#include "linear_model.h"
#include "linear_regression.h"
#include <util/generic/ymath.h>
#ifdef _sse2_
#include <emmintrin.h>
#include <xmmintrin.h>
#endif
#include <algorithm>
#include <functional>
namespace {
inline void AddFeaturesProduct(const double weight, const TVector<double>& features, TVector<double>& linearizedOLSTriangleMatrix);
TVector<double> Solve(const TVector<double>& olsMatrix, const TVector<double>& olsVector);
double SumSquaredErrors(const TVector<double>& olsMatrix,
const TVector<double>& olsVector,
const TVector<double>& solution,
const double goalsDeviation);
}
bool TFastLinearRegressionSolver::Add(const TVector<double>& features, const double goal, const double weight) {
const size_t featuresCount = features.size();
if (LinearizedOLSMatrix.empty()) {
LinearizedOLSMatrix.resize((featuresCount + 1) * (featuresCount + 2) / 2);
OLSVector.resize(featuresCount + 1);
}
AddFeaturesProduct(weight, features, LinearizedOLSMatrix);
const double weightedGoal = goal * weight;
double* olsVectorElement = OLSVector.data();
for (const double feature : features) {
*olsVectorElement += feature * weightedGoal;
++olsVectorElement;
}
*olsVectorElement += weightedGoal;
SumSquaredGoals += goal * goal * weight;
return true;
}
bool TLinearRegressionSolver::Add(const TVector<double>& features, const double goal, const double weight) {
const size_t featuresCount = features.size();
if (FeatureMeans.empty()) {
FeatureMeans.resize(featuresCount);
LastMeans.resize(featuresCount);
NewMeans.resize(featuresCount);
LinearizedOLSMatrix.resize(featuresCount * (featuresCount + 1) / 2);
OLSVector.resize(featuresCount);
}
SumWeights += weight;
if (!SumWeights.Get()) {
return false;
}
for (size_t featureNumber = 0; featureNumber < featuresCount; ++featureNumber) {
const double feature = features[featureNumber];
double& featureMean = FeatureMeans[featureNumber];
LastMeans[featureNumber] = weight * (feature - featureMean);
featureMean += weight * (feature - featureMean) / SumWeights.Get();
NewMeans[featureNumber] = feature - featureMean;
;
}
double* olsMatrixElement = LinearizedOLSMatrix.data();
const double* lastMean = LastMeans.data();
const double* newMean = NewMeans.data();
const double* lastMeansEnd = lastMean + LastMeans.size();
const double* newMeansEnd = newMean + NewMeans.size();
#ifdef _sse2_
for (; lastMean != lastMeansEnd; ++lastMean, ++newMean) {
__m128d factor = _mm_set_pd(*lastMean, *lastMean);
const double* secondFeatureMean = newMean;
for (; secondFeatureMean + 1 < newMeansEnd; secondFeatureMean += 2, olsMatrixElement += 2) {
__m128d matrixElem = _mm_loadu_pd(olsMatrixElement);
__m128d secondFeatureMeanElem = _mm_loadu_pd(secondFeatureMean);
__m128d product = _mm_mul_pd(factor, secondFeatureMeanElem);
__m128d addition = _mm_add_pd(matrixElem, product);
_mm_storeu_pd(olsMatrixElement, addition);
}
for (; secondFeatureMean < newMeansEnd; ++secondFeatureMean) {
*olsMatrixElement++ += *lastMean * *secondFeatureMean;
}
}
#else
for (; lastMean != lastMeansEnd; ++lastMean, ++newMean) {
for (const double* secondFeatureMean = newMean; secondFeatureMean < newMeansEnd; ++secondFeatureMean) {
*olsMatrixElement++ += *lastMean * *secondFeatureMean;
}
}
#endif
for (size_t firstFeatureNumber = 0; firstFeatureNumber < features.size(); ++firstFeatureNumber) {
OLSVector[firstFeatureNumber] += weight * (features[firstFeatureNumber] - FeatureMeans[firstFeatureNumber]) * (goal - GoalsMean);
}
const double oldGoalsMean = GoalsMean;
GoalsMean += weight * (goal - GoalsMean) / SumWeights.Get();
GoalsDeviation += weight * (goal - oldGoalsMean) * (goal - GoalsMean);
return true;
}
TLinearModel TFastLinearRegressionSolver::Solve() const {
TVector<double> coefficients = ::Solve(LinearizedOLSMatrix, OLSVector);
