#include "dot_product_avx2.h"
#include "dot_product_simple.h"
#include "dot_product_sse.h"
#if defined(_avx2_) && defined(_fma_)
#include <util/system/platform.h>
#include <util/system/compiler.h>
#include <util/generic/utility.h>
#include <immintrin.h>
namespace {
constexpr i64 Bits(int n) {
return i64(-1) ^ ((i64(1) << (64 - n)) - 1);
}
constexpr __m256 BlendMask64[8] = {
__m256i{Bits(64), Bits(64), Bits(64), Bits(64)},
__m256i{0, Bits(64), Bits(64), Bits(64)},
__m256i{0, 0, Bits(64), Bits(64)},
__m256i{0, 0, 0, Bits(64)},
};
constexpr __m256 BlendMask32[8] = {
__m256i{Bits(64), Bits(64), Bits(64), Bits(64)},
__m256i{Bits(32), Bits(64), Bits(64), Bits(64)},
__m256i{0, Bits(64), Bits(64), Bits(64)},
__m256i{0, Bits(32), Bits(64), Bits(64)},
__m256i{0, 0, Bits(64), Bits(64)},
__m256i{0, 0, Bits(32), Bits(64)},
__m256i{0, 0, 0, Bits(64)},
__m256i{0, 0, 0, Bits(32)},
};
constexpr __m128 BlendMask8[16] = {
__m128i{Bits(64), Bits(64)},
__m128i{Bits(56), Bits(64)},
__m128i{Bits(48), Bits(64)},
__m128i{Bits(40), Bits(64)},
__m128i{Bits(32), Bits(64)},
__m128i{Bits(24), Bits(64)},
__m128i{Bits(16), Bits(64)},
__m128i{Bits(8), Bits(64)},
__m128i{0, Bits(64)},
__m128i{0, Bits(56)},
__m128i{0, Bits(48)},
__m128i{0, Bits(40)},
__m128i{0, Bits(32)},
__m128i{0, Bits(24)},
__m128i{0, Bits(16)},
__m128i{0, Bits(8)},
};
// See https://stackoverflow.com/a/60109639
// Horizontal sum of eight i32 values in an avx register
i32 HsumI32(__m256i v) {
__m128i x = _mm_add_epi32(_mm256_castsi256_si128(v), _mm256_extracti128_si256(v, 1));
__m128i hi64 = _mm_unpackhi_epi64(x, x);
__m128i sum64 = _mm_add_epi32(hi64, x);
__m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
__m128i sum32 = _mm_add_epi32(sum64, hi32);
return _mm_cvtsi128_si32(sum32);
}
// Horizontal sum of four i64 values in an avx register
i64 HsumI64(__m256i v) {
__m128i x = _mm_add_epi64(_mm256_castsi256_si128(v), _mm256_extracti128_si256(v, 1));
return _mm_cvtsi128_si64(x) + _mm_extract_epi64(x, 1);
}
// Horizontal sum of eight float values in an avx register
float HsumFloat(__m256 v) {
__m256 y = _mm256_permute2f128_ps(v, v, 1);
v = _mm256_add_ps(v, y);
v = _mm256_hadd_ps(v, v);
return _mm256_cvtss_f32(_mm256_hadd_ps(v, v));
}
// Horizontal sum of four double values in an avx register
double HsumDouble(__m256 v) {
__m128d x = _mm_add_pd(_mm256_castpd256_pd128(v), _mm256_extractf128_pd(v, 1));
x = _mm_add_pd(x, _mm_shuffle_pd(x, x, 1));
return _mm_cvtsd_f64(x);
}
__m128i Load128i(const void* ptr) {
return _mm_loadu_si128((const __m128i*)ptr);
}
__m256i Load256i(const void* ptr) {
return _mm256_loadu_si256((const __m256i*)ptr);
}
// Unrolled dot product for relatively small sizes
// The loop with known upper bound is unrolled by the compiler, no need to do anything special about it
template <size_t size, class TInput, class TExtend>
i32 DotProductInt8Avx2_Unroll(const TInput* lhs, const TInput* rhs, TExtend extend) noexcept {
static_assert(size % 16 == 0);
auto sum = _mm256_setzero_ps();
for (size_t i = 0; i != size; i += 16) {
sum = _mm256_add_epi32(sum, _mm256_madd_epi16(extend(Load128i(lhs + i)), extend(Load128i(rhs + i))));
