aboutsummaryrefslogblamecommitdiffstats
path: root/contrib/python/numpy/py3/numpy/lib/tests/test_loadtxt.py
blob: f9b5a411c5a0111d51116245b7f4291c13702235 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                               
"""
Tests specific to `np.loadtxt` added during the move of loadtxt to be backed
by C code.
These tests complement those found in `test_io.py`.
"""

import sys
import os
import pytest
from tempfile import NamedTemporaryFile, mkstemp
from io import StringIO

import numpy as np
from numpy.ma.testutils import assert_equal
from numpy.testing import assert_array_equal, HAS_REFCOUNT, IS_PYPY


def test_scientific_notation():
    """Test that both 'e' and 'E' are parsed correctly."""
    data = StringIO(
        (
            "1.0e-1,2.0E1,3.0\n"
            "4.0e-2,5.0E-1,6.0\n"
            "7.0e-3,8.0E1,9.0\n"
            "0.0e-4,1.0E-1,2.0"
        )
    )
    expected = np.array(
        [[0.1, 20., 3.0], [0.04, 0.5, 6], [0.007, 80., 9], [0, 0.1, 2]]
    )
    assert_array_equal(np.loadtxt(data, delimiter=","), expected)


@pytest.mark.parametrize("comment", ["..", "//", "@-", "this is a comment:"])
def test_comment_multiple_chars(comment):
    content = "# IGNORE\n1.5, 2.5# ABC\n3.0,4.0# XXX\n5.5,6.0\n"
    txt = StringIO(content.replace("#", comment))
    a = np.loadtxt(txt, delimiter=",", comments=comment)
    assert_equal(a, [[1.5, 2.5], [3.0, 4.0], [5.5, 6.0]])


@pytest.fixture
def mixed_types_structured():
    """
    Fixture providing hetergeneous input data with a structured dtype, along
    with the associated structured array.
    """
    data = StringIO(
        (
            "1000;2.4;alpha;-34\n"
            "2000;3.1;beta;29\n"
            "3500;9.9;gamma;120\n"
            "4090;8.1;delta;0\n"
            "5001;4.4;epsilon;-99\n"
            "6543;7.8;omega;-1\n"
        )
    )
    dtype = np.dtype(
        [('f0', np.uint16), ('f1', np.float64), ('f2', 'S7'), ('f3', np.int8)]
    )
    expected = np.array(
        [
            (1000, 2.4, "alpha", -34),
            (2000, 3.1, "beta", 29),
            (3500, 9.9, "gamma", 120),
            (4090, 8.1, "delta", 0),
            (5001, 4.4, "epsilon", -99),
            (6543, 7.8, "omega", -1)
        ],
        dtype=dtype
    )
    return data, dtype, expected


@pytest.mark.parametrize('skiprows', [0, 1, 2, 3])
def test_structured_dtype_and_skiprows_no_empty_lines(
        skiprows, mixed_types_structured):
    data, dtype, expected = mixed_types_structured
    a = np.loadtxt(data, dtype=dtype, delimiter=";", skiprows=skiprows)
    assert_array_equal(a, expected[skiprows:])


def test_unpack_structured(mixed_types_structured):
    data, dtype, expected = mixed_types_structured

    a, b, c, d = np.loadtxt(data, dtype=dtype, delimiter=";", unpack=True)
    assert_array_equal(a, expected["f0"])
    assert_array_equal(b, expected["f1"])
    assert_array_equal(c, expected["f2"])
    assert_array_equal(d, expected["f3"])


def test_structured_dtype_with_shape():
    dtype = np.dtype([("a", "u1", 2), ("b", "u1", 2)])
    data = StringIO("0,1,2,3\n6,7,8,9\n")
    expected = np.array([((0, 1), (2, 3)), ((6, 7), (8, 9))], dtype=dtype)
    assert_array_equal(np.loadtxt(data, delimiter=",", dtype=dtype), expected)


def test_structured_dtype_with_multi_shape():
    dtype = np.dtype([("a", "u1", (2, 2))])
    data = StringIO("0 1 2 3\n")
    expected = np.array([(((0, 1), (2, 3)),)], dtype=dtype)
    assert_array_equal(np.loadtxt(data, dtype=dtype), expected)


def test_nested_structured_subarray():
    # Test from gh-16678
    point = np.dtype([('x', float), ('y', float)])
    dt = np.dtype([('code', int), ('points', point, (2,))])
    data = StringIO("100,1,2,3,4\n200,5,6,7,8\n")
    expected = np.array(
        [
            (100, [(1., 2.), (3., 4.)]),
            (200, [(5., 6.), (7., 8.)]),
        ],
        dtype=dt
    )
    assert_array_equal(np.loadtxt(data, dtype=dt, delimiter=","), expected)


def test_structured_dtype_offsets():
    # An aligned structured dtype will have additional padding
    dt = np.dtype("i1, i4, i1, i4, i1, i4", align=True)
    data = StringIO("1,2,3,4,5,6\n7,8,9,10,11,12\n")
    expected = np.array([(1, 2, 3, 4, 5, 6), (7, 8, 9, 10, 11, 12)], dtype=dt)
    assert_array_equal(np.loadtxt(data, delimiter=",", dtype=dt), expected)


@pytest.mark.parametrize("param", ("skiprows", "max_rows"))
def test_exception_negative_row_limits(param):
    """skiprows and max_rows should raise for negative parameters."""
    with pytest.raises(ValueError, match="argument must be nonnegative"):
        np.loadtxt("foo.bar", **{param: -3})


