aboutsummaryrefslogblamecommitdiffstats
path: root/contrib/libs/openjpeg/ht_dec.c
blob: 1eb4d525f1154eb1df201d3a9555591fb101a47a (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640














































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                                
//***************************************************************************/
// This software is released under the 2-Clause BSD license, included
// below.
//
// Copyright (c) 2021, Aous Naman
// Copyright (c) 2021, Kakadu Software Pty Ltd, Australia
// Copyright (c) 2021, The University of New South Wales, Australia
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//***************************************************************************/
// This file is part of the OpenJpeg software implementation.
// File: ht_dec.c
// Author: Aous Naman
// Date: 01 September 2021
//***************************************************************************/

//***************************************************************************/
/** @file ht_dec.c
 *  @brief implements HTJ2K block decoder
 */

#include <assert.h>
#include <string.h>
#include "opj_includes.h"

#include "t1_ht_luts.h"

/////////////////////////////////////////////////////////////////////////////
// compiler detection
/////////////////////////////////////////////////////////////////////////////
#ifdef _MSC_VER
#define OPJ_COMPILER_MSVC
#elif (defined __GNUC__)
#define OPJ_COMPILER_GNUC
#endif

//************************************************************************/
/** @brief Displays the error message for disabling the decoding of SPP and
  * MRP passes
  */
static OPJ_BOOL only_cleanup_pass_is_decoded = OPJ_FALSE;

//************************************************************************/
/** @brief Generates population count (i.e., the number of set bits)
  *
  *   @param [in]  val is the value for which population count is sought
  */
static INLINE
OPJ_UINT32 population_count(OPJ_UINT32 val)
{
#ifdef OPJ_COMPILER_MSVC
    return (OPJ_UINT32)__popcnt(val);
#elif (defined OPJ_COMPILER_GNUC)
    return (OPJ_UINT32)__builtin_popcount(val);
#else
    val -= ((val >> 1) & 0x55555555);
    val = (((val >> 2) & 0x33333333) + (val & 0x33333333));
    val = (((val >> 4) + val) & 0x0f0f0f0f);
    val += (val >> 8);
    val += (val >> 16);
    return (OPJ_UINT32)(val & 0x0000003f);
#endif
}

//************************************************************************/
/** @brief Counts the number of leading zeros
  *
  *   @param [in]  val is the value for which leading zero count is sought
  */
#ifdef OPJ_COMPILER_MSVC
#pragma intrinsic(_BitScanReverse)
#endif
static INLINE
OPJ_UINT32 count_leading_zeros(OPJ_UINT32 val)
{
#ifdef OPJ_COMPILER_MSVC
    unsigned long result = 0;
    _BitScanReverse(&result, val);
    return 31U ^ (OPJ_UINT32)result;
#elif (defined OPJ_COMPILER_GNUC)
    return (OPJ_UINT32)__builtin_clz(val);
#else
    val |= (val >> 1);
    val |= (val >> 2);
    val |= (val >> 4);
    val |= (val >> 8);
    val |= (val >> 16);
    return 32U - population_count(val);
#endif
}

//************************************************************************/
/** @brief Read a little-endian serialized UINT32.
  *
  *   @param [in]  dataIn pointer to byte stream to read from
  */
static INLINE OPJ_UINT32 read_le_uint32(const void* dataIn)
{
#if defined(OPJ_BIG_ENDIAN)
    const OPJ_UINT8* data = (const OPJ_UINT8*)dataIn;
    return ((OPJ_UINT32)data[0]) | (OPJ_UINT32)(data[1] << 8) | (OPJ_UINT32)(
               data[2] << 16) | (((
                                      OPJ_UINT32)data[3]) <<
                                 24U);
#else
    return *(OPJ_UINT32*)dataIn;
#endif
}

//************************************************************************/
/** @brief MEL state structure for reading and decoding the MEL bitstream
  *
  *  A number of events is decoded from the MEL bitstream ahead of time
  *  and stored in run/num_runs.
  *  Each run represents the number of zero events before a one event.
  */
typedef struct dec_mel {
    // data decoding machinery
    OPJ_UINT8* data;  //!<the address of data (or bitstream)
    OPJ_UINT64 tmp;   //!<temporary buffer for read data
    int bits;         //!<number of bits stored in tmp
    int size;         //!<number of bytes in MEL code
    OPJ_BOOL unstuff; //!<true if the next bit needs to be unstuffed
    int k;            //!<state of MEL decoder

    // queue of decoded runs
    int num_runs;    //!<number of decoded runs left in runs (maximum 8)
    OPJ_UINT64 runs; //!<runs of decoded MEL codewords (7 bits/run)
} dec_mel_t;

