#include "mplutils.h"
#include "_image_resample.h"
#include "numpy_cpp.h"
#include "py_converters.h"
/**********************************************************************
* Free functions
* */
const char* image_resample__doc__ =
"resample(input_array, output_array, transform, interpolation=NEAREST, resample=False, alpha=1.0, norm=False, radius=1.0)\n"
"--\n\n"
"Resample input_array, blending it in-place into output_array, using an\n"
"affine transformation.\n\n"
"Parameters\n"
"----------\n"
"input_array : 2-d or 3-d NumPy array of float, double or `numpy.uint8`\n"
" If 2-d, the image is grayscale. If 3-d, the image must be of size\n"
" 4 in the last dimension and represents RGBA data.\n\n"
"output_array : 2-d or 3-d NumPy array of float, double or `numpy.uint8`\n"
" The dtype and number of dimensions must match `input_array`.\n\n"
"transform : matplotlib.transforms.Transform instance\n"
" The transformation from the input array to the output array.\n\n"
"interpolation : int, default: NEAREST\n"
" The interpolation method. Must be one of the following constants\n"
" defined in this module:\n\n"
" NEAREST, BILINEAR, BICUBIC, SPLINE16, SPLINE36,\n"
" HANNING, HAMMING, HERMITE, KAISER, QUADRIC, CATROM, GAUSSIAN,\n"
" BESSEL, MITCHELL, SINC, LANCZOS, BLACKMAN\n\n"
"resample : bool, optional\n"
" When `True`, use a full resampling method. When `False`, only\n"
" resample when the output image is larger than the input image.\n\n"
"alpha : float, default: 1\n"
" The transparency level, from 0 (transparent) to 1 (opaque).\n\n"
"norm : bool, default: False\n"
" Whether to norm the interpolation function.\n\n"
"radius: float, default: 1\n"
" The radius of the kernel, if method is SINC, LANCZOS or BLACKMAN.\n";
static PyArrayObject *
_get_transform_mesh(PyObject *py_affine, npy_intp *dims)
{
/* TODO: Could we get away with float, rather than double, arrays here? */
/* Given a non-affine transform object, create a mesh that maps
every pixel in the output image to the input image. This is used
as a lookup table during the actual resampling. */
PyObject *py_inverse = NULL;
npy_intp out_dims[3];
out_dims[0] = dims[0] * dims[1];
out_dims[1] = 2;
py_inverse = PyObject_CallMethod(py_affine, "inverted", NULL);
if (py_inverse == NULL) {
return NULL;
}
numpy::array_view<double, 2> input_mesh(out_dims);
double *p = (double *)input_mesh.data();
for (npy_intp y = 0; y < dims[0]; ++y) {
for (npy_intp x = 0; x < dims[1]; ++x) {
*p++ = (double)x;
*p++ = (double)y;
}
}
PyObject *output_mesh = PyObject_CallMethod(
py_inverse, "transform", "O", input_mesh.pyobj_steal());
Py_DECREF(py_inverse);
if (output_mesh == NULL) {
return NULL;
}
PyArrayObject *output_mesh_array =
(PyArrayObject *)PyArray_ContiguousFromAny(
output_mesh, NPY_DOUBLE, 2, 2);
Py_DECREF(output_mesh);
if (output_mesh_array == NULL) {
return NULL;
}
return output_mesh_array;
}
static PyObject *
image_resample(PyObject *self, PyObject* args, PyObject *kwargs)
{
PyObject *py_input = NULL;
PyObject *py_output = NULL;
PyObject *py_transform = NULL;
resample_params_t params;
PyArrayObject *input = NULL;
PyArrayObject *output = NULL;
PyArrayObject *transform_mesh = NULL;
int ndim;
int type;
params.interpolation = NEAREST;
params.transform_mesh = NULL;
params.resample = false;
params.norm = false;
params.radius = 1.0;
params.alpha = 1.0;
const char *kwlist[] = {
"input_array", "output_array", "transform", "interpolation",
"resample", "alpha", "norm", "radius", NULL };
if (!PyArg_ParseTupleAndKeywords(
args, kwargs, "OOO|iO&dO&d:resample", (char **)kwlist,
&py_input, &py_output, &py_transform,
¶ms.interpolation, &convert_bool, ¶ms.resample,
¶ms.alpha, &convert_bool, ¶ms.norm, ¶ms.radius)) {
return NULL;
}
if (params.interpolation < 0 || params.interpolation >= _n_interpolation) {
PyErr_Format(PyExc_ValueError, "Invalid interpolation value %d",
params.interpolation);
goto error;
}
input = (PyArrayObject *)PyArray_FromAny(
py_input, NULL, 2, 3, NPY_ARRAY_C_CONTIGUOUS, NULL);
if (!input) {
goto error;
}
ndim = PyArray_NDIM(input);
type = PyArray_TYPE(input);
if (!PyArray_Check(py_output)) {
PyErr_SetString(PyExc_ValueError, "Output array must be a NumPy array");
goto error;
}
output = (PyArrayObject *)py_output;
if (PyArray_NDIM(output) != ndim) {
PyErr_Format(
PyExc_ValueError,
"Input (%dD) and output (%dD) have different dimensionalities.",
ndim, PyArray_NDIM(output));
goto error;
}
// PyArray_FromAny above checks that input is 2D or 3D.
