/*
* Copyright 2001-2006 Adrian Thurston <thurston@complang.org>
* 2004 Erich Ocean <eric.ocean@ampede.com>
* 2005 Alan West <alan@alanz.com>
*/
/* This file is part of Ragel.
*
* Ragel is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Ragel is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Ragel; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "ragel.h"
#include "mlgoto.h"
#include "redfsm.h"
#include "bstmap.h"
#include "gendata.h"
/* Emit the goto to take for a given transition. */
std::ostream &OCamlGotoCodeGen::TRANS_GOTO( RedTransAp *trans, int level )
{
out << TABS(level) << "tr" << trans->id << " ()";
return out;
}
std::ostream &OCamlGotoCodeGen::TO_STATE_ACTION_SWITCH()
{
/* Walk the list of functions, printing the cases. */
for ( GenActionList::Iter act = actionList; act.lte(); act++ ) {
/* Write out referenced actions. */
if ( act->numToStateRefs > 0 ) {
/* Write the case label, the action and the case break. */
out << "\t| " << act->actionId << " ->\n";
ACTION( out, act, 0, false );
out << "\t()\n";
}
}
genLineDirective( out );
return out;
}
std::ostream &OCamlGotoCodeGen::FROM_STATE_ACTION_SWITCH()
{
/* Walk the list of functions, printing the cases. */
for ( GenActionList::Iter act = actionList; act.lte(); act++ ) {
/* Write out referenced actions. */
if ( act->numFromStateRefs > 0 ) {
/* Write the case label, the action and the case break. */
out << "\t| " << act->actionId << " ->\n";
ACTION( out, act, 0, false );
out << "\t()\n";
}
}
genLineDirective( out );
return out;
}
std::ostream &OCamlGotoCodeGen::EOF_ACTION_SWITCH()
{
/* Walk the list of functions, printing the cases. */
for ( GenActionList::Iter act = actionList; act.lte(); act++ ) {
/* Write out referenced actions. */
if ( act->numEofRefs > 0 ) {
/* Write the case label, the action and the case break. */
out << "\t| " << act->actionId << " ->\n";
ACTION( out, act, 0, true );
out << "\t()\n";
}
}
genLineDirective( out );
return out;
}
std::ostream &OCamlGotoCodeGen::ACTION_SWITCH()
{
/* Walk the list of functions, printing the cases. */
for ( GenActionList::Iter act = actionList; act.lte(); act++ ) {
/* Write out referenced actions. */
if ( act->numTransRefs > 0 ) {
/* Write the case label, the action and the case break. */
out << "\t| " << act->actionId << " ->\n";
ACTION( out, act, 0, false );
out << "\t()\n";
}
}
genLineDirective( out );
return out;
}
void OCamlGotoCodeGen::GOTO_HEADER( RedStateAp *state )
{
/* Label the state. */
out << "| " << state->id << " ->\n";
}
void OCamlGotoCodeGen::emitSingleSwitch( RedStateAp *state )
{
/* Load up the singles. */
int numSingles = state->outSingle.length();
RedTransEl *data = state->outSingle.data;
if ( numSingles == 1 ) {
/* If there is a single single key then write it out as an if. */
out << "\tif " << GET_WIDE_KEY(state) << " = " <<
KEY(data[0].lowKey) << " then\n\t\t";
/* Virtual function for writing the target of the transition. */
TRANS_GOTO(data[0].value, 0) << " else\n";
}
else if ( numSingles > 1 ) {
/* Write out single keys in a switch if there is more than one. */