@pytest.mark.parametrize("param", ("skiprows", "max_rows"))
def test_exception_noninteger_row_limits(param):
    with pytest.raises(TypeError, match="argument must be an integer"):
        np.loadtxt("foo.bar", **{param: 1.0})


@pytest.mark.parametrize(
    "data, shape",
    [
        ("1 2 3 4 5\n", (1, 5)),  # Single row
        ("1\n2\n3\n4\n5\n", (5, 1)),  # Single column
    ]
)
def test_ndmin_single_row_or_col(data, shape):
    arr = np.array([1, 2, 3, 4, 5])
    arr2d = arr.reshape(shape)

    assert_array_equal(np.loadtxt(StringIO(data), dtype=int), arr)
    assert_array_equal(np.loadtxt(StringIO(data), dtype=int, ndmin=0), arr)
    assert_array_equal(np.loadtxt(StringIO(data), dtype=int, ndmin=1), arr)
    assert_array_equal(np.loadtxt(StringIO(data), dtype=int, ndmin=2), arr2d)


@pytest.mark.parametrize("badval", [-1, 3, None, "plate of shrimp"])
def test_bad_ndmin(badval):
    with pytest.raises(ValueError, match="Illegal value of ndmin keyword"):
        np.loadtxt("foo.bar", ndmin=badval)


@pytest.mark.parametrize(
    "ws",
    (
            " ",  # space
            "\t",  # tab
            "\u2003",  # em
            "\u00A0",  # non-break
            "\u3000",  # ideographic space
    )
)
def test_blank_lines_spaces_delimit(ws):
    txt = StringIO(
        f"1 2{ws}30\n\n{ws}\n"
        f"4 5 60{ws}\n  {ws}  \n"
        f"7 8 {ws} 90\n  # comment\n"
        f"3 2 1"
    )
    # NOTE: It is unclear that the `  # comment` should succeed. Except
    #       for delimiter=None, which should use any whitespace (and maybe
    #       should just be implemented closer to Python
    expected = np.array([[1, 2, 30], [4, 5, 60], [7, 8, 90], [3, 2, 1]])
    assert_equal(
        np.loadtxt(txt, dtype=int, delimiter=None, comments="#"), expected
    )


def test_blank_lines_normal_delimiter():
    txt = StringIO('1,2,30\n\n4,5,60\n\n7,8,90\n# comment\n3,2,1')
    expected = np.array([[1, 2, 30], [4, 5, 60], [7, 8, 90], [3, 2, 1]])
    assert_equal(
        np.loadtxt(txt, dtype=int, delimiter=',', comments="#"), expected
    )


@pytest.mark.parametrize("dtype", (float, object))
def test_maxrows_no_blank_lines(dtype):
    txt = StringIO("1.5,2.5\n3.0,4.0\n5.5,6.0")
    res = np.loadtxt(txt, dtype=dtype, delimiter=",", max_rows=2)
    assert_equal(res.dtype, dtype)
    assert_equal(res, np.array([["1.5", "2.5"], ["3.0", "4.0"]], dtype=dtype))


@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
                    reason="PyPy bug in error formatting")
@pytest.mark.parametrize("dtype", (np.dtype("f8"), np.dtype("i2")))
def test_exception_message_bad_values(dtype):
    txt = StringIO("1,2\n3,XXX\n5,6")
    msg = f"could not convert string 'XXX' to {dtype} at row 1, column 2"
    with pytest.raises(ValueError, match=msg):
        np.loadtxt(txt, dtype=dtype, delimiter=",")


def test_converters_negative_indices():
    txt = StringIO('1.5,2.5\n3.0,XXX\n5.5,6.0')
    conv = {-1: lambda s: np.nan if s == 'XXX' else float(s)}
    expected = np.array([[1.5, 2.5], [3.0, np.nan], [5.5, 6.0]])
    res = np.loadtxt(
        txt, dtype=np.float64, delimiter=",", converters=conv, encoding=None
    )
    assert_equal(res, expected)


def test_converters_negative_indices_with_usecols():
    txt = StringIO('1.5,2.5,3.5\n3.0,4.0,XXX\n5.5,6.0,7.5\n')
    conv = {-1: lambda s: np.nan if s == 'XXX' else float(s)}
    expected = np.array([[1.5, 3.5], [3.0, np.nan], [5.5, 7.5]])
    res = np.loadtxt(
        txt,
        dtype=np.float64,
        delimiter=",",
        converters=conv,
        usecols=[0, -1],
        encoding=None,
    )
    assert_equal(res, expected)

    # Second test with variable number of rows:
    res = np.loadtxt(StringIO('''0,1,2\n0,1,2,3,4'''), delimiter=",",
                     usecols=[0, -1], converters={-1: (lambda x: -1)})
    assert_array_equal(res, [[0, -1], [0, -1]])

def test_ragged_usecols():
    # usecols, and negative ones, work even with varying number of columns.
    txt = StringIO("0,0,XXX\n0,XXX,0,XXX\n0,XXX,XXX,0,XXX\n")
    expected = np.array([[0, 0], [0, 0], [0, 0]])
    res = np.loadtxt(txt, dtype=float, delimiter=",", usecols=[0, -2])
    assert_equal(res, expected)

    txt = StringIO("0,0,XXX\n0\n0,XXX,XXX,0,XXX\n")
    with pytest.raises(ValueError,
                match="invalid column index -2 at row 2 with 1 columns"):
        # There is no -2 column in the second row:
        np.loadtxt(txt, dtype=float, delimiter=",", usecols=[0, -2])


def test_empty_usecols():
    txt = StringIO("0,0,XXX\n0,XXX,0,XXX\n0,XXX,XXX,0,XXX\n")
    res = np.loadtxt(txt, dtype=np.dtype([]), delimiter=",", usecols=[])
    assert res.shape == (3,)
    assert res.dtype == np.dtype([])