if (ndim == 3 && (PyArray_DIM(input, 2) != 4 || PyArray_DIM(output, 2) != 4)) {
PyErr_Format(
PyExc_ValueError,
"If 3D, input and output arrays must be RGBA with shape (M, N, 4); "
"got trailing dimensions of %" NPY_INTP_FMT " and %" NPY_INTP_FMT
" respectively", PyArray_DIM(input, 2), PyArray_DIM(output, 2));
goto error;
}
if (PyArray_TYPE(output) != type) {
PyErr_SetString(PyExc_ValueError, "Mismatched types");
goto error;
}
if (!PyArray_IS_C_CONTIGUOUS(output)) {
PyErr_SetString(PyExc_ValueError, "Output array must be C-contiguous");
goto error;
}
if (py_transform == NULL || py_transform == Py_None) {
params.is_affine = true;
} else {
PyObject *py_is_affine;
int py_is_affine2;
py_is_affine = PyObject_GetAttrString(py_transform, "is_affine");
if (!py_is_affine) {
goto error;
}
py_is_affine2 = PyObject_IsTrue(py_is_affine);
Py_DECREF(py_is_affine);
if (py_is_affine2 == -1) {
goto error;
} else if (py_is_affine2) {
if (!convert_trans_affine(py_transform, ¶ms.affine)) {
goto error;
}
params.is_affine = true;
} else {
transform_mesh = _get_transform_mesh(
py_transform, PyArray_DIMS(output));
if (!transform_mesh) {
goto error;
}
params.transform_mesh = (double *)PyArray_DATA(transform_mesh);
params.is_affine = false;
}
}
if (auto resampler =
(ndim == 2) ? (
(type == NPY_UINT8) ? resample<agg::gray8> :
(type == NPY_INT8) ? resample<agg::gray8> :
(type == NPY_UINT16) ? resample<agg::gray16> :
(type == NPY_INT16) ? resample<agg::gray16> :
(type == NPY_FLOAT32) ? resample<agg::gray32> :
(type == NPY_FLOAT64) ? resample<agg::gray64> :
nullptr) : (
// ndim == 3
(type == NPY_UINT8) ? resample<agg::rgba8> :
(type == NPY_INT8) ? resample<agg::rgba8> :
(type == NPY_UINT16) ? resample<agg::rgba16> :
(type == NPY_INT16) ? resample<agg::rgba16> :
(type == NPY_FLOAT32) ? resample<agg::rgba32> :
(type == NPY_FLOAT64) ? resample<agg::rgba64> :
nullptr)) {
Py_BEGIN_ALLOW_THREADS
resampler(
PyArray_DATA(input), PyArray_DIM(input, 1), PyArray_DIM(input, 0),
PyArray_DATA(output), PyArray_DIM(output, 1), PyArray_DIM(output, 0),
params);
Py_END_ALLOW_THREADS
} else {
PyErr_SetString(
PyExc_ValueError,
"arrays must be of dtype byte, short, float32 or float64");
goto error;
}
Py_DECREF(input);
Py_XDECREF(transform_mesh);
Py_RETURN_NONE;
error:
Py_XDECREF(input);
Py_XDECREF(transform_mesh);
return NULL;
}
static PyMethodDef module_functions[] = {
{"resample", (PyCFunction)image_resample, METH_VARARGS|METH_KEYWORDS, image_resample__doc__},
{NULL}
};
static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT, "_image", NULL, 0, module_functions,
};
PyMODINIT_FUNC PyInit__image(void)
{
PyObject *m;
import_array();
m = PyModule_Create(&moduledef);
if (m == NULL) {
return NULL;
}
if (PyModule_AddIntConstant(m, "NEAREST", NEAREST) ||
PyModule_AddIntConstant(m, "BILINEAR", BILINEAR) ||
PyModule_AddIntConstant(m, "BICUBIC", BICUBIC) ||
PyModule_AddIntConstant(m, "SPLINE16", SPLINE16) ||
PyModule_AddIntConstant(m, "SPLINE36", SPLINE36) ||
PyModule_AddIntConstant(m, "HANNING", HANNING) ||
PyModule_AddIntConstant(m, "HAMMING", HAMMING) ||
PyModule_AddIntConstant(m, "HERMITE", HERMITE) ||
PyModule_AddIntConstant(m, "KAISER", KAISER) ||
PyModule_AddIntConstant(m, "QUADRIC", QUADRIC) ||
PyModule_AddIntConstant(m, "CATROM", CATROM) ||
PyModule_AddIntConstant(m, "GAUSSIAN", GAUSSIAN) ||
PyModule_AddIntConstant(m, "BESSEL", BESSEL) ||
PyModule_AddIntConstant(m, "MITCHELL", MITCHELL) ||
PyModule_AddIntConstant(m, "SINC", SINC) ||
PyModule_AddIntConstant(m, "LANCZOS", LANCZOS) ||
PyModule_AddIntConstant(m, "BLACKMAN", BLACKMAN) ||
PyModule_AddIntConstant(m, "_n_interpolation", _n_interpolation)) {
Py_DECREF(m);
return NULL;
}
return m;
}