double intercept = 0.;
if (!coefficients.empty()) {
intercept = coefficients.back();
coefficients.pop_back();
}
return TLinearModel(std::move(coefficients), intercept);
}
TLinearModel TLinearRegressionSolver::Solve() const {
TVector<double> coefficients = ::Solve(LinearizedOLSMatrix, OLSVector);
double intercept = GoalsMean;
const size_t featuresCount = OLSVector.size();
for (size_t featureNumber = 0; featureNumber < featuresCount; ++featureNumber) {
intercept -= FeatureMeans[featureNumber] * coefficients[featureNumber];
}
return TLinearModel(std::move(coefficients), intercept);
}
double TFastLinearRegressionSolver::SumSquaredErrors() const {
const TVector<double> coefficients = ::Solve(LinearizedOLSMatrix, OLSVector);
return ::SumSquaredErrors(LinearizedOLSMatrix, OLSVector, coefficients, SumSquaredGoals.Get());
}
double TLinearRegressionSolver::SumSquaredErrors() const {
const TVector<double> coefficients = ::Solve(LinearizedOLSMatrix, OLSVector);
return ::SumSquaredErrors(LinearizedOLSMatrix, OLSVector, coefficients, GoalsDeviation);
}
bool TSLRSolver::Add(const double feature, const double goal, const double weight) {
SumWeights += weight;
if (!SumWeights.Get()) {
return false;
}
const double weightedFeatureDiff = weight * (feature - FeaturesMean);
const double weightedGoalDiff = weight * (goal - GoalsMean);
FeaturesMean += weightedFeatureDiff / SumWeights.Get();
FeaturesDeviation += weightedFeatureDiff * (feature - FeaturesMean);
GoalsMean += weightedGoalDiff / SumWeights.Get();
GoalsDeviation += weightedGoalDiff * (goal - GoalsMean);
Covariation += weightedFeatureDiff * (goal - GoalsMean);
return true;
}
bool TSLRSolver::Add(const double* featuresBegin,
const double* featuresEnd,
const double* goalsBegin) {
for (; featuresBegin != featuresEnd; ++featuresBegin, ++goalsBegin) {
Add(*featuresBegin, *goalsBegin);
}
return true;
}
bool TSLRSolver::Add(const double* featuresBegin,
const double* featuresEnd,
const double* goalsBegin,
const double* weightsBegin) {
for (; featuresBegin != featuresEnd; ++featuresBegin, ++goalsBegin, ++weightsBegin) {
Add(*featuresBegin, *goalsBegin, *weightsBegin);
}
return true;
}
double TSLRSolver::SumSquaredErrors(const double regularizationParameter) const {
double factor, offset;
Solve(factor, offset, regularizationParameter);
return factor * factor * FeaturesDeviation - 2 * factor * Covariation + GoalsDeviation;
}
namespace {
// LDL matrix decomposition, see http://en.wikipedia.org/wiki/Cholesky_decomposition#LDL_decomposition_2
bool LDLDecomposition(const TVector<double>& linearizedOLSMatrix,
const double regularizationThreshold,
const double regularizationParameter,
TVector<double>& decompositionTrace,
TVector<TVector<double>>& decompositionMatrix) {
const size_t featuresCount = decompositionTrace.size();
size_t olsMatrixElementIdx = 0;
for (size_t rowNumber = 0; rowNumber < featuresCount; ++rowNumber) {
double& decompositionTraceElement = decompositionTrace[rowNumber];
decompositionTraceElement = linearizedOLSMatrix[olsMatrixElementIdx] + regularizationParameter;
TVector<double>& decompositionRow = decompositionMatrix[rowNumber];
for (size_t i = 0; i < rowNumber; ++i) {
decompositionTraceElement -= decompositionRow[i] * decompositionRow[i] * decompositionTrace[i];
}
if (fabs(decompositionTraceElement) < regularizationThreshold) {
return false;
}
++olsMatrixElementIdx;
decompositionRow[rowNumber] = 1.;
for (size_t columnNumber = rowNumber + 1; columnNumber < featuresCount; ++columnNumber) {
TVector<double>& secondDecompositionRow = decompositionMatrix[columnNumber];
double& decompositionMatrixElement = secondDecompositionRow[rowNumber];
decompositionMatrixElement = linearizedOLSMatrix[olsMatrixElementIdx];
for (size_t j = 0; j < rowNumber; ++j) {