@pytest.mark.parametrize("c1", ["a", "の", "🫕"])
@pytest.mark.parametrize("c2", ["a", "の", "🫕"])
def test_large_unicode_characters(c1, c2):
    # c1 and c2 span ascii, 16bit and 32bit range.
    txt = StringIO(f"a,{c1},c,1.0\ne,{c2},2.0,g")
    res = np.loadtxt(txt, dtype=np.dtype('U12'), delimiter=",")
    expected = np.array(
        [f"a,{c1},c,1.0".split(","), f"e,{c2},2.0,g".split(",")],
        dtype=np.dtype('U12')
    )
    assert_equal(res, expected)


def test_unicode_with_converter():
    txt = StringIO("cat,dog\nαβγ,δεζ\nabc,def\n")
    conv = {0: lambda s: s.upper()}
    res = np.loadtxt(
        txt,
        dtype=np.dtype("U12"),
        converters=conv,
        delimiter=",",
        encoding=None
    )
    expected = np.array([['CAT', 'dog'], ['ΑΒΓ', 'δεζ'], ['ABC', 'def']])
    assert_equal(res, expected)


def test_converter_with_structured_dtype():
    txt = StringIO('1.5,2.5,Abc\n3.0,4.0,dEf\n5.5,6.0,ghI\n')
    dt = np.dtype([('m', np.int32), ('r', np.float32), ('code', 'U8')])
    conv = {0: lambda s: int(10*float(s)), -1: lambda s: s.upper()}
    res = np.loadtxt(txt, dtype=dt, delimiter=",", converters=conv)
    expected = np.array(
        [(15, 2.5, 'ABC'), (30, 4.0, 'DEF'), (55, 6.0, 'GHI')], dtype=dt
    )
    assert_equal(res, expected)


def test_converter_with_unicode_dtype():
    """
    With the default 'bytes' encoding, tokens are encoded prior to being
    passed to the converter. This means that the output of the converter may
    be bytes instead of unicode as expected by `read_rows`.

    This test checks that outputs from the above scenario are properly decoded
    prior to parsing by `read_rows`.
    """
    txt = StringIO('abc,def\nrst,xyz')
    conv = bytes.upper
    res = np.loadtxt(
            txt, dtype=np.dtype("U3"), converters=conv, delimiter=",")
    expected = np.array([['ABC', 'DEF'], ['RST', 'XYZ']])
    assert_equal(res, expected)


def test_read_huge_row():
    row = "1.5, 2.5," * 50000
    row = row[:-1] + "\n"
    txt = StringIO(row * 2)
    res = np.loadtxt(txt, delimiter=",", dtype=float)
    assert_equal(res, np.tile([1.5, 2.5], (2, 50000)))


@pytest.mark.parametrize("dtype", "edfgFDG")
def test_huge_float(dtype):
    # Covers a non-optimized path that is rarely taken:
    field = "0" * 1000 + ".123456789"
    dtype = np.dtype(dtype)
    value = np.loadtxt([field], dtype=dtype)[()]
    assert value == dtype.type("0.123456789")


@pytest.mark.parametrize(
    ("given_dtype", "expected_dtype"),
    [
        ("S", np.dtype("S5")),
        ("U", np.dtype("U5")),
    ],
)
def test_string_no_length_given(given_dtype, expected_dtype):
    """
    The given dtype is just 'S' or 'U' with no length. In these cases, the
    length of the resulting dtype is determined by the longest string found
    in the file.
    """
    txt = StringIO("AAA,5-1\nBBBBB,0-3\nC,4-9\n")
    res = np.loadtxt(txt, dtype=given_dtype, delimiter=",")
    expected = np.array(
        [['AAA', '5-1'], ['BBBBB', '0-3'], ['C', '4-9']], dtype=expected_dtype
    )
    assert_equal(res, expected)
    assert_equal(res.dtype, expected_dtype)


def test_float_conversion():
    """
    Some tests that the conversion to float64 works as accurately as the
    Python built-in `float` function. In a naive version of the float parser,
    these strings resulted in values that were off by an ULP or two.
    """
    strings = [
        '0.9999999999999999',
        '9876543210.123456',
        '5.43215432154321e+300',
        '0.901',
        '0.333',
    ]
    txt = StringIO('\n'.join(strings))
    res = np.loadtxt(txt)
    expected = np.array([float(s) for s in strings])
    assert_equal(res, expected)


def test_bool():
    # Simple test for bool via integer
    txt = StringIO("1, 0\n10, -1")
    res = np.loadtxt(txt, dtype=bool, delimiter=",")
    assert res.dtype == bool
    assert_array_equal(res, [[True, False], [True, True]])
    # Make sure we use only 1 and 0 on the byte level:
    assert_array_equal(res.view(np.uint8), [[1, 0], [1, 1]])


