, TContainer& c) const;
void UnpackLeafVector(const char* buffer, TContainer& c) const;
friend class TContainerPackerHelper<TContainerInfo<C>::IsVector>;
public:
void UnpackLeaf(const char* buffer, TContainer& c) const {
TContainerPackerHelper<TContainerInfo<C>::IsVector>::UnpackLeaf(*this, buffer, c);
}
void PackLeaf(char* buffer, const TContainer& data, size_t size) const;
size_t MeasureLeaf(const TContainer& data) const;
size_t SkipLeaf(const char* buffer) const;
};
template <class C, class EP>
inline void TContainerPacker<C, EP>::UnpackLeafSimple(const char* buffer, C& result) const {
size_t offset = TIntegralPacker<size_t>().SkipLeaf(buffer); // first value is the total size (not needed here)
size_t len;
TIntegralPacker<size_t>().UnpackLeaf(buffer + offset, len);
offset += TIntegralPacker<size_t>().SkipLeaf(buffer + offset);
result.clear();
typename C::value_type value;
for (size_t i = 0; i < len; i++) {
TElementPacker().UnpackLeaf(buffer + offset, value);
result.insert(result.end(), value);
offset += TElementPacker().SkipLeaf(buffer + offset);
}
}
template <class C, class EP>
inline void TContainerPacker<C, EP>::UnpackLeafVector(const char* buffer, C& result) const {
size_t offset = TIntegralPacker<size_t>().SkipLeaf(buffer); // first value is the total size (not needed here)
size_t len;
TIntegralPacker<size_t>().UnpackLeaf(buffer + offset, len);
offset += TIntegralPacker<size_t>().SkipLeaf(buffer + offset);
result.resize(len);
for (size_t i = 0; i < len; i++) {
TElementPacker().UnpackLeaf(buffer + offset, result[i]);
offset += TElementPacker().SkipLeaf(buffer + offset);
}
}
template <class C, class EP>
inline void TContainerPacker<C, EP>::PackLeaf(char* buffer, const C& data, size_t size) const {
size_t sizeOfSize = TIntegralPacker<size_t>().MeasureLeaf(size);
TIntegralPacker<size_t>().PackLeaf(buffer, size, sizeOfSize);
size_t len = data.size();
size_t curSize = TIntegralPacker<size_t>().MeasureLeaf(len);
TIntegralPacker<size_t>().PackLeaf(buffer + sizeOfSize, len, curSize);
curSize += sizeOfSize;
for (TElementIterator p = data.begin(); p != data.end(); p++) {
size_t sizeChange = TElementPacker().MeasureLeaf(*p);
TElementPacker().PackLeaf(buffer + curSize, *p, sizeChange);
curSize += sizeChange;
}
Y_ASSERT(curSize == size);
}
template <class C, class EP>
inline size_t TContainerPacker<C, EP>::MeasureLeaf(const C& data) const {
size_t curSize = TIntegralPacker<size_t>().MeasureLeaf(data.size());
for (TElementIterator p = data.begin(); p != data.end(); p++)
curSize += TElementPacker().MeasureLeaf(*p);
size_t extraSize = TIntegralPacker<size_t>().MeasureLeaf(curSize);
// Double measurement protects against sudden increases in extraSize,
// e.g. when curSize is 127 and stays in one byte, but curSize + 1 requires two bytes.