out << "\tmatch " << GET_WIDE_KEY(state) << " with\n";
/* Write out the single indicies. */
for ( int j = 0; j < numSingles; j++ ) {
out << "\t\t| " << ALPHA_KEY(data[j].lowKey) << " -> ";
TRANS_GOTO(data[j].value, 0) << "\n";
}
out << "\t\t| _ ->\n";
}
}
void OCamlGotoCodeGen::emitRangeBSearch( RedStateAp *state, int level, int low, int high, RedTransAp* def)
{
/* Get the mid position, staying on the lower end of the range. */
int mid = (low + high) >> 1;
RedTransEl *data = state->outRange.data;
/* Determine if we need to look higher or lower. */
bool anyLower = mid > low;
bool anyHigher = mid < high;
/* Determine if the keys at mid are the limits of the alphabet. */
bool limitLow = data[mid].lowKey == keyOps->minKey;
bool limitHigh = data[mid].highKey == keyOps->maxKey;
if ( anyLower && anyHigher ) {
/* Can go lower and higher than mid. */
out << TABS(level) << "if " << GET_WIDE_KEY(state) << " < " <<
KEY(data[mid].lowKey) << " then begin\n";
emitRangeBSearch( state, level+1, low, mid-1, def );
out << TABS(level) << " end else if " << GET_WIDE_KEY(state) << " > " <<
KEY(data[mid].highKey) << " then begin\n";
emitRangeBSearch( state, level+1, mid+1, high, def );
out << TABS(level) << " end else\n";
TRANS_GOTO(data[mid].value, level+1) << "\n";
}
else if ( anyLower && !anyHigher ) {
/* Can go lower than mid but not higher. */
out << TABS(level) << "if " << GET_WIDE_KEY(state) << " < " <<
KEY(data[mid].lowKey) << " then begin\n";
emitRangeBSearch( state, level+1, low, mid-1, def );
/* if the higher is the highest in the alphabet then there is no
* sense testing it. */
if ( limitHigh ) {
out << TABS(level) << " end else\n";
TRANS_GOTO(data[mid].value, level+1) << "\n";
}
else {
out << TABS(level) << " end else if " << GET_WIDE_KEY(state) << " <= " <<
KEY(data[mid].highKey) << " then\n";
TRANS_GOTO(data[mid].value, level+1) << "\n" << TABS(level) << "else\n";
TRANS_GOTO(def, level+1) << "\n";
}
}
else if ( !anyLower && anyHigher ) {
/* Can go higher than mid but not lower. */
out << TABS(level) << "if " << GET_WIDE_KEY(state) << " > " <<
KEY(data[mid].highKey) << " then begin\n";
emitRangeBSearch( state, level+1, mid+1, high, def );
/* If the lower end is the lowest in the alphabet then there is no
* sense testing it. */
if ( limitLow ) {
out << TABS(level) << " end else\n";
TRANS_GOTO(data[mid].value, level+1) << "\n";
}
else {
out << TABS(level) << " end else if " << GET_WIDE_KEY(state) << " >= " <<
KEY(data[mid].lowKey) << " then\n";
TRANS_GOTO(data[mid].value, level+1) << "\n" << TABS(level) << "else\n";
TRANS_GOTO(def, level+1) << "\n";
}
}
else {
/* Cannot go higher or lower than mid. It's mid or bust. What
* tests to do depends on limits of alphabet. */
if ( !limitLow && !limitHigh ) {
out << TABS(level) << "if " << KEY(data[mid].lowKey) << " <= " <<
GET_WIDE_KEY(state) << " && " << GET_WIDE_KEY(state) << " <= " <<
KEY(data[mid].highKey) << " then\n";
TRANS_GOTO(data[mid].value, level+1) << "\n" << TABS(level) << "else\n";
TRANS_GOTO(def, level+1) << "\n";
}
else if ( limitLow && !limitHigh ) {