@pytest.mark.skip
@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
                    reason="PyPy bug in error formatting")
@pytest.mark.parametrize("dtype", np.typecodes["AllInteger"])
@pytest.mark.filterwarnings("error:.*integer via a float.*:DeprecationWarning")
def test_integer_signs(dtype):
    dtype = np.dtype(dtype)
    assert np.loadtxt(["+2"], dtype=dtype) == 2
    if dtype.kind == "u":
        with pytest.raises(ValueError):
            np.loadtxt(["-1\n"], dtype=dtype)
    else:
        assert np.loadtxt(["-2\n"], dtype=dtype) == -2

    for sign in ["++", "+-", "--", "-+"]:
        with pytest.raises(ValueError):
            np.loadtxt([f"{sign}2\n"], dtype=dtype)


@pytest.mark.skip
@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
                    reason="PyPy bug in error formatting")
@pytest.mark.parametrize("dtype", np.typecodes["AllInteger"])
@pytest.mark.filterwarnings("error:.*integer via a float.*:DeprecationWarning")
def test_implicit_cast_float_to_int_fails(dtype):
    txt = StringIO("1.0, 2.1, 3.7\n4, 5, 6")
    with pytest.raises(ValueError):
        np.loadtxt(txt, dtype=dtype, delimiter=",")

@pytest.mark.parametrize("dtype", (np.complex64, np.complex128))
@pytest.mark.parametrize("with_parens", (False, True))
def test_complex_parsing(dtype, with_parens):
    s = "(1.0-2.5j),3.75,(7+-5.0j)\n(4),(-19e2j),(0)"
    if not with_parens:
        s = s.replace("(", "").replace(")", "")

    res = np.loadtxt(StringIO(s), dtype=dtype, delimiter=",")
    expected = np.array(
        [[1.0-2.5j, 3.75, 7-5j], [4.0, -1900j, 0]], dtype=dtype
    )
    assert_equal(res, expected)


def test_read_from_generator():
    def gen():
        for i in range(4):
            yield f"{i},{2*i},{i**2}"

    res = np.loadtxt(gen(), dtype=int, delimiter=",")
    expected = np.array([[0, 0, 0], [1, 2, 1], [2, 4, 4], [3, 6, 9]])
    assert_equal(res, expected)


def test_read_from_generator_multitype():
    def gen():
        for i in range(3):
            yield f"{i} {i / 4}"

    res = np.loadtxt(gen(), dtype="i, d", delimiter=" ")
    expected = np.array([(0, 0.0), (1, 0.25), (2, 0.5)], dtype="i, d")
    assert_equal(res, expected)


def test_read_from_bad_generator():
    def gen():
        for entry in ["1,2", b"3, 5", 12738]:
            yield entry

    with pytest.raises(
            TypeError, match=r"non-string returned while reading data"):
        np.loadtxt(gen(), dtype="i, i", delimiter=",")


@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
def test_object_cleanup_on_read_error():
    sentinel = object()
    already_read = 0

    def conv(x):
        nonlocal already_read
        if already_read > 4999:
            raise ValueError("failed half-way through!")
        already_read += 1
        return sentinel

    txt = StringIO("x\n" * 10000)

    with pytest.raises(ValueError, match="at row 5000, column 1"):
        np.loadtxt(txt, dtype=object, converters={0: conv})

    assert sys.getrefcount(sentinel) == 2


@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
                    reason="PyPy bug in error formatting")
def test_character_not_bytes_compatible():
    """Test exception when a character cannot be encoded as 'S'."""
    data = StringIO("–")  # == \u2013
    with pytest.raises(ValueError):
        np.loadtxt(data, dtype="S5")


@pytest.mark.parametrize("conv", (0, [float], ""))
def test_invalid_converter(conv):
    msg = (
        "converters must be a dictionary mapping columns to converter "
        "functions or a single callable."
    )
    with pytest.raises(TypeError, match=msg):
        np.loadtxt(StringIO("1 2\n3 4"), converters=conv)


@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
                    reason="PyPy bug in error formatting")
def test_converters_dict_raises_non_integer_key():
    with pytest.raises(TypeError, match="keys of the converters dict"):
        np.loadtxt(StringIO("1 2\n3 4"), converters={"a": int})
    with pytest.raises(TypeError, match="keys of the converters dict"):
        np.loadtxt(StringIO("1 2\n3 4"), converters={"a": int}, usecols=0)


@pytest.mark.parametrize("bad_col_ind", (3, -3))
def test_converters_dict_raises_non_col_key(bad_col_ind):
    data = StringIO("1 2\n3 4")
    with pytest.raises(ValueError, match="converter specified for column"):
        np.loadtxt(data, converters={bad_col_ind: int})


def test_converters_dict_raises_val_not_callable():
    with pytest.raises(TypeError,
                match="values of the converters dictionary must be callable"):
        np.loadtxt(StringIO("1 2\n3 4"), converters={0: 1})


@pytest.mark.parametrize("q", ('"', "'", "`"))
def test_quoted_field(q):
    txt = StringIO(
        f"{q}alpha, x{q}, 2.5\n{q}beta, y{q}, 4.5\n{q}gamma, z{q}, 5.0\n"
    )
    dtype = np.dtype([('f0', 'U8'), ('f1', np.float64)])
    expected = np.array(
        [("alpha, x", 2.5), ("beta, y", 4.5), ("gamma, z", 5.0)], dtype=dtype
    )

    res = np.loadtxt(txt, dtype=dtype, delimiter=",", quotechar=q)
    assert_array_equal(res, expected)