decompositionMatrixElement -= decompositionRow[j] * secondDecompositionRow[j] * decompositionTrace[j];
}
decompositionMatrixElement /= decompositionTraceElement;
decompositionRow[columnNumber] = decompositionMatrixElement;
++olsMatrixElementIdx;
}
}
return true;
}
void LDLDecomposition(const TVector<double>& linearizedOLSMatrix,
TVector<double>& decompositionTrace,
TVector<TVector<double>>& decompositionMatrix) {
const double regularizationThreshold = 1e-5;
double regularizationParameter = 0.;
while (!LDLDecomposition(linearizedOLSMatrix,
regularizationThreshold,
regularizationParameter,
decompositionTrace,
decompositionMatrix)) {
regularizationParameter = regularizationParameter ? 2 * regularizationParameter : 1e-5;
}
}
TVector<double> SolveLower(const TVector<TVector<double>>& decompositionMatrix,
const TVector<double>& decompositionTrace,
const TVector<double>& olsVector) {
const size_t featuresCount = olsVector.size();
TVector<double> solution(featuresCount);
for (size_t featureNumber = 0; featureNumber < featuresCount; ++featureNumber) {
double& solutionElement = solution[featureNumber];
solutionElement = olsVector[featureNumber];
const TVector<double>& decompositionRow = decompositionMatrix[featureNumber];
for (size_t i = 0; i < featureNumber; ++i) {
solutionElement -= solution[i] * decompositionRow[i];
}
}
for (size_t featureNumber = 0; featureNumber < featuresCount; ++featureNumber) {
solution[featureNumber] /= decompositionTrace[featureNumber];
}
return solution;
}
TVector<double> SolveUpper(const TVector<TVector<double>>& decompositionMatrix,
const TVector<double>& lowerSolution) {
const size_t featuresCount = lowerSolution.size();
TVector<double> solution(featuresCount);
for (size_t featureNumber = featuresCount; featureNumber > 0; --featureNumber) {
double& solutionElement = solution[featureNumber - 1];
solutionElement = lowerSolution[featureNumber - 1];
const TVector<double>& decompositionRow = decompositionMatrix[featureNumber - 1];
for (size_t i = featureNumber; i < featuresCount; ++i) {
solutionElement -= solution[i] * decompositionRow[i];
}
}
return solution;
}
TVector<double> Solve(const TVector<double>& olsMatrix, const TVector<double>& olsVector) {
const size_t featuresCount = olsVector.size();
TVector<double> decompositionTrace(featuresCount);
TVector<TVector<double>> decompositionMatrix(featuresCount, TVector<double>(featuresCount));
LDLDecomposition(olsMatrix, decompositionTrace, decompositionMatrix);
return SolveUpper(decompositionMatrix, SolveLower(decompositionMatrix, decompositionTrace, olsVector));
}
double SumSquaredErrors(const TVector<double>& olsMatrix,
const TVector<double>& olsVector,
const TVector<double>& solution,
const double goalsDeviation) {
const size_t featuresCount = olsVector.size();
double sumSquaredErrors = goalsDeviation;
size_t olsMatrixElementIdx = 0;
for (size_t i = 0; i < featuresCount; ++i) {
sumSquaredErrors += olsMatrix[olsMatrixElementIdx] * solution[i] * solution[i];
++olsMatrixElementIdx;
for (size_t j = i + 1; j < featuresCount; ++j) {
sumSquaredErrors += 2 * olsMatrix[olsMatrixElementIdx] * solution[i] * solution[j];
++olsMatrixElementIdx;
}
sumSquaredErrors -= 2 * solution[i] * olsVector[i];
}
return sumSquaredErrors;
}
#ifdef _sse2_
inline void AddFeaturesProduct(const double weight, const TVector<double>& features, TVector<double>& linearizedOLSTriangleMatrix) {
const double* leftFeature = features.data();
const double* featuresEnd = features.data() + features.size();
double* matrixElement = linearizedOLSTriangleMatrix.data();
size_t unaligned = features.size() & 0x1;
for (; leftFeature != featuresEnd; ++leftFeature, ++matrixElement) {
const double weightedFeature = weight * *leftFeature;
const double* rightFeature = leftFeature;