out << TABS(level) << "if " << GET_WIDE_KEY(state) << " <= " <<
KEY(data[mid].highKey) << " then\n";
TRANS_GOTO(data[mid].value, level+1) << "\n" << TABS(level) << "else\n";
TRANS_GOTO(def, level+1) << "\n";
}
else if ( !limitLow && limitHigh ) {
out << TABS(level) << "if " << KEY(data[mid].lowKey) << " <= " <<
GET_WIDE_KEY(state) << " then\n";
TRANS_GOTO(data[mid].value, level+1) << "\n" << TABS(level) << "else\n";
TRANS_GOTO(def, level+1) << "\n";
}
else {
/* Both high and low are at the limit. No tests to do. */
TRANS_GOTO(data[mid].value, level+1) << "\n";
}
}
}
void OCamlGotoCodeGen::STATE_GOTO_ERROR()
{
/* Label the state and bail immediately. */
outLabelUsed = true;
RedStateAp *state = redFsm->errState;
out << "| " << state->id << " ->\n";
out << " do_out ()\n";
}
void OCamlGotoCodeGen::COND_TRANSLATE( GenStateCond *stateCond, int level )
{
GenCondSpace *condSpace = stateCond->condSpace;
out << TABS(level) << "_widec = " << CAST(WIDE_ALPH_TYPE()) << "(" <<
KEY(condSpace->baseKey) << " + (" << GET_KEY() <<
" - " << KEY(keyOps->minKey) << "));\n";
for ( GenCondSet::Iter csi = condSpace->condSet; csi.lte(); csi++ ) {
out << TABS(level) << "if ( ";
CONDITION( out, *csi );
Size condValOffset = ((1 << csi.pos()) * keyOps->alphSize());
out << " ) _widec += " << condValOffset << ";\n";
}
}
void OCamlGotoCodeGen::emitCondBSearch( RedStateAp *state, int level, int low, int high )
{
/* Get the mid position, staying on the lower end of the range. */
int mid = (low + high) >> 1;
GenStateCond **data = state->stateCondVect.data;
/* Determine if we need to look higher or lower. */
bool anyLower = mid > low;
bool anyHigher = mid < high;
/* Determine if the keys at mid are the limits of the alphabet. */
bool limitLow = data[mid]->lowKey == keyOps->minKey;
bool limitHigh = data[mid]->highKey == keyOps->maxKey;
if ( anyLower && anyHigher ) {
/* Can go lower and higher than mid. */
out << TABS(level) << "if ( " << GET_KEY() << " < " <<
KEY(data[mid]->lowKey) << " ) {\n";
emitCondBSearch( state, level+1, low, mid-1 );
out << TABS(level) << "} else if ( " << GET_KEY() << " > " <<
KEY(data[mid]->highKey) << " ) {\n";
emitCondBSearch( state, level+1, mid+1, high );
out << TABS(level) << "} else {\n";
COND_TRANSLATE(data[mid], level+1);
out << TABS(level) << "}\n";
}
else if ( anyLower && !anyHigher ) {
/* Can go lower than mid but not higher. */
out << TABS(level) << "if ( " << GET_KEY() << " < " <<
KEY(data[mid]->lowKey) << " ) {\n";
emitCondBSearch( state, level+1, low, mid-1 );
/* if the higher is the highest in the alphabet then there is no
* sense testing it. */
if ( limitHigh ) {
out << TABS(level) << "} else {\n";
COND_TRANSLATE(data[mid], level+1);
out << TABS(level) << "}\n";
}
else {
out << TABS(level) << "} else if ( " << GET_KEY() << " <= " <<
KEY(data[mid]->highKey) << " ) {\n";
COND_TRANSLATE(data[mid], level+1);
out << TABS(level) << "}\n";
}
}
else if ( !anyLower && anyHigher ) {
/* Can go higher than mid but not lower. */
out << TABS(level) << "if ( " << GET_KEY() << " > " <<
KEY(data[mid]->highKey) << " ) {\n";