@pytest.mark.parametrize("q", ('"', "'", "`"))
def test_quoted_field_with_whitepace_delimiter(q):
    txt = StringIO(
        f"{q}alpha, x{q}     2.5\n{q}beta, y{q} 4.5\n{q}gamma, z{q}   5.0\n"
    )
    dtype = np.dtype([('f0', 'U8'), ('f1', np.float64)])
    expected = np.array(
        [("alpha, x", 2.5), ("beta, y", 4.5), ("gamma, z", 5.0)], dtype=dtype
    )

    res = np.loadtxt(txt, dtype=dtype, delimiter=None, quotechar=q)
    assert_array_equal(res, expected)


def test_quote_support_default():
    """Support for quoted fields is disabled by default."""
    txt = StringIO('"lat,long", 45, 30\n')
    dtype = np.dtype([('f0', 'U24'), ('f1', np.float64), ('f2', np.float64)])

    with pytest.raises(ValueError, match="the number of columns changed"):
        np.loadtxt(txt, dtype=dtype, delimiter=",")

    # Enable quoting support with non-None value for quotechar param
    txt.seek(0)
    expected = np.array([("lat,long", 45., 30.)], dtype=dtype)

    res = np.loadtxt(txt, dtype=dtype, delimiter=",", quotechar='"')
    assert_array_equal(res, expected)


@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
                    reason="PyPy bug in error formatting")
def test_quotechar_multichar_error():
    txt = StringIO("1,2\n3,4")
    msg = r".*must be a single unicode character or None"
    with pytest.raises(TypeError, match=msg):
        np.loadtxt(txt, delimiter=",", quotechar="''")


def test_comment_multichar_error_with_quote():
    txt = StringIO("1,2\n3,4")
    msg = (
        "when multiple comments or a multi-character comment is given, "
        "quotes are not supported."
    )
    with pytest.raises(ValueError, match=msg):
        np.loadtxt(txt, delimiter=",", comments="123", quotechar='"')
    with pytest.raises(ValueError, match=msg):
        np.loadtxt(txt, delimiter=",", comments=["#", "%"], quotechar='"')

    # A single character string in a tuple is unpacked though:
    res = np.loadtxt(txt, delimiter=",", comments=("#",), quotechar="'")
    assert_equal(res, [[1, 2], [3, 4]])


def test_structured_dtype_with_quotes():
    data = StringIO(
        (
            "1000;2.4;'alpha';-34\n"
            "2000;3.1;'beta';29\n"
            "3500;9.9;'gamma';120\n"
            "4090;8.1;'delta';0\n"
            "5001;4.4;'epsilon';-99\n"
            "6543;7.8;'omega';-1\n"
        )
    )
    dtype = np.dtype(
        [('f0', np.uint16), ('f1', np.float64), ('f2', 'S7'), ('f3', np.int8)]
    )
    expected = np.array(
        [
            (1000, 2.4, "alpha", -34),
            (2000, 3.1, "beta", 29),
            (3500, 9.9, "gamma", 120),
            (4090, 8.1, "delta", 0),
            (5001, 4.4, "epsilon", -99),
            (6543, 7.8, "omega", -1)
        ],
        dtype=dtype
    )
    res = np.loadtxt(data, dtype=dtype, delimiter=";", quotechar="'")
    assert_array_equal(res, expected)


def test_quoted_field_is_not_empty():
    txt = StringIO('1\n\n"4"\n""')
    expected = np.array(["1", "4", ""], dtype="U1")
    res = np.loadtxt(txt, delimiter=",", dtype="U1", quotechar='"')
    assert_equal(res, expected)

def test_quoted_field_is_not_empty_nonstrict():
    # Same as test_quoted_field_is_not_empty but check that we are not strict
    # about missing closing quote (this is the `csv.reader` default also)
    txt = StringIO('1\n\n"4"\n"')
    expected = np.array(["1", "4", ""], dtype="U1")
    res = np.loadtxt(txt, delimiter=",", dtype="U1", quotechar='"')
    assert_equal(res, expected)

def test_consecutive_quotechar_escaped():
    txt = StringIO('"Hello, my name is ""Monty""!"')
    expected = np.array('Hello, my name is "Monty"!', dtype="U40")
    res = np.loadtxt(txt, dtype="U40", delimiter=",", quotechar='"')
    assert_equal(res, expected)


@pytest.mark.parametrize("data", ("", "\n\n\n", "# 1 2 3\n# 4 5 6\n"))
@pytest.mark.parametrize("ndmin", (0, 1, 2))
@pytest.mark.parametrize("usecols", [None, (1, 2, 3)])
def test_warn_on_no_data(data, ndmin, usecols):
    """Check that a UserWarning is emitted when no data is read from input."""
    if usecols is not None:
        expected_shape = (0, 3)
    elif ndmin == 2:
        expected_shape = (0, 1)  # guess a single column?!
    else:
        expected_shape = (0,)

    txt = StringIO(data)
    with pytest.warns(UserWarning, match="input contained no data"):
        res = np.loadtxt(txt, ndmin=ndmin, usecols=usecols)
    assert res.shape == expected_shape

    with NamedTemporaryFile(mode="w") as fh:
        fh.write(data)
        fh.seek(0)
        with pytest.warns(UserWarning, match="input contained no data"):
            res = np.loadtxt(txt, ndmin=ndmin, usecols=usecols)
        assert res.shape == expected_shape