//************************************************************************/
/** @brief Reads and unstuffs the MEL bitstream
  *
  *  This design needs more bytes in the codeblock buffer than the length
  *  of the cleanup pass by up to 2 bytes.
  *
  *  Unstuffing removes the MSB of the byte following a byte whose
  *  value is 0xFF; this prevents sequences larger than 0xFF7F in value
  *  from appearing the bitstream.
  *
  *  @param [in]  melp is a pointer to dec_mel_t structure
  */
static INLINE
void mel_read(dec_mel_t *melp)
{
    OPJ_UINT32 val;
    int bits;
    OPJ_UINT32 t;
    OPJ_BOOL unstuff;

    if (melp->bits > 32) { //there are enough bits in the tmp variable
        return;    // return without reading new data
    }

    val = 0xFFFFFFFF;      // feed in 0xFF if buffer is exhausted
    if (melp->size > 4) {  // if there is more than 4 bytes the MEL segment
        val = read_le_uint32(melp->data);  // read 32 bits from MEL data
        melp->data += 4;           // advance pointer
        melp->size -= 4;           // reduce counter
    } else if (melp->size > 0) { // 4 or less
        OPJ_UINT32 m, v;
        int i = 0;
        while (melp->size > 1) {
            OPJ_UINT32 v = *melp->data++; // read one byte at a time
            OPJ_UINT32 m = ~(0xFFu << i); // mask of location
            val = (val & m) | (v << i);   // put byte in its correct location
            --melp->size;
            i += 8;
        }
        // size equal to 1
        v = *melp->data++;  // the one before the last is different
        v |= 0xF;                         // MEL and VLC segments can overlap
        m = ~(0xFFu << i);
        val = (val & m) | (v << i);
        --melp->size;
    }

    // next we unstuff them before adding them to the buffer
    bits = 32 - melp->unstuff;      // number of bits in val, subtract 1 if
    // the previously read byte requires
    // unstuffing

    // data is unstuffed and accumulated in t
    // bits has the number of bits in t
    t = val & 0xFF;
    unstuff = ((val & 0xFF) == 0xFF); // true if the byte needs unstuffing
    bits -= unstuff; // there is one less bit in t if unstuffing is needed
    t = t << (8 - unstuff); // move up to make room for the next byte

    //this is a repeat of the above
    t |= (val >> 8) & 0xFF;
    unstuff = (((val >> 8) & 0xFF) == 0xFF);
    bits -= unstuff;
    t = t << (8 - unstuff);

    t |= (val >> 16) & 0xFF;
    unstuff = (((val >> 16) & 0xFF) == 0xFF);
    bits -= unstuff;
    t = t << (8 - unstuff);

    t |= (val >> 24) & 0xFF;
    melp->unstuff = (((val >> 24) & 0xFF) == 0xFF);

    // move t to tmp, and push the result all the way up, so we read from
    // the MSB
    melp->tmp |= ((OPJ_UINT64)t) << (64 - bits - melp->bits);
    melp->bits += bits; //increment the number of bits in tmp
}

//************************************************************************/
/** @brief Decodes unstuffed MEL segment bits stored in tmp to runs
  *
  *  Runs are stored in "runs" and the number of runs in "num_runs".
  *  Each run represents a number of zero events that may or may not
  *  terminate in a 1 event.
  *  Each run is stored in 7 bits.  The LSB is 1 if the run terminates in
  *  a 1 event, 0 otherwise.  The next 6 bits, for the case terminating
  *  with 1, contain the number of consecutive 0 zero events * 2; for the
  *  case terminating with 0, they store (number of consecutive 0 zero
  *  events - 1) * 2.
  *  A total of 6 bits (made up of 1 + 5) should have been enough.
  *
  *  @param [in]  melp is a pointer to dec_mel_t structure
  */
static INLINE
void mel_decode(dec_mel_t *melp)
{
    static const int mel_exp[13] = { //MEL exponents
        0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5
    };

    if (melp->bits < 6) { // if there are less than 6 bits in tmp
        mel_read(melp);    // then read from the MEL bitstream
    }
    // 6 bits is the largest decodable MEL cwd

    //repeat so long that there is enough decodable bits in tmp,
    // and the runs store is not full (num_runs < 8)
    while (melp->bits >= 6 && melp->num_runs < 8) {
        int eval = mel_exp[melp->k]; // number of bits associated with state
        int run = 0;
        if (melp->tmp & (1ull << 63)) { //The next bit to decode (stored in MSB)
            //one is found
            run = 1 << eval;
            run--; // consecutive runs of 0 events - 1
            melp->k = melp->k + 1 < 12 ? melp->k + 1 : 12;//increment, max is 12
            melp->tmp <<= 1; // consume one bit from tmp
            melp->bits -= 1;
            run = run << 1; // a stretch of zeros not terminating in one
        } else {
            //0 is found
            run = (int)(melp->tmp >> (63 - eval)) & ((1 << eval) - 1);
            melp->k = melp->k - 1 > 0 ? melp->k - 1 : 0; //decrement, min is 0
            melp->tmp <<= eval + 1; //consume eval + 1 bits (max is 6)
            melp->bits -= eval + 1;
            run = (run << 1) + 1; // a stretch of zeros terminating with one
        }
        eval = melp->num_runs * 7;                 // 7 bits per run
        melp->runs &= ~((OPJ_UINT64)0x3F << eval); // 6 bits are sufficient
        melp->runs |= ((OPJ_UINT64)run) << eval;   // store the value in runs
        melp->num_runs++;                          // increment count
    }
}

//************************************************************************/
/** @brief Initiates a dec_mel_t structure for MEL decoding and reads
  *         some bytes in order to get the read address to a multiple
  *         of 4
  *
  *  @param [in]  melp is a pointer to dec_mel_t structure
  *  @param [in]  bbuf is a pointer to byte buffer
  *  @param [in]  lcup is the length of MagSgn+MEL+VLC segments
  *  @param [in]  scup is the length of MEL+VLC segments
  */
static INLINE
void mel_init(dec_mel_t *melp, OPJ_UINT8* bbuf, int lcup, int scup)
{
    int num;
    int i;

    melp->data = bbuf + lcup - scup; // move the pointer to the start of MEL
    melp->bits = 0;                  // 0 bits in tmp
    melp->tmp = 0;                   //
    melp->unstuff = OPJ_FALSE;       // no unstuffing
    melp->size = scup - 1;           // size is the length of MEL+VLC-1
    melp->k = 0;                     // 0 for state
    melp->num_runs = 0;              // num_runs is 0
    melp->runs = 0;                  //