extraSize = TIntegralPacker<size_t>().MeasureLeaf(curSize + extraSize);
Y_ASSERT(extraSize == TIntegralPacker<size_t>().MeasureLeaf(curSize + extraSize));
return curSize + extraSize;
}
template <class C, class EP>
inline size_t TContainerPacker<C, EP>::SkipLeaf(const char* buffer) const {
size_t value;
TIntegralPacker<size_t>().UnpackLeaf(buffer, value);
return value;
}
// TPairPacker --- for std::pair<T1, T2> (any two types; can be nested)
// TPacker<T1> and TPacker<T2> should be valid classes
template <class T1, class T2, class TPacker1 = TPacker<T1>, class TPacker2 = TPacker<T2>>
class TPairPacker {
private:
typedef std::pair<T1, T2> TMyPair;
public:
void UnpackLeaf(const char* buffer, TMyPair& pair) const;
void PackLeaf(char* buffer, const TMyPair& data, size_t size) const;
size_t MeasureLeaf(const TMyPair& data) const;
size_t SkipLeaf(const char* buffer) const;
};
template <class T1, class T2, class TPacker1, class TPacker2>
inline void TPairPacker<T1, T2, TPacker1, TPacker2>::UnpackLeaf(const char* buffer, std::pair<T1, T2>& pair) const {
TPacker1().UnpackLeaf(buffer, pair.first);
size_t size = TPacker1().SkipLeaf(buffer);
TPacker2().UnpackLeaf(buffer + size, pair.second);
}
template <class T1, class T2, class TPacker1, class TPacker2>
inline void TPairPacker<T1, T2, TPacker1, TPacker2>::PackLeaf(char* buffer, const std::pair<T1, T2>& data, size_t size) const {
size_t size1 = TPacker1().MeasureLeaf(data.first);
TPacker1().PackLeaf(buffer, data.first, size1);
size_t size2 = TPacker2().MeasureLeaf(data.second);
TPacker2().PackLeaf(buffer + size1, data.second, size2);
Y_ASSERT(size == size1 + size2);
}
template <class T1, class T2, class TPacker1, class TPacker2>
inline size_t TPairPacker<T1, T2, TPacker1, TPacker2>::MeasureLeaf(const std::pair<T1, T2>& data) const {
size_t size1 = TPacker1().MeasureLeaf(data.first);
size_t size2 = TPacker2().MeasureLeaf(data.second);
return size1 + size2;
}
template <class T1, class T2, class TPacker1, class TPacker2>
inline size_t TPairPacker<T1, T2, TPacker1, TPacker2>::SkipLeaf(const char* buffer) const {
size_t size1 = TPacker1().SkipLeaf(buffer);
size_t size2 = TPacker2().SkipLeaf(buffer + size1);
return size1 + size2;
}
//------------------------------------------------------------------------------------------
// Packer for fixed-size arrays, i.e. for std::array.
// Saves memory by not storing anything about their size.
// SkipLeaf skips every value, so can be slow for big arrays.
// Requires std::tuple_size<TValue>, TValue::operator[] and possibly TValue::value_type.
template <class TValue, class TElementPacker = TPacker<typename TValue::value_type>>
class TArrayPacker {
public:
using TElemPacker = TElementPacker;
enum {
Size = std::tuple_size<TValue>::value
};
void UnpackLeaf(const char* p, TValue& t) const {
const char* buf = p;
for (size_t i = 0; i < Size; ++i) {
TElemPacker().UnpackLeaf(buf, t[i]);
buf += TElemPacker().SkipLeaf(buf);
}
}
void PackLeaf(char* buffer, const TValue& data, size_t computedSize) const {
size_t remainingSize = computedSize;
char* pos = buffer;
for (size_t i = 0; i < Size; ++i) {
const size_t elemSize = TElemPacker().MeasureLeaf(data[i]);
TElemPacker().PackLeaf(pos, data[i], Min(elemSize, remainingSize));
pos += elemSize;
remainingSize -= elemSize;
}
}
size_t MeasureLeaf(const TValue& data) const {
size_t result = 0;
for (size_t i = 0; i < Size; ++i) {
result += TElemPacker().MeasureLeaf(data[i]);
}
return result;
}
size_t SkipLeaf(const char* p) const // this function better be fast because it is very frequently used
{
const char* buf = p;
for (size_t i = 0; i < Size; ++i) {
buf += TElemPacker().SkipLeaf(buf);
}
return buf - p;
}
};
//------------------------------------
// TPacker --- the generic packer.
template <class T, bool IsIntegral>
class TPackerImpl;
template <class T>
class TPackerImpl<T, true>: public TIntegralPacker<T> {
};
// No implementation for non-integral types.
template <class T>
class TPacker: public TPackerImpl<T, std::is_integral<T>::value> {
};
template <>
class TPacker<float>: public TAsIsPacker<float> {
};
template <>
class TPacker<double>: public TAsIsPacker<double> {
};
template <>
class TPacker<TString>: public TStringPacker<TString> {
};
template <>
class TPacker<TUtf16String>: public TStringPacker<TUtf16String> {
};
template <>
class TPacker<TStringBuf>: public TStringPacker<TStringBuf> {
};
template <>
class TPacker<TWtringBuf>: public TStringPacker<TWtringBuf> {
};
template <class T>
class TPacker<std::vector<T>>: public TContainerPacker<std::vector<T>> {
};
template <class T>
class TPacker<TVector<T>>: public TContainerPacker<TVector<T>> {
};
template <class T>
class TPacker<std::list<T>>: public TContainerPacker<std::list<T>> {
};
template <class T>
class TPacker<TList<T>>: public TContainerPacker<TList<T>> {
};
template <class T>
class TPacker<std::set<T>>: public TContainerPacker<std::set<T>> {
};
template <class T>
class TPacker<TSet<T>>: public TContainerPacker<TSet<T>> {
};
template <class T1, class T2>
class TPacker<std::pair<T1, T2>>: public TPairPacker<T1, T2> {
};
template <class T, size_t N>
class TPacker<std::array<T, N>>: public TArrayPacker<std::array<T, N>> {
};
}