@pytest.mark.parametrize("skiprows", (2, 3))
def test_warn_on_skipped_data(skiprows):
    data = "1 2 3\n4 5 6"
    txt = StringIO(data)
    with pytest.warns(UserWarning, match="input contained no data"):
        np.loadtxt(txt, skiprows=skiprows)


@pytest.mark.parametrize(["dtype", "value"], [
        ("i2", 0x0001), ("u2", 0x0001),
        ("i4", 0x00010203), ("u4", 0x00010203),
        ("i8", 0x0001020304050607), ("u8", 0x0001020304050607),
        # The following values are constructed to lead to unique bytes:
        ("float16", 3.07e-05),
        ("float32", 9.2557e-41), ("complex64", 9.2557e-41+2.8622554e-29j),
        ("float64", -1.758571353180402e-24),
        # Here and below, the repr side-steps a small loss of precision in
        # complex `str` in PyPy (which is probably fine, as repr works):
        ("complex128", repr(5.406409232372729e-29-1.758571353180402e-24j)),
        # Use integer values that fit into double.  Everything else leads to
        # problems due to longdoubles going via double and decimal strings
        # causing rounding errors.
        ("longdouble", 0x01020304050607),
        ("clongdouble", repr(0x01020304050607 + (0x00121314151617 * 1j))),
        ("U2", "\U00010203\U000a0b0c")])
@pytest.mark.parametrize("swap", [True, False])
def test_byteswapping_and_unaligned(dtype, value, swap):
    # Try to create "interesting" values within the valid unicode range:
    dtype = np.dtype(dtype)
    data = [f"x,{value}\n"]  # repr as PyPy `str` truncates some
    if swap:
        dtype = dtype.newbyteorder()
    full_dt = np.dtype([("a", "S1"), ("b", dtype)], align=False)
    # The above ensures that the interesting "b" field is unaligned:
    assert full_dt.fields["b"][1] == 1
    res = np.loadtxt(data, dtype=full_dt, delimiter=",", encoding=None,
                     max_rows=1)  # max-rows prevents over-allocation
    assert res["b"] == dtype.type(value)


@pytest.mark.parametrize("dtype",
        np.typecodes["AllInteger"] + "efdFD" + "?")
def test_unicode_whitespace_stripping(dtype):
    # Test that all numeric types (and bool) strip whitespace correctly
    # \u202F is a narrow no-break space, `\n` is just a whitespace if quoted.
    # Currently, skip float128 as it did not always support this and has no
    # "custom" parsing:
    txt = StringIO(' 3 ,"\u202F2\n"')
    res = np.loadtxt(txt, dtype=dtype, delimiter=",", quotechar='"')
    assert_array_equal(res, np.array([3, 2]).astype(dtype))


@pytest.mark.parametrize("dtype", "FD")
def test_unicode_whitespace_stripping_complex(dtype):
    # Complex has a few extra cases since it has two components and
    # parentheses
    line = " 1 , 2+3j , ( 4+5j ), ( 6+-7j )  , 8j , ( 9j ) \n"
    data = [line, line.replace(" ", "\u202F")]
    res = np.loadtxt(data, dtype=dtype, delimiter=',')
    assert_array_equal(res, np.array([[1, 2+3j, 4+5j, 6-7j, 8j, 9j]] * 2))


@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
                    reason="PyPy bug in error formatting")
@pytest.mark.parametrize("dtype", "FD")
@pytest.mark.parametrize("field",
        ["1 +2j", "1+ 2j", "1+2 j", "1+-+3", "(1j", "(1", "(1+2j", "1+2j)"])
def test_bad_complex(dtype, field):
    with pytest.raises(ValueError):
        np.loadtxt([field + "\n"], dtype=dtype, delimiter=",")


@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
                    reason="PyPy bug in error formatting")
@pytest.mark.parametrize("dtype",
            np.typecodes["AllInteger"] + "efgdFDG" + "?")
def test_nul_character_error(dtype):
    # Test that a \0 character is correctly recognized as an error even if
    # what comes before is valid (not everything gets parsed internally).
    if dtype.lower() == "g":
        pytest.xfail("longdouble/clongdouble assignment may misbehave.")
    with pytest.raises(ValueError):
        np.loadtxt(["1\000"], dtype=dtype, delimiter=",", quotechar='"')


@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
                    reason="PyPy bug in error formatting")
@pytest.mark.parametrize("dtype",
        np.typecodes["AllInteger"] + "efgdFDG" + "?")
def test_no_thousands_support(dtype):
    # Mainly to document behaviour, Python supports thousands like 1_1.
    # (e and G may end up using different conversion and support it, this is
    # a bug but happens...)
    if dtype == "e":
        pytest.skip("half assignment currently uses Python float converter")
    if dtype in "eG":
        pytest.xfail("clongdouble assignment is buggy (uses `complex`?).")

    assert int("1_1") == float("1_1") == complex("1_1") == 11
    with pytest.raises(ValueError):
        np.loadtxt(["1_1\n"], dtype=dtype)


@pytest.mark.parametrize("data", [
    ["1,2\n", "2\n,3\n"],
    ["1,2\n", "2\r,3\n"]])
def test_bad_newline_in_iterator(data):
    # In NumPy <=1.22 this was accepted, because newlines were completely
    # ignored when the input was an iterable.  This could be changed, but right
    # now, we raise an error.
    msg = "Found an unquoted embedded newline within a single line"
    with pytest.raises(ValueError, match=msg):
        np.loadtxt(data, delimiter=",")


@pytest.mark.parametrize("data", [
    ["1,2\n", "2,3\r\n"],  # a universal newline
    ["1,2\n", "'2\n',3\n"],  # a quoted newline
    ["1,2\n", "'2\r',3\n"],
    ["1,2\n", "'2\r\n',3\n"],
])
def test_good_newline_in_iterator(data):
    # The quoted newlines will be untransformed here, but are just whitespace.
    res = np.loadtxt(data, delimiter=",", quotechar="'")
    assert_array_equal(res, [[1., 2.], [2., 3.]])