emitCondBSearch( state, level+1, mid+1, high );
/* If the lower end is the lowest in the alphabet then there is no
* sense testing it. */
if ( limitLow ) {
out << TABS(level) << "} else {\n";
COND_TRANSLATE(data[mid], level+1);
out << TABS(level) << "}\n";
}
else {
out << TABS(level) << "} else if ( " << GET_KEY() << " >= " <<
KEY(data[mid]->lowKey) << " ) {\n";
COND_TRANSLATE(data[mid], level+1);
out << TABS(level) << "}\n";
}
}
else {
/* Cannot go higher or lower than mid. It's mid or bust. What
* tests to do depends on limits of alphabet. */
if ( !limitLow && !limitHigh ) {
out << TABS(level) << "if ( " << KEY(data[mid]->lowKey) << " <= " <<
GET_KEY() << " && " << GET_KEY() << " <= " <<
KEY(data[mid]->highKey) << " ) {\n";
COND_TRANSLATE(data[mid], level+1);
out << TABS(level) << "}\n";
}
else if ( limitLow && !limitHigh ) {
out << TABS(level) << "if ( " << GET_KEY() << " <= " <<
KEY(data[mid]->highKey) << " ) {\n";
COND_TRANSLATE(data[mid], level+1);
out << TABS(level) << "}\n";
}
else if ( !limitLow && limitHigh ) {
out << TABS(level) << "if ( " << KEY(data[mid]->lowKey) << " <= " <<
GET_KEY() << " )\n {";
COND_TRANSLATE(data[mid], level+1);
out << TABS(level) << "}\n";
}
else {
/* Both high and low are at the limit. No tests to do. */
COND_TRANSLATE(data[mid], level);
}
}
}
std::ostream &OCamlGotoCodeGen::STATE_GOTOS()
{
for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ ) {
if ( st == redFsm->errState )
STATE_GOTO_ERROR();
else {
/* Writing code above state gotos. */
GOTO_HEADER( st );
out << "\tbegin\n";
if ( st->stateCondVect.length() > 0 ) {
out << " _widec = " << GET_KEY() << ";\n";
emitCondBSearch( st, 1, 0, st->stateCondVect.length() - 1 );
}
/* Try singles. */
if ( st->outSingle.length() > 0 )
emitSingleSwitch( st );
/* Default case is to binary search for the ranges, if that fails then */
if ( st->outRange.length() > 0 )
emitRangeBSearch( st, 1, 0, st->outRange.length() - 1, st->defTrans );
else
/* Write the default transition. */
TRANS_GOTO( st->defTrans, 1 ) << "\n";
out << "\tend\n";
}
}
return out;
}
std::ostream &OCamlGotoCodeGen::TRANSITIONS()
{
/* Emit any transitions that have functions and that go to
* this state. */
for ( TransApSet::Iter trans = redFsm->transSet; trans.lte(); trans++ ) {
/* Write the label for the transition so it can be jumped to. */
out << " and tr" << trans->id << " () = ";
/* Destination state. */
if ( trans->action != 0 && trans->action->anyCurStateRef() )
out << "_ps = " << vCS() << ";";
out << vCS() << " <- " << trans->targ->id << "; ";
if ( trans->action != 0 ) {
/* Write out the transition func. */
out << "f" << trans->action->actListId << " ()\n";
}
else {
/* No code to execute, just loop around. */
out << "do_again ()\n";
}
}
return out;
}
std::ostream &OCamlGotoCodeGen::EXEC_FUNCS()
{
/* Make labels that set acts and jump to execFuncs. Loop func indicies. */
for ( GenActionTableMap::Iter redAct = redFsm->actionMap; redAct.lte(); redAct++ ) {
if ( redAct->numTransRefs > 0 ) {
out << " and f" << redAct->actListId << " () = " <<