__m128d wf = {weightedFeature, weightedFeature};
for (size_t i = 0; i < unaligned; ++i, ++rightFeature, ++matrixElement) {
*matrixElement += weightedFeature * *rightFeature;
}
unaligned = (unaligned + 1) & 0x1;
for (; rightFeature != featuresEnd; rightFeature += 2, matrixElement += 2) {
__m128d rf = _mm_loadu_pd(rightFeature);
__m128d matrixRow = _mm_loadu_pd(matrixElement);
__m128d rowAdd = _mm_mul_pd(rf, wf);
_mm_storeu_pd(matrixElement, _mm_add_pd(rowAdd, matrixRow));
}
*matrixElement += weightedFeature;
}
linearizedOLSTriangleMatrix.back() += weight;
}
#else
inline void AddFeaturesProduct(const double weight, const TVector<double>& features, TVector<double>& linearizedTriangleMatrix) {
const double* leftFeature = features.data();
const double* featuresEnd = features.data() + features.size();
double* matrixElement = linearizedTriangleMatrix.data();
for (; leftFeature != featuresEnd; ++leftFeature, ++matrixElement) {
const double weightedFeature = weight * *leftFeature;
const double* rightFeature = leftFeature;
for (; rightFeature != featuresEnd; ++rightFeature, ++matrixElement) {
*matrixElement += weightedFeature * *rightFeature;
}
*matrixElement += weightedFeature;
}
linearizedTriangleMatrix.back() += weight;
}
#endif
}
namespace {
inline double ArgMinPrecise(std::function<double(double)> func, double left, double right) {
const size_t intervalsCount = 20;
double points[intervalsCount + 1];
double values[intervalsCount + 1];
while (right > left + 1e-5) {
for (size_t pointNumber = 0; pointNumber <= intervalsCount; ++pointNumber) {
points[pointNumber] = left + pointNumber * (right - left) / intervalsCount;
values[pointNumber] = func(points[pointNumber]);
}
size_t bestPointNumber = MinElement(values, values + intervalsCount + 1) - values;
if (bestPointNumber == 0) {
right = points[bestPointNumber + 1];
continue;
}
if (bestPointNumber == intervalsCount) {
left = points[bestPointNumber - 1];
continue;
}
right = points[bestPointNumber + 1];
left = points[bestPointNumber - 1];
}
return func(left) < func(right) ? left : right;
}
}
TFeaturesTransformer TFeaturesTransformerLearner::Solve(const size_t iterationsCount /* = 100 */) {
TTransformationParameters transformationParameters;
auto updateParameter = [this, &transformationParameters](double TTransformationParameters::*parameter,
const double left,
const double right) {
auto evalParameter = [this, &transformationParameters, parameter](double parameterValue) {
transformationParameters.*parameter = parameterValue;
TFeaturesTransformer transformer(TransformationType, transformationParameters);
double sse = 0.;
for (const TPoint& point : Points) {
const double error = transformer.Transformation(point.Argument) - point.Target;
sse += error * error;
}
return sse;
};
transformationParameters.*parameter = ArgMinPrecise(evalParameter, left, right);
};
auto updateRegressionParameters = [this, &transformationParameters]() {
TFeaturesTransformer transformer(TransformationType, transformationParameters);
TSLRSolver slrSolver;
for (const TPoint& point : Points) {
slrSolver.Add(transformer.Transformation(point.Argument), point.Target);
}
double factor, intercept;
slrSolver.Solve(factor, intercept);
transformationParameters.RegressionFactor *= factor;
transformationParameters.RegressionIntercept *= factor;
transformationParameters.RegressionIntercept += intercept;
};
for (size_t iterationNumber = 0; iterationNumber < iterationsCount; ++iterationNumber) {
updateParameter(&TTransformationParameters::FeatureOffset, MinimalArgument, MaximalArgument);
updateParameter(&TTransformationParameters::FeatureNormalizer, 0., MaximalArgument - MinimalArgument);
updateRegressionParameters();
}
return TFeaturesTransformer(TransformationType, transformationParameters);
}