@pytest.mark.parametrize("newline", ["\n", "\r", "\r\n"])
def test_universal_newlines_quoted(newline):
    # Check that universal newline support within the tokenizer is not applied
    # to quoted fields.  (note that lines must end in newline or quoted
    # fields will not include a newline at all)
    data = ['1,"2\n"\n', '3,"4\n', '1"\n']
    data = [row.replace("\n", newline) for row in data]
    res = np.loadtxt(data, dtype=object, delimiter=",", quotechar='"')
    assert_array_equal(res, [['1', f'2{newline}'], ['3', f'4{newline}1']])


def test_null_character():
    # Basic tests to check that the NUL character is not special:
    res = np.loadtxt(["1\0002\0003\n", "4\0005\0006"], delimiter="\000")
    assert_array_equal(res, [[1, 2, 3], [4, 5, 6]])

    # Also not as part of a field (avoid unicode/arrays as unicode strips \0)
    res = np.loadtxt(["1\000,2\000,3\n", "4\000,5\000,6"],
                     delimiter=",", dtype=object)
    assert res.tolist() == [["1\000", "2\000", "3"], ["4\000", "5\000", "6"]]


def test_iterator_fails_getting_next_line():
    class BadSequence:
        def __len__(self):
            return 100

        def __getitem__(self, item):
            if item == 50:
                raise RuntimeError("Bad things happened!")
            return f"{item}, {item+1}"

    with pytest.raises(RuntimeError, match="Bad things happened!"):
        np.loadtxt(BadSequence(), dtype=int, delimiter=",")


class TestCReaderUnitTests:
    # These are internal tests for path that should not be possible to hit
    # unless things go very very wrong somewhere.
    def test_not_an_filelike(self):
        with pytest.raises(AttributeError, match=".*read"):
            np.core._multiarray_umath._load_from_filelike(
                object(), dtype=np.dtype("i"), filelike=True)

    def test_filelike_read_fails(self):
        # Can only be reached if loadtxt opens the file, so it is hard to do
        # via the public interface (although maybe not impossible considering
        # the current "DataClass" backing).
        class BadFileLike:
            counter = 0

            def read(self, size):
                self.counter += 1
                if self.counter > 20:
                    raise RuntimeError("Bad bad bad!")
                return "1,2,3\n"

        with pytest.raises(RuntimeError, match="Bad bad bad!"):
            np.core._multiarray_umath._load_from_filelike(
                BadFileLike(), dtype=np.dtype("i"), filelike=True)

    def test_filelike_bad_read(self):
        # Can only be reached if loadtxt opens the file, so it is hard to do
        # via the public interface (although maybe not impossible considering
        # the current "DataClass" backing).

        class BadFileLike:
            counter = 0

            def read(self, size):
                return 1234  # not a string!

        with pytest.raises(TypeError,
                    match="non-string returned while reading data"):
            np.core._multiarray_umath._load_from_filelike(
                BadFileLike(), dtype=np.dtype("i"), filelike=True)

    def test_not_an_iter(self):
        with pytest.raises(TypeError,
                    match="error reading from object, expected an iterable"):
            np.core._multiarray_umath._load_from_filelike(
                object(), dtype=np.dtype("i"), filelike=False)

    def test_bad_type(self):
        with pytest.raises(TypeError, match="internal error: dtype must"):
            np.core._multiarray_umath._load_from_filelike(
                object(), dtype="i", filelike=False)

    def test_bad_encoding(self):
        with pytest.raises(TypeError, match="encoding must be a unicode"):
            np.core._multiarray_umath._load_from_filelike(
                object(), dtype=np.dtype("i"), filelike=False, encoding=123)

    @pytest.mark.parametrize("newline", ["\r", "\n", "\r\n"])
    def test_manual_universal_newlines(self, newline):
        # This is currently not available to users, because we should always
        # open files with universal newlines enabled `newlines=None`.
        # (And reading from an iterator uses slightly different code paths.)
        # We have no real support for `newline="\r"` or `newline="\n" as the
        # user cannot specify those options.
        data = StringIO('0\n1\n"2\n"\n3\n4 #\n'.replace("\n", newline),
                        newline="")

        res = np.core._multiarray_umath._load_from_filelike(
            data, dtype=np.dtype("U10"), filelike=True,
            quote='"', comment="#", skiplines=1)
        assert_array_equal(res[:, 0], ["1", f"2{newline}", "3", "4 "])


def test_delimiter_comment_collision_raises():
    with pytest.raises(TypeError, match=".*control characters.*incompatible"):
        np.loadtxt(StringIO("1, 2, 3"), delimiter=",", comments=",")


def test_delimiter_quotechar_collision_raises():
    with pytest.raises(TypeError, match=".*control characters.*incompatible"):
        np.loadtxt(StringIO("1, 2, 3"), delimiter=",", quotechar=",")


def test_comment_quotechar_collision_raises():
    with pytest.raises(TypeError, match=".*control characters.*incompatible"):
        np.loadtxt(StringIO("1 2 3"), comments="#", quotechar="#")


def test_delimiter_and_multiple_comments_collision_raises():
    with pytest.raises(
        TypeError, match="Comment characters.*cannot include the delimiter"
    ):
        np.loadtxt(StringIO("1, 2, 3"), delimiter=",", comments=["#", ","])