"state.acts <- " << itoa( redAct->location+1 ) << "; "
"execFuncs ()\n";
}
}
out <<
"\n"
"and execFuncs () =\n"
" state.nacts <- " << AT( A(), POST_INCR( "state.acts") ) << ";\n"
" begin try while " << POST_DECR("state.nacts") << " > 0 do\n"
" match " << AT( A(), POST_INCR("state.acts") ) << " with\n";
ACTION_SWITCH();
SWITCH_DEFAULT() <<
" done with Goto_again -> () end;\n"
" do_again ()\n";
return out;
}
unsigned int OCamlGotoCodeGen::TO_STATE_ACTION( RedStateAp *state )
{
int act = 0;
if ( state->toStateAction != 0 )
act = state->toStateAction->location+1;
return act;
}
unsigned int OCamlGotoCodeGen::FROM_STATE_ACTION( RedStateAp *state )
{
int act = 0;
if ( state->fromStateAction != 0 )
act = state->fromStateAction->location+1;
return act;
}
unsigned int OCamlGotoCodeGen::EOF_ACTION( RedStateAp *state )
{
int act = 0;
if ( state->eofAction != 0 )
act = state->eofAction->location+1;
return act;
}
std::ostream &OCamlGotoCodeGen::TO_STATE_ACTIONS()
{
/* Take one off for the psuedo start state. */
int numStates = redFsm->stateList.length();
unsigned int *vals = new unsigned int[numStates];
memset( vals, 0, sizeof(unsigned int)*numStates );
for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ )
vals[st->id] = TO_STATE_ACTION(st);
out << "\t";
for ( int st = 0; st < redFsm->nextStateId; st++ ) {
/* Write any eof action. */
out << vals[st];
if ( st < numStates-1 ) {
out << ARR_SEP();
if ( (st+1) % IALL == 0 )
out << "\n\t";
}
}
out << "\n";
delete[] vals;
return out;
}
std::ostream &OCamlGotoCodeGen::FROM_STATE_ACTIONS()
{
/* Take one off for the psuedo start state. */
int numStates = redFsm->stateList.length();
unsigned int *vals = new unsigned int[numStates];
memset( vals, 0, sizeof(unsigned int)*numStates );
for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ )
vals[st->id] = FROM_STATE_ACTION(st);
out << "\t";
for ( int st = 0; st < redFsm->nextStateId; st++ ) {
/* Write any eof action. */
out << vals[st];
if ( st < numStates-1 ) {
out << ARR_SEP();
if ( (st+1) % IALL == 0 )
out << "\n\t";
}
}
out << "\n";
delete[] vals;
return out;
}
std::ostream &OCamlGotoCodeGen::EOF_ACTIONS()
{
/* Take one off for the psuedo start state. */
int numStates = redFsm->stateList.length();
unsigned int *vals = new unsigned int[numStates];
memset( vals, 0, sizeof(unsigned int)*numStates );
for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ )
vals[st->id] = EOF_ACTION(st);
out << "\t";
for ( int st = 0; st < redFsm->nextStateId; st++ ) {
/* Write any eof action. */
out << vals[st];
if ( st < numStates-1 ) {
out << ARR_SEP();
if ( (st+1) % IALL == 0 )
out << "\n\t";
}
}
out << "\n";
delete[] vals;
return out;
}
std::ostream &OCamlGotoCodeGen::FINISH_CASES()
{
for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ ) {
/* States that are final and have an out action need a case. */
if ( st->eofAction != 0 ) {
/* Write the case label. */
out << "\t\t| " << st->id << " -> ";
/* Write the goto func. */
out << "f" << st->eofAction->actListId << " ()\n";
}
}
return out;
}
void OCamlGotoCodeGen::GOTO( ostream &ret, int gotoDest, bool inFinish )