    //This code is borrowed; original is for a different architecture
    //These few lines take care of the case where data is not at a multiple
    // of 4 boundary.  It reads 1,2,3 up to 4 bytes from the MEL segment
    num = 4 - (int)((intptr_t)(melp->data) & 0x3);
    for (i = 0; i < num; ++i) { // this code is similar to mel_read
        OPJ_UINT64 d;
        int d_bits;

        assert(melp->unstuff == OPJ_FALSE || melp->data[0] <= 0x8F);
        d = (melp->size > 0) ? *melp->data : 0xFF; // if buffer is consumed
        // set data to 0xFF
        if (melp->size == 1) {
            d |= 0xF;    //if this is MEL+VLC-1, set LSBs to 0xF
        }
        // see the standard
        melp->data += melp->size-- > 0; //increment if the end is not reached
        d_bits = 8 - melp->unstuff; //if unstuffing is needed, reduce by 1
        melp->tmp = (melp->tmp << d_bits) | d; //store bits in tmp
        melp->bits += d_bits;  //increment tmp by number of bits
        melp->unstuff = ((d & 0xFF) == 0xFF); //true of next byte needs
        //unstuffing
    }
    melp->tmp <<= (64 - melp->bits); //push all the way up so the first bit
    // is the MSB
}

//************************************************************************/
/** @brief Retrieves one run from dec_mel_t; if there are no runs stored
  *         MEL segment is decoded
  *
  * @param [in]  melp is a pointer to dec_mel_t structure
  */
static INLINE
int mel_get_run(dec_mel_t *melp)
{
    int t;
    if (melp->num_runs == 0) { //if no runs, decode more bit from MEL segment
        mel_decode(melp);
    }

    t = melp->runs & 0x7F; //retrieve one run
    melp->runs >>= 7;  // remove the retrieved run
    melp->num_runs--;
    return t; // return run
}

//************************************************************************/
/** @brief A structure for reading and unstuffing a segment that grows
  *         backward, such as VLC and MRP
  */
typedef struct rev_struct {
    //storage
    OPJ_UINT8* data;  //!<pointer to where to read data
    OPJ_UINT64 tmp;     //!<temporary buffer of read data
    OPJ_UINT32 bits;  //!<number of bits stored in tmp
    int size;         //!<number of bytes left
    OPJ_BOOL unstuff; //!<true if the last byte is more than 0x8F
    //!<then the current byte is unstuffed if it is 0x7F
} rev_struct_t;

//************************************************************************/
/** @brief Read and unstuff data from a backwardly-growing segment
  *
  *  This reader can read up to 8 bytes from before the VLC segment.
  *  Care must be taken not read from unreadable memory, causing a
  *  segmentation fault.
  *
  *  Note that there is another subroutine rev_read_mrp that is slightly
  *  different.  The other one fills zeros when the buffer is exhausted.
  *  This one basically does not care if the bytes are consumed, because
  *  any extra data should not be used in the actual decoding.
  *
  *  Unstuffing is needed to prevent sequences more than 0xFF8F from
  *  appearing in the bits stream; since we are reading backward, we keep
  *  watch when a value larger than 0x8F appears in the bitstream.
  *  If the byte following this is 0x7F, we unstuff this byte (ignore the
  *  MSB of that byte, which should be 0).
  *
  *  @param [in]  vlcp is a pointer to rev_struct_t structure
  */
static INLINE
void rev_read(rev_struct_t *vlcp)
{
    OPJ_UINT32 val;
    OPJ_UINT32 tmp;
    OPJ_UINT32 bits;
    OPJ_BOOL unstuff;

    //process 4 bytes at a time
    if (vlcp->bits > 32) { // if there are more than 32 bits in tmp, then
        return;    // reading 32 bits can overflow vlcp->tmp
    }
    val = 0;
    //the next line (the if statement) needs to be tested first
    if (vlcp->size > 3) { // if there are more than 3 bytes left in VLC
        // (vlcp->data - 3) move pointer back to read 32 bits at once
        val = read_le_uint32(vlcp->data - 3); // then read 32 bits
        vlcp->data -= 4;                // move data pointer back by 4
        vlcp->size -= 4;                // reduce available byte by 4
    } else if (vlcp->size > 0) { // 4 or less
        int i = 24;
        while (vlcp->size > 0) {
            OPJ_UINT32 v = *vlcp->data--; // read one byte at a time
            val |= (v << i);              // put byte in its correct location
            --vlcp->size;
            i -= 8;
        }
    }

    //accumulate in tmp, number of bits in tmp are stored in bits
    tmp = val >> 24;  //start with the MSB byte