}
return HsumI32(sum);
}
template <class TInput, class TExtend>
i32 DotProductInt8Avx2(const TInput* lhs, const TInput* rhs, size_t length, TExtend extend) noexcept {
// Fully unrolled versions for small multiples for 16
switch (length) {
case 16: return DotProductInt8Avx2_Unroll<16>(lhs, rhs, extend);
case 32: return DotProductInt8Avx2_Unroll<32>(lhs, rhs, extend);
case 48: return DotProductInt8Avx2_Unroll<48>(lhs, rhs, extend);
case 64: return DotProductInt8Avx2_Unroll<64>(lhs, rhs, extend);
}
__m256i sum = _mm256_setzero_ps();
if (const auto leftover = length % 16; leftover != 0) {
auto a = _mm_blendv_epi8(
Load128i(lhs), _mm_setzero_ps(), BlendMask8[leftover]);
auto b = _mm_blendv_epi8(
Load128i(rhs), _mm_setzero_ps(), BlendMask8[leftover]);
sum = _mm256_madd_epi16(extend(a), extend(b));
lhs += leftover;
rhs += leftover;
length -= leftover;
}
while (length >= 32) {
const auto l0 = extend(Load128i(lhs));
const auto r0 = extend(Load128i(rhs));
const auto l1 = extend(Load128i(lhs + 16));
const auto r1 = extend(Load128i(rhs + 16));
const auto s0 = _mm256_madd_epi16(l0, r0);
const auto s1 = _mm256_madd_epi16(l1, r1);
sum = _mm256_add_epi32(sum, _mm256_add_epi32(s0, s1));
lhs += 32;
rhs += 32;
length -= 32;
}
if (length > 0) {
auto l = extend(Load128i(lhs));
auto r = extend(Load128i(rhs));
sum = _mm256_add_epi32(sum, _mm256_madd_epi16(l, r));
}
return HsumI32(sum);
}
}
i32 DotProductAvx2(const i8* lhs, const i8* rhs, size_t length) noexcept {
if (length < 16) {
return DotProductSse(lhs, rhs, length);
}
return DotProductInt8Avx2(lhs, rhs, length, [](const __m128i x) {
return _mm256_cvtepi8_epi16(x);
});
}
ui32 DotProductAvx2(const ui8* lhs, const ui8* rhs, size_t length) noexcept {
if (length < 16) {
return DotProductSse(lhs, rhs, length);
}
return DotProductInt8Avx2(lhs, rhs, length, [](const __m128i x) {
return _mm256_cvtepu8_epi16(x);
});
}
i64 DotProductAvx2(const i32* lhs, const i32* rhs, size_t length) noexcept {
if (length < 16) {
return DotProductSse(lhs, rhs, length);
}
__m256i res = _mm256_setzero_ps();
if (const auto leftover = length % 8; leftover != 0) {
// Use floating-point blendv. Who cares as long as the size is right.
__m256i a = _mm256_blendv_ps(
Load256i(lhs), _mm256_setzero_ps(), BlendMask32[leftover]);
__m256i b = _mm256_blendv_ps(
Load256i(rhs), _mm256_setzero_ps(), BlendMask32[leftover]);
res = _mm256_mul_epi32(a, b);
a = _mm256_alignr_epi8(a, a, 4);
b = _mm256_alignr_epi8(b, b, 4);
res = _mm256_add_epi64(_mm256_mul_epi32(a, b), res);
lhs += leftover;
rhs += leftover;
length -= leftover;
}
while (length >= 8) {
__m256i a = Load256i(lhs);
__m256i b = Load256i(rhs);
res = _mm256_add_epi64(_mm256_mul_epi32(a, b), res); // This is lower parts multiplication
a = _mm256_alignr_epi8(a, a, 4);
b = _mm256_alignr_epi8(b, b, 4);
res = _mm256_add_epi64(_mm256_mul_epi32(a, b), res);
rhs += 8;
lhs += 8;
length -= 8;
}
return HsumI64(res);
}
float DotProductAvx2(const float* lhs, const float* rhs, size_t length) noexcept {
if (length < 16) {
return DotProductSse(lhs, rhs, length);