{
ret << "begin " << vCS() << " <- " << gotoDest << "; " <<
CTRL_FLOW() << "raise Goto_again end";
}
void OCamlGotoCodeGen::GOTO_EXPR( ostream &ret, GenInlineItem *ilItem, bool inFinish )
{
ret << "begin " << vCS() << " <- (";
INLINE_LIST( ret, ilItem->children, 0, inFinish );
ret << "); " << CTRL_FLOW() << "raise Goto_again end";
}
void OCamlGotoCodeGen::CURS( ostream &ret, bool inFinish )
{
ret << "(_ps)";
}
void OCamlGotoCodeGen::TARGS( ostream &ret, bool inFinish, int targState )
{
ret << "(" << vCS() << ")";
}
void OCamlGotoCodeGen::NEXT( ostream &ret, int nextDest, bool inFinish )
{
ret << vCS() << " <- " << nextDest << ";";
}
void OCamlGotoCodeGen::NEXT_EXPR( ostream &ret, GenInlineItem *ilItem, bool inFinish )
{
ret << vCS() << " <- (";
INLINE_LIST( ret, ilItem->children, 0, inFinish );
ret << ");";
}
void OCamlGotoCodeGen::CALL( ostream &ret, int callDest, int targState, bool inFinish )
{
if ( prePushExpr != 0 ) {
ret << "begin ";
INLINE_LIST( ret, prePushExpr, 0, false );
}
ret << "begin " << AT( STACK(), POST_INCR(TOP()) ) << " <- " << vCS() << "; ";
ret << vCS() << " <- " << callDest << "; " << CTRL_FLOW() << "raise Goto_again end ";
if ( prePushExpr != 0 )
ret << "end";
}
void OCamlGotoCodeGen::CALL_EXPR( ostream &ret, GenInlineItem *ilItem, int targState, bool inFinish )
{
if ( prePushExpr != 0 ) {
ret << "begin ";
INLINE_LIST( ret, prePushExpr, 0, false );
}
ret << "begin " << AT(STACK(), POST_INCR(TOP()) ) << " <- " << vCS() << "; " << vCS() << " <- (";
INLINE_LIST( ret, ilItem->children, targState, inFinish );
ret << "); " << CTRL_FLOW() << "raise Goto_again end ";
if ( prePushExpr != 0 )
ret << "end";
}
void OCamlGotoCodeGen::RET( ostream &ret, bool inFinish )
{
ret << "begin " << vCS() << " <- " << AT(STACK(), PRE_DECR(TOP()) ) << "; ";
if ( postPopExpr != 0 ) {
ret << "begin ";
INLINE_LIST( ret, postPopExpr, 0, false );
ret << "end ";
}
ret << CTRL_FLOW() << "raise Goto_again end";
}
void OCamlGotoCodeGen::BREAK( ostream &ret, int targState )
{
outLabelUsed = true;
ret << "begin " << P() << " <- " << P() << " + 1; " << CTRL_FLOW() << "raise Goto_out end";
}
void OCamlGotoCodeGen::writeData()
{
if ( redFsm->anyActions() ) {
OPEN_ARRAY( ARRAY_TYPE(redFsm->maxActArrItem), A() );
ACTIONS_ARRAY();
CLOSE_ARRAY() <<
"\n";
}
if ( redFsm->anyToStateActions() ) {
OPEN_ARRAY( ARRAY_TYPE(redFsm->maxActionLoc), TSA() );
TO_STATE_ACTIONS();
CLOSE_ARRAY() <<
"\n";
}
if ( redFsm->anyFromStateActions() ) {
OPEN_ARRAY( ARRAY_TYPE(redFsm->maxActionLoc), FSA() );
FROM_STATE_ACTIONS();
CLOSE_ARRAY() <<
"\n";
}
if ( redFsm->anyEofActions() ) {
OPEN_ARRAY( ARRAY_TYPE(redFsm->maxActionLoc), EA() );
EOF_ACTIONS();
CLOSE_ARRAY() <<
"\n";
}
STATE_IDS();
out << "type " << TYPE_STATE() << " = { mutable acts : " << ARRAY_TYPE(redFsm->maxActionLoc) <<
" ; mutable nacts : " << ARRAY_TYPE(redFsm->maxActArrItem) << "; }"
<< TOP_SEP();
out << "exception Goto_again" << TOP_SEP();
}
void OCamlGotoCodeGen::writeExec()
{
testEofUsed = false;
outLabelUsed = false;
out << " begin\n";