    // test unstuff (previous byte is >0x8F), and this byte is 0x7F
    bits = 8u - ((vlcp->unstuff && (((val >> 24) & 0x7F) == 0x7F)) ? 1u : 0u);
    unstuff = (val >> 24) > 0x8F; //this is for the next byte

    tmp |= ((val >> 16) & 0xFF) << bits; //process the next byte
    bits += 8u - ((unstuff && (((val >> 16) & 0x7F) == 0x7F)) ? 1u : 0u);
    unstuff = ((val >> 16) & 0xFF) > 0x8F;

    tmp |= ((val >> 8) & 0xFF) << bits;
    bits += 8u - ((unstuff && (((val >> 8) & 0x7F) == 0x7F)) ? 1u : 0u);
    unstuff = ((val >> 8) & 0xFF) > 0x8F;

    tmp |= (val & 0xFF) << bits;
    bits += 8u - ((unstuff && ((val & 0x7F) == 0x7F)) ? 1u : 0u);
    unstuff = (val & 0xFF) > 0x8F;

    // now move the read and unstuffed bits into vlcp->tmp
    vlcp->tmp |= (OPJ_UINT64)tmp << vlcp->bits;
    vlcp->bits += bits;
    vlcp->unstuff = unstuff; // this for the next read
}

//************************************************************************/
/** @brief Initiates the rev_struct_t structure and reads a few bytes to
  *         move the read address to multiple of 4
  *
  *  There is another similar rev_init_mrp subroutine.  The difference is
  *  that this one, rev_init, discards the first 12 bits (they have the
  *  sum of the lengths of VLC and MEL segments), and first unstuff depends
  *  on first 4 bits.
  *
  *  @param [in]  vlcp is a pointer to rev_struct_t structure
  *  @param [in]  data is a pointer to byte at the start of the cleanup pass
  *  @param [in]  lcup is the length of MagSgn+MEL+VLC segments
  *  @param [in]  scup is the length of MEL+VLC segments
  */
static INLINE
void rev_init(rev_struct_t *vlcp, OPJ_UINT8* data, int lcup, int scup)
{
    OPJ_UINT32 d;
    int num, tnum, i;

    //first byte has only the upper 4 bits
    vlcp->data = data + lcup - 2;

    //size can not be larger than this, in fact it should be smaller
    vlcp->size = scup - 2;

    d = *vlcp->data--;            // read one byte (this is a half byte)
    vlcp->tmp = d >> 4;           // both initialize and set
    vlcp->bits = 4 - ((vlcp->tmp & 7) == 7); //check standard
    vlcp->unstuff = (d | 0xF) > 0x8F; //this is useful for the next byte

    //This code is designed for an architecture that read address should
    // align to the read size (address multiple of 4 if read size is 4)
    //These few lines take care of the case where data is not at a multiple
    // of 4 boundary. It reads 1,2,3 up to 4 bytes from the VLC bitstream.
    // To read 32 bits, read from (vlcp->data - 3)
    num = 1 + (int)((intptr_t)(vlcp->data) & 0x3);
    tnum = num < vlcp->size ? num : vlcp->size;
    for (i = 0; i < tnum; ++i) {
        OPJ_UINT64 d;
        OPJ_UINT32 d_bits;
        d = *vlcp->data--;  // read one byte and move read pointer
        //check if the last byte was >0x8F (unstuff == true) and this is 0x7F
        d_bits = 8u - ((vlcp->unstuff && ((d & 0x7F) == 0x7F)) ? 1u : 0u);
        vlcp->tmp |= d << vlcp->bits; // move data to vlcp->tmp
        vlcp->bits += d_bits;
        vlcp->unstuff = d > 0x8F; // for next byte
    }
    vlcp->size -= tnum;
    rev_read(vlcp);  // read another 32 buts
}

//************************************************************************/
/** @brief Retrieves 32 bits from the head of a rev_struct structure
  *
  *  By the end of this call, vlcp->tmp must have no less than 33 bits
  *
  *  @param [in]  vlcp is a pointer to rev_struct structure
  */
static INLINE
OPJ_UINT32 rev_fetch(rev_struct_t *vlcp)
{
    if (vlcp->bits < 32) { // if there are less then 32 bits, read more
        rev_read(vlcp);     // read 32 bits, but unstuffing might reduce this
        if (vlcp->bits < 32) { // if there is still space in vlcp->tmp for 32 bits
            rev_read(vlcp);    // read another 32
        }
    }
    return (OPJ_UINT32)vlcp->tmp; // return the head (bottom-most) of vlcp->tmp
}

//************************************************************************/
/** @brief Consumes num_bits from a rev_struct structure
  *
  *  @param [in]  vlcp is a pointer to rev_struct structure
  *  @param [in]  num_bits is the number of bits to be removed
  */
static INLINE
OPJ_UINT32 rev_advance(rev_struct_t *vlcp, OPJ_UINT32 num_bits)
{
    assert(num_bits <= vlcp->bits); // vlcp->tmp must have more than num_bits
    vlcp->tmp >>= num_bits;         // remove bits
    vlcp->bits -= num_bits;         // decrement the number of bits
    return (OPJ_UINT32)vlcp->tmp;
}

//************************************************************************/
/** @brief Reads and unstuffs from rev_struct
  *
  *  This is different than rev_read in that this fills in zeros when the
  *  the available data is consumed.  The other does not care about the
  *  values when all data is consumed.
  *
  *  See rev_read for more information about unstuffing
  *
  *  @param [in]  mrp is a pointer to rev_struct structure
  */
static INLINE
void rev_read_mrp(rev_struct_t *mrp)
{
    OPJ_UINT32 val;
    OPJ_UINT32 tmp;
    OPJ_UINT32 bits;
    OPJ_BOOL unstuff;