@pytest.mark.parametrize(
    "ws",
    (
        " ",  # space
        "\t",  # tab
        "\u2003",  # em
        "\u00A0",  # non-break
        "\u3000",  # ideographic space
    )
)
def test_collision_with_default_delimiter_raises(ws):
    with pytest.raises(TypeError, match=".*control characters.*incompatible"):
        np.loadtxt(StringIO(f"1{ws}2{ws}3\n4{ws}5{ws}6\n"), comments=ws)
    with pytest.raises(TypeError, match=".*control characters.*incompatible"):
        np.loadtxt(StringIO(f"1{ws}2{ws}3\n4{ws}5{ws}6\n"), quotechar=ws)


@pytest.mark.parametrize("nl", ("\n", "\r"))
def test_control_character_newline_raises(nl):
    txt = StringIO(f"1{nl}2{nl}3{nl}{nl}4{nl}5{nl}6{nl}{nl}")
    msg = "control character.*cannot be a newline"
    with pytest.raises(TypeError, match=msg):
        np.loadtxt(txt, delimiter=nl)
    with pytest.raises(TypeError, match=msg):
        np.loadtxt(txt, comments=nl)
    with pytest.raises(TypeError, match=msg):
        np.loadtxt(txt, quotechar=nl)


@pytest.mark.parametrize(
    ("generic_data", "long_datum", "unitless_dtype", "expected_dtype"),
    [
        ("2012-03", "2013-01-15", "M8", "M8[D]"),  # Datetimes
        ("spam-a-lot", "tis_but_a_scratch", "U", "U17"),  # str
    ],
)
@pytest.mark.parametrize("nrows", (10, 50000, 60000))  # lt, eq, gt chunksize
def test_parametric_unit_discovery(
    generic_data, long_datum, unitless_dtype, expected_dtype, nrows
):
    """Check that the correct unit (e.g. month, day, second) is discovered from
    the data when a user specifies a unitless datetime."""
    # Unit should be "D" (days) due to last entry
    data = [generic_data] * 50000 + [long_datum]
    expected = np.array(data, dtype=expected_dtype)

    # file-like path
    txt = StringIO("\n".join(data))
    a = np.loadtxt(txt, dtype=unitless_dtype)
    assert a.dtype == expected.dtype
    assert_equal(a, expected)

    # file-obj path
    fd, fname = mkstemp()
    os.close(fd)
    with open(fname, "w") as fh:
        fh.write("\n".join(data))
    a = np.loadtxt(fname, dtype=unitless_dtype)
    os.remove(fname)
    assert a.dtype == expected.dtype
    assert_equal(a, expected)


def test_str_dtype_unit_discovery_with_converter():
    data = ["spam-a-lot"] * 60000 + ["XXXtis_but_a_scratch"]
    expected = np.array(
        ["spam-a-lot"] * 60000 + ["tis_but_a_scratch"], dtype="U17"
    )
    conv = lambda s: s.strip("XXX")

    # file-like path
    txt = StringIO("\n".join(data))
    a = np.loadtxt(txt, dtype="U", converters=conv, encoding=None)
    assert a.dtype == expected.dtype
    assert_equal(a, expected)

    # file-obj path
    fd, fname = mkstemp()
    os.close(fd)
    with open(fname, "w") as fh:
        fh.write("\n".join(data))
    a = np.loadtxt(fname, dtype="U", converters=conv, encoding=None)
    os.remove(fname)
    assert a.dtype == expected.dtype
    assert_equal(a, expected)


@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
                    reason="PyPy bug in error formatting")
def test_control_character_empty():
    with pytest.raises(TypeError, match="Text reading control character must"):
        np.loadtxt(StringIO("1 2 3"), delimiter="")
    with pytest.raises(TypeError, match="Text reading control character must"):
        np.loadtxt(StringIO("1 2 3"), quotechar="")
    with pytest.raises(ValueError, match="comments cannot be an empty string"):
        np.loadtxt(StringIO("1 2 3"), comments="")
    with pytest.raises(ValueError, match="comments cannot be an empty string"):
        np.loadtxt(StringIO("1 2 3"), comments=["#", ""])


def test_control_characters_as_bytes():
    """Byte control characters (comments, delimiter) are supported."""
    a = np.loadtxt(StringIO("#header\n1,2,3"), comments=b"#", delimiter=b",")
    assert_equal(a, [1, 2, 3])


@pytest.mark.filterwarnings('ignore::UserWarning')
def test_field_growing_cases():
    # Test empty field appending/growing (each field still takes 1 character)
    # to see if the final field appending does not create issues.
    res = np.loadtxt([""], delimiter=",", dtype=bytes)
    assert len(res) == 0

    for i in range(1, 1024):
        res = np.loadtxt(["," * i], delimiter=",", dtype=bytes)
        assert len(res) == i+1