// if ( redFsm->anyRegCurStateRef() )
// out << " int _ps = 0;\n";
if ( redFsm->anyToStateActions() || redFsm->anyRegActions()
|| redFsm->anyFromStateActions() )
{
out << " let state = { acts = 0; nacts = 0; } in\n";
}
// if ( redFsm->anyConditions() )
// out << " " << WIDE_ALPH_TYPE() << " _widec;\n";
out << "\n";
out << " let rec do_start () =\n";
if ( !noEnd ) {
testEofUsed = true;
out <<
" if " << P() << " = " << PE() << " then\n"
" do_test_eof ()\n"
"\telse\n";
}
if ( redFsm->errState != 0 ) {
outLabelUsed = true;
out <<
" if " << vCS() << " = " << redFsm->errState->id << " then\n"
" do_out ()\n"
"\telse\n";
}
out << "\tdo_resume ()\n";
out << "and do_resume () =\n";
if ( redFsm->anyFromStateActions() ) {
out <<
" state.acts <- " << AT( FSA(), vCS() ) << ";\n"
" state.nacts <- " << AT( A(), POST_INCR("state.acts") ) << ";\n"
" while " << POST_DECR("state.nacts") << " > 0 do\n"
" begin match " << AT( A(), POST_INCR("state.acts") ) << " with\n";
FROM_STATE_ACTION_SWITCH();
SWITCH_DEFAULT() <<
" end\n"
" done;\n"
"\n";
}
out <<
" begin match " << vCS() << " with\n";
STATE_GOTOS();
SWITCH_DEFAULT() <<
" end\n"
"\n";
TRANSITIONS() <<
"\n";
if ( redFsm->anyRegActions() )
EXEC_FUNCS() << "\n";
// if ( redFsm->anyRegActions() || redFsm->anyActionGotos() ||
// redFsm->anyActionCalls() || redFsm->anyActionRets() )
out << "\tand do_again () =\n";
if ( redFsm->anyToStateActions() ) {
out <<
" state.acts <- " << AT( TSA(), vCS() ) << ";\n"
" state.nacts <- " << AT( A(), POST_INCR("state.acts") ) << ";\n"
" while " << POST_DECR("state.nacts") << " > 0 do\n"
" begin match " << AT( A(), POST_INCR("state.acts") ) << " with\n";
TO_STATE_ACTION_SWITCH();
SWITCH_DEFAULT() <<
" end\n"
" done;\n"
"\n";
}
if ( redFsm->errState != 0 ) {
outLabelUsed = true;
out <<
" match " << vCS() << " with\n"
"\t| " << redFsm->errState->id << " -> do_out ()\n"
"\t| _ ->\n";
}
out << "\t" << P() << " <- " << P() << " + 1;\n";
if ( !noEnd ) {
out <<
" if " << P() << " <> " << PE() << " then\n"
" do_resume ()\n"
"\telse do_test_eof ()\n";
}
else {
out <<
" do_resume ()\n";
}
// if ( testEofUsed )
out << "and do_test_eof () =\n";
if ( redFsm->anyEofTrans() || redFsm->anyEofActions() ) {
out <<
" if " << P() << " = " << vEOF() << " then\n"
" begin\n";
if ( redFsm->anyEofTrans() ) {
out <<
" match " << vCS() << " with\n";
for ( RedStateList::Iter st = redFsm->stateList; st.lte(); st++ ) {
if ( st->eofTrans != 0 )
out << " | " << st->id << " -> tr" << st->eofTrans->id << " ()\n";
}
out << "\t| _ -> ();\n";
}
if ( redFsm->anyEofActions() ) {
out <<
" let __acts = ref " << AT( EA(), vCS() ) << " in\n"
" let __nacts = ref " << AT( A(), "!__acts" ) << " in\n"
" incr __acts;\n"
" begin try while !__nacts > 0 do\n"
" decr __nacts;\n"
" begin match " << AT( A(), POST_INCR("__acts.contents") ) << " with\n";
EOF_ACTION_SWITCH();
SWITCH_DEFAULT() <<
" end;\n"
" done with Goto_again -> do_again () end;\n";
}
out <<
" end\n"
"\n";
}
else
{
out << "\t()\n";
}
if ( outLabelUsed )
out << " and do_out () = ()\n";
out << "\tin do_start ()\n";
out << " end;\n";
}