    //process 4 bytes at a time
    if (mrp->bits > 32) {
        return;
    }
    val = 0;
    if (mrp->size > 3) { // If there are 3 byte or more
        // (mrp->data - 3) move pointer back to read 32 bits at once
        val = read_le_uint32(mrp->data - 3); // read 32 bits
        mrp->data -= 4;                      // move back pointer
        mrp->size -= 4;                      // reduce count
    } else if (mrp->size > 0) {
        int i = 24;
        while (mrp->size > 0) {
            OPJ_UINT32 v = *mrp->data--; // read one byte at a time
            val |= (v << i);             // put byte in its correct location
            --mrp->size;
            i -= 8;
        }
    }


    //accumulate in tmp, and keep count in bits
    tmp = val >> 24;

    //test if the last byte > 0x8F (unstuff must be true) and this is 0x7F
    bits = 8u - ((mrp->unstuff && (((val >> 24) & 0x7F) == 0x7F)) ? 1u : 0u);
    unstuff = (val >> 24) > 0x8F;

    //process the next byte
    tmp |= ((val >> 16) & 0xFF) << bits;
    bits += 8u - ((unstuff && (((val >> 16) & 0x7F) == 0x7F)) ? 1u : 0u);
    unstuff = ((val >> 16) & 0xFF) > 0x8F;

    tmp |= ((val >> 8) & 0xFF) << bits;
    bits += 8u - ((unstuff && (((val >> 8) & 0x7F) == 0x7F)) ? 1u : 0u);
    unstuff = ((val >> 8) & 0xFF) > 0x8F;

    tmp |= (val & 0xFF) << bits;
    bits += 8u - ((unstuff && ((val & 0x7F) == 0x7F)) ? 1u : 0u);
    unstuff = (val & 0xFF) > 0x8F;

    mrp->tmp |= (OPJ_UINT64)tmp << mrp->bits; // move data to mrp pointer
    mrp->bits += bits;
    mrp->unstuff = unstuff;                   // next byte
}

//************************************************************************/
/** @brief Initialized rev_struct structure for MRP segment, and reads
  *         a number of bytes such that the next 32 bits read are from
  *         an address that is a multiple of 4. Note this is designed for
  *         an architecture that read size must be compatible with the
  *         alignment of the read address
  *
  *  There is another similar subroutine rev_init.  This subroutine does
  *  NOT skip the first 12 bits, and starts with unstuff set to true.
  *
  *  @param [in]  mrp is a pointer to rev_struct structure
  *  @param [in]  data is a pointer to byte at the start of the cleanup pass
  *  @param [in]  lcup is the length of MagSgn+MEL+VLC segments
  *  @param [in]  len2 is the length of SPP+MRP segments
  */
static INLINE
void rev_init_mrp(rev_struct_t *mrp, OPJ_UINT8* data, int lcup, int len2)
{
    int num, i;

    mrp->data = data + lcup + len2 - 1;
    mrp->size = len2;
    mrp->unstuff = OPJ_TRUE;
    mrp->bits = 0;
    mrp->tmp = 0;

    //This code is designed for an architecture that read address should
    // align to the read size (address multiple of 4 if read size is 4)
    //These few lines take care of the case where data is not at a multiple
    // of 4 boundary.  It reads 1,2,3 up to 4 bytes from the MRP stream
    num = 1 + (int)((intptr_t)(mrp->data) & 0x3);
    for (i = 0; i < num; ++i) {
        OPJ_UINT64 d;
        OPJ_UINT32 d_bits;

        //read a byte, 0 if no more data
        d = (mrp->size-- > 0) ? *mrp->data-- : 0;
        //check if unstuffing is needed
        d_bits = 8u - ((mrp->unstuff && ((d & 0x7F) == 0x7F)) ? 1u : 0u);
        mrp->tmp |= d << mrp->bits; // move data to vlcp->tmp
        mrp->bits += d_bits;
        mrp->unstuff = d > 0x8F; // for next byte
    }
    rev_read_mrp(mrp);
}

//************************************************************************/
/** @brief Retrieves 32 bits from the head of a rev_struct structure
  *
  *  By the end of this call, mrp->tmp must have no less than 33 bits
  *
  *  @param [in]  mrp is a pointer to rev_struct structure
  */
static INLINE
OPJ_UINT32 rev_fetch_mrp(rev_struct_t *mrp)
{
    if (mrp->bits < 32) { // if there are less than 32 bits in mrp->tmp
        rev_read_mrp(mrp);    // read 30-32 bits from mrp
        if (mrp->bits < 32) { // if there is a space of 32 bits
            rev_read_mrp(mrp);    // read more
        }
    }
    return (OPJ_UINT32)mrp->tmp;  // return the head of mrp->tmp
}

//************************************************************************/
/** @brief Consumes num_bits from a rev_struct structure
  *
  *  @param [in]  mrp is a pointer to rev_struct structure
  *  @param [in]  num_bits is the number of bits to be removed
  */
static INLINE
OPJ_UINT32 rev_advance_mrp(rev_struct_t *mrp, OPJ_UINT32 num_bits)
{
    assert(num_bits <= mrp->bits); // we must not consume more than mrp->bits
    mrp->tmp >>= num_bits;         // discard the lowest num_bits bits
    mrp->bits -= num_bits;
    return (OPJ_UINT32)mrp->tmp;   // return data after consumption
}