}
__m256 sum1 = _mm256_setzero_ps();
__m256 sum2 = _mm256_setzero_ps();
__m256 a1, b1, a2, b2;
if (const auto leftover = length % 8; leftover != 0) {
a1 = _mm256_blendv_ps(
_mm256_loadu_ps(lhs), _mm256_setzero_ps(), BlendMask32[leftover]);
b1 = _mm256_blendv_ps(
_mm256_loadu_ps(rhs), _mm256_setzero_ps(), BlendMask32[leftover]);
sum1 = _mm256_mul_ps(a1, b1);
lhs += leftover;
rhs += leftover;
length -= leftover;
}
while (length >= 16) {
a1 = _mm256_loadu_ps(lhs);
b1 = _mm256_loadu_ps(rhs);
a2 = _mm256_loadu_ps(lhs + 8);
b2 = _mm256_loadu_ps(rhs + 8);
sum1 = _mm256_fmadd_ps(a1, b1, sum1);
sum2 = _mm256_fmadd_ps(a2, b2, sum2);
length -= 16;
lhs += 16;
rhs += 16;
}
if (length > 0) {
a1 = _mm256_loadu_ps(lhs);
b1 = _mm256_loadu_ps(rhs);
sum1 = _mm256_fmadd_ps(a1, b1, sum1);
}
return HsumFloat(_mm256_add_ps(sum1, sum2));
}
double DotProductAvx2(const double* lhs, const double* rhs, size_t length) noexcept {
if (length < 16) {
return DotProductSse(lhs, rhs, length);
}
__m256d sum1 = _mm256_setzero_pd();
__m256d sum2 = _mm256_setzero_pd();
__m256d a1, b1, a2, b2;
if (const auto leftover = length % 4; leftover != 0) {
a1 = _mm256_blendv_pd(
_mm256_loadu_pd(lhs), _mm256_setzero_ps(), BlendMask64[leftover]);
b1 = _mm256_blendv_pd(
_mm256_loadu_pd(rhs), _mm256_setzero_ps(), BlendMask64[leftover]);
sum1 = _mm256_mul_pd(a1, b1);
lhs += leftover;
rhs += leftover;
length -= leftover;
}
while (length >= 8) {
a1 = _mm256_loadu_pd(lhs);
b1 = _mm256_loadu_pd(rhs);
a2 = _mm256_loadu_pd(lhs + 4);
b2 = _mm256_loadu_pd(rhs + 4);
sum1 = _mm256_fmadd_pd(a1, b1, sum1);
sum2 = _mm256_fmadd_pd(a2, b2, sum2);
length -= 8;
lhs += 8;
rhs += 8;
}
if (length > 0) {
a1 = _mm256_loadu_pd(lhs);
b1 = _mm256_loadu_pd(rhs);
sum1 = _mm256_fmadd_pd(a1, b1, sum1);
}
return HsumDouble(_mm256_add_pd(sum1, sum2));
}
#elif defined(ARCADIA_SSE)
i32 DotProductAvx2(const i8* lhs, const i8* rhs, size_t length) noexcept {
return DotProductSse(lhs, rhs, length);
}
ui32 DotProductAvx2(const ui8* lhs, const ui8* rhs, size_t length) noexcept {
return DotProductSse(lhs, rhs, length);
}
i64 DotProductAvx2(const i32* lhs, const i32* rhs, size_t length) noexcept {
return DotProductSse(lhs, rhs, length);
}
float DotProductAvx2(const float* lhs, const float* rhs, size_t length) noexcept {
return DotProductSse(lhs, rhs, length);
}
double DotProductAvx2(const double* lhs, const double* rhs, size_t length) noexcept {
return DotProductSse(lhs, rhs, length);
}
#else
i32 DotProductAvx2(const i8* lhs, const i8* rhs, size_t length) noexcept {
return DotProductSimple(lhs, rhs, length);
}
ui32 DotProductAvx2(const ui8* lhs, const ui8* rhs, size_t length) noexcept {
return DotProductSimple(lhs, rhs, length);
}
i64 DotProductAvx2(const i32* lhs, const i32* rhs, size_t length) noexcept {
return DotProductSimple(lhs, rhs, length);
}
float DotProductAvx2(const float* lhs, const float* rhs, size_t length) noexcept {
return DotProductSimple(lhs, rhs, length);
}
double DotProductAvx2(const double* lhs, const double* rhs, size_t length) noexcept {
return DotProductSimple(lhs, rhs, length);
}
#endif