//************************************************************************/
/** @brief Decode initial UVLC to get the u value (or u_q)
  *
  *  @param [in]  vlc is the head of the VLC bitstream
  *  @param [in]  mode is 0, 1, 2, 3, or 4. Values in 0 to 3 are composed of
  *               u_off of 1st quad and 2nd quad of a quad pair.  The value
  *               4 occurs when both bits are 1, and the event decoded
  *               from MEL bitstream is also 1.
  *  @param [out] u is the u value (or u_q) + 1.  Note: we produce u + 1;
  *               this value is a partial calculation of u + kappa.
  */
static INLINE
OPJ_UINT32 decode_init_uvlc(OPJ_UINT32 vlc, OPJ_UINT32 mode, OPJ_UINT32 *u)
{
    //table stores possible decoding three bits from vlc
    // there are 8 entries for xx1, x10, 100, 000, where x means do not care
    // table value is made up of
    // 2 bits in the LSB for prefix length
    // 3 bits for suffix length
    // 3 bits in the MSB for prefix value (u_pfx in Table 3 of ITU T.814)
    static const OPJ_UINT8 dec[8] = { // the index is the prefix codeword
        3 | (5 << 2) | (5 << 5),        //000 == 000, prefix codeword "000"
        1 | (0 << 2) | (1 << 5),        //001 == xx1, prefix codeword "1"
        2 | (0 << 2) | (2 << 5),        //010 == x10, prefix codeword "01"
        1 | (0 << 2) | (1 << 5),        //011 == xx1, prefix codeword "1"
        3 | (1 << 2) | (3 << 5),        //100 == 100, prefix codeword "001"
        1 | (0 << 2) | (1 << 5),        //101 == xx1, prefix codeword "1"
        2 | (0 << 2) | (2 << 5),        //110 == x10, prefix codeword "01"
        1 | (0 << 2) | (1 << 5)         //111 == xx1, prefix codeword "1"
    };

    OPJ_UINT32 consumed_bits = 0;
    if (mode == 0) { // both u_off are 0
        u[0] = u[1] = 1; //Kappa is 1 for initial line
    } else if (mode <= 2) { // u_off are either 01 or 10
        OPJ_UINT32 d;
        OPJ_UINT32 suffix_len;

        d = dec[vlc & 0x7];   //look at the least significant 3 bits
        vlc >>= d & 0x3;                 //prefix length
        consumed_bits += d & 0x3;

        suffix_len = ((d >> 2) & 0x7);
        consumed_bits += suffix_len;

        d = (d >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value
        u[0] = (mode == 1) ? d + 1 : 1; // kappa is 1 for initial line
        u[1] = (mode == 1) ? 1 : d + 1; // kappa is 1 for initial line
    } else if (mode == 3) { // both u_off are 1, and MEL event is 0
        OPJ_UINT32 d1 = dec[vlc & 0x7];  // LSBs of VLC are prefix codeword
        vlc >>= d1 & 0x3;                // Consume bits
        consumed_bits += d1 & 0x3;

        if ((d1 & 0x3) > 2) {
            OPJ_UINT32 suffix_len;

            //u_{q_2} prefix
            u[1] = (vlc & 1) + 1 + 1; //Kappa is 1 for initial line
            ++consumed_bits;
            vlc >>= 1;

            suffix_len = ((d1 >> 2) & 0x7);
            consumed_bits += suffix_len;
            d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value
            u[0] = d1 + 1; //Kappa is 1 for initial line
        } else {
            OPJ_UINT32 d2;
            OPJ_UINT32 suffix_len;

            d2 = dec[vlc & 0x7];  // LSBs of VLC are prefix codeword
            vlc >>= d2 & 0x3;                // Consume bits
            consumed_bits += d2 & 0x3;

            suffix_len = ((d1 >> 2) & 0x7);
            consumed_bits += suffix_len;

            d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value
            u[0] = d1 + 1; //Kappa is 1 for initial line
            vlc >>= suffix_len;

            suffix_len = ((d2 >> 2) & 0x7);
            consumed_bits += suffix_len;

            d2 = (d2 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value
            u[1] = d2 + 1; //Kappa is 1 for initial line
        }
    } else if (mode == 4) { // both u_off are 1, and MEL event is 1
        OPJ_UINT32 d1;
        OPJ_UINT32 d2;
        OPJ_UINT32 suffix_len;

        d1 = dec[vlc & 0x7];  // LSBs of VLC are prefix codeword
        vlc >>= d1 & 0x3;                // Consume bits
        consumed_bits += d1 & 0x3;

        d2 = dec[vlc & 0x7];  // LSBs of VLC are prefix codeword
        vlc >>= d2 & 0x3;                // Consume bits
        consumed_bits += d2 & 0x3;

        suffix_len = ((d1 >> 2) & 0x7);
        consumed_bits += suffix_len;

        d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value
        u[0] = d1 + 3; // add 2+kappa
        vlc >>= suffix_len;

        suffix_len = ((d2 >> 2) & 0x7);
        consumed_bits += suffix_len;

        d2 = (d2 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value
        u[1] = d2 + 3; // add 2+kappa
    }
    return consumed_bits;
}

//************************************************************************/
/** @brief Decode non-initial UVLC to get the u value (or u_q)
  *
  *  @param [in]  vlc is the head of the VLC bitstream
  *  @param [in]  mode is 0, 1, 2, or 3. The 1st bit is u_off of 1st quad
  *               and 2nd for 2nd quad of a quad pair
  *  @param [out] u is the u value (or u_q) + 1.  Note: we produce u + 1;
  *               this value is a partial calculation of u + kappa.
  */
static INLINE
OPJ_UINT32 decode_noninit_uvlc(OPJ_UINT32 vlc, OPJ_UINT32 mode, OPJ_UINT32 *u)
{
    //table stores possible decoding three bits from vlc
    // there are 8 entries for xx1, x10, 100, 000, where x means do not care
    // table value is made up of
    // 2 bits in the LSB for prefix length
    // 3 bits for suffix length
    // 3 bits in the MSB for prefix value (u_pfx in Table 3 of ITU T.814)
    static const OPJ_UINT8 dec[8] = {
        3 | (5 << 2) | (5 << 5), //000 == 000, prefix codeword "000"
        1 | (0 << 2) | (1 << 5), //001 == xx1, prefix codeword "1"
        2 | (0 << 2) | (2 << 5), //010 == x10, prefix codeword "01"
        1 | (0 << 2) | (1 << 5), //011 == xx1, prefix codeword "1"
        3 | (1 << 2) | (3 << 5), //100 == 100, prefix codeword "001"
        1 | (0 << 2) | (1 << 5), //101 == xx1, prefix codeword "1"
        2 | (0 << 2) | (2 << 5), //110 == x10, prefix codeword "01"
        1 | (0 << 2) | (1 << 5)  //111 == xx1, prefix codeword "1"
    };

    OPJ_UINT32 consumed_bits = 0;
    if (mode == 0) {
        u[0] = u[1] = 1; //for kappa
    } else if (mode <= 2) { //u_off are either 01 or 10
        OPJ_UINT32 d;
        OPJ_UINT32 suffix_len;

        d = dec[vlc & 0x7];  //look at the least significant 3 bits
        vlc >>= d & 0x3;                //prefix length
        consumed_bits += d & 0x3;

        suffix_len = ((d >> 2) & 0x7);
        consumed_bits += suffix_len;

        d = (d >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value
        u[0] = (mode == 1) ? d + 1 : 1; //for kappa
        u[1] = (mode == 1) ? 1 : d + 1; //for kappa
    } else if (mode == 3) { // both u_off are 1
        OPJ_UINT32 d1;
        OPJ_UINT32 d2;
        OPJ_UINT32 suffix_len;

        d1 = dec[vlc & 0x7];  // LSBs of VLC are prefix codeword
        vlc >>= d1 & 0x3;                // Consume bits
        consumed_bits += d1 & 0x3;

        d2 = dec[vlc & 0x7];  // LSBs of VLC are prefix codeword
        vlc >>= d2 & 0x3;                // Consume bits
        consumed_bits += d2 & 0x3;

        suffix_len = ((d1 >> 2) & 0x7);
        consumed_bits += suffix_len;

        d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value
        u[0] = d1 + 1;  //1 for kappa
        vlc >>= suffix_len;

        suffix_len = ((d2 >> 2) & 0x7);
        consumed_bits += suffix_len;

        d2 = (d2 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value
        u[1] = d2 + 1;  //1 for kappa
    }
    return consumed_bits;
}

//************************************************************************/
/** @brief State structure for reading and unstuffing of forward-growing
  *         bitstreams; these are: MagSgn and SPP bitstreams
  */
typedef struct frwd_struct {
    const OPJ_UINT8* data; //!<pointer to bitstream
    OPJ_UINT64 tmp;        //!<temporary buffer of read data
    OPJ_UINT32 bits;       //!<number of bits stored in tmp
    OPJ_BOOL unstuff;      //!<true if a bit needs to be unstuffed from next byte
    int size;              //!<size of data
    OPJ_UINT32 X;          //!<0 or 0xFF, X's are inserted at end of bitstream
} frwd_struct_t;

//************************************************************************/
/** @brief Read and unstuffs 32 bits from forward-growing bitstream
  *
  *  A subroutine to read from both the MagSgn or SPP bitstreams;
  *  in particular, when MagSgn bitstream is consumed, 0xFF's are fed,
  *  while when SPP is exhausted 0's are fed in.
  *  X controls this value.
  *
  *  Unstuffing prevent sequences that are more than 0xFF7F from appearing
  *  in the conpressed sequence.  So whenever a value of 0xFF is coded, the
  *  MSB of the next byte is set 0 and must be ignored during decoding.
  *
  *  Reading can go beyond the end of buffer by up to 3 bytes.
  *
  *  @param  [in]  msp is a pointer to frwd_struct_t structure
  *
  */
static INLINE
void frwd_read(frwd_struct_t *msp)
{
    OPJ_UINT32 val;
    OPJ_UINT32 bits;
    OPJ_UINT32 t;
    OPJ_BOOL unstuff;

    assert(msp->bits <= 32); // assert that there is a space for 32 bits

    val = 0u;
    if (msp->size > 3) {
        val = read_le_uint32(msp->data);  // read 32 bits
        msp->data += 4;           // increment pointer
        msp->size -= 4;           // reduce size
    } else if (msp->size > 0) {
        int i = 0;
        val = msp->X != 0 ? 0xFFFFFFFFu : 0;
        while (msp->size > 0) {
            OPJ_UINT32 v = *msp->data++;  // read one byte at a time
            OPJ_UINT32 m = ~(0xFFu << i); // mask of location
            val = (val & m) | (v << i);   // put one byte in its correct location
            --msp->size;
            i += 8;
        }
    } else {
        val = msp->X != 0 ? 0xFFFFFFFFu : 0;
    }

    // we accumulate in t and keep a count of the number of bits in bits
    bits = 8u - (msp->unstuff ? 1u : 0u);
    t = val & 0xFF;
    unstuff = ((val & 0xFF) == 0xFF);  // Do we need unstuffing next?

    t |= ((val >> 8) & 0xFF) << bits;
    bits += 8u - (unstuff ? 1u : 0u);
    unstuff = (((val >> 8) & 0xFF) == 0xFF);

    t |= ((val >> 16) & 0xFF) << bits;
    bits += 8u - (unstuff ? 1u : 0u);
    unstuff = (((val >> 16) & 0xFF) == 0xFF);

    t |= ((val >> 24) & 0xFF) << bits;
    bits += 8u - (unstuff ? 1u : 0u);
    msp->unstuff = (((val >> 24) & 0xFF) == 0xFF); // for next byte

    msp->tmp |= ((OPJ_UINT64)t) << msp->bits;  // move data to msp->tmp
    msp->bits += bits;
}

//************************************************************************/
/** @brief Initialize frwd_struct_t struct and reads some bytes
  *
  *  @param [in]  msp is a pointer to frwd_struct_t
  *  @param [in]  data is a pointer to the start of data
  *  @param [in]  size is the number of byte in the bitstream
  *  @param [in]  X is the value fed in when the bitstream is exhausted.
  *               See frwd_read.
  */
static INLINE
void frwd_init(frwd_struct_t *msp, const OPJ_UINT8* data, int size,
               OPJ_UINT32 X)
{
    int num, i;

    msp->data = data;
    msp->tmp = 0;
    msp->bits = 0;
    msp->unstuff = OPJ_FALSE;
    msp->size = size;
    msp->X = X;
    assert(msp->X == 0 || msp->X == 0xFF);

    //This code is designed for an architecture that read address should
    // align to the read size (address multiple of 4 if read size is 4)
    //These few lines take care of the case where data is not at a multiple
    // of 4 boundary.  It reads 1,2,3 up to 4 bytes from the bitstream
    num = 4 - (int)((intptr_t)(msp->data) & 0x3);
    for (i = 0; i < num; ++i) {
        OPJ_UINT64 d;
        //read a byte if the buffer is not exhausted, otherwise set it to X
        d = msp->size-- > 0 ? *msp->data++ : msp->X;
        msp->tmp |= (d << msp->bits);      // store data in msp->tmp
        msp->bits += 8u - (msp->unstuff ? 1u : 0u); // number of bits added to msp->tmp
        msp->unstuff = ((d & 0xFF) == 0xFF); // unstuffing for next byte
    }
    frwd_read(msp); // read 32 bits more
}

//************************************************************************/
/** @brief Consume num_bits bits from the bitstream of frwd_struct_t
  *
  *  @param [in]  msp is a pointer to frwd_struct_t
  *  @param [in]  num_bits is the number of bit to consume
  */
static INLINE
void frwd_advance(frwd_struct_t *msp, OPJ_UINT32 num_bits)
{
    assert(num_bits <= msp->bits);
    msp->tmp >>= num_bits;  // consume num_bits
    msp->bits -= num_bits;
}

//************************************************************************/
/** @brief Fetches 32 bits from the frwd_struct_t bitstream
  *
  *  @param [in]  msp is a pointer to frwd_struct_t
  */
static INLINE
OPJ_UINT32 frwd_fetch(frwd_struct_t *msp)
{
    if (msp->bits < 32) {
        frwd_read(msp);
        if (msp->bits < 32) { //need to test
            frwd_read(msp);
        }
    }
    return (OPJ_UINT32)msp->tmp;
}

//************************************************************************/
/** @brief Allocates T1 buffers
  *
  *  @param [in, out]  t1 is codeblock cofficients storage
  *  @param [in]       w is codeblock width
  *  @param [in]       h is codeblock height
  */
static OPJ_BOOL opj_t1_allocate_buffers(
    opj_t1_t *t1,
    OPJ_UINT32 w,
    OPJ_UINT32 h)
{
    OPJ_UINT32 flagssize;

    /* No risk of overflow. Prior checks ensure those assert are met */
    /* They are per the specification */
    assert(w <= 1024);
    assert(h <= 1024);
    assert(w * h <= 4096);

    /* encoder uses tile buffer, so no need to allocate */
    {
        OPJ_UINT32 datasize = w * h;

        if (datasize > t1->datasize) {
            opj_aligned_free(t1->data);
            t1->data = (OPJ_INT32*)
                       opj_aligned_malloc(datasize * sizeof(OPJ_INT32));
            if (!t1->data) {
                /* FIXME event manager error callback */
                return OPJ_FALSE;
            }
            t1->datasize = datasize;
        }
        /* memset first arg is declared to never be null by gcc */
        if (t1->data != NULL) {
            memset(t1->data, 0, datasize * sizeof(OPJ_INT32));
        }
    }

    // We expand these buffers to multiples of 16 bytes.
    // We need 4 buffers of 129 integers each, expanded to 132 integers each
    // We also need 514 bytes of buffer, expanded to 528 bytes
    flagssize = 132U * sizeof(OPJ_UINT32) * 4U; // expanded to multiple of 16
    flagssize += 528U; // 514 expanded to multiples of 16

    {
        if (flagssize > t1->flagssize) {

            opj_aligned_free(t1->flags);
            t1->flags = (opj_flag_t*) opj_aligned_malloc(flagssize);
            if (!t1->flags) {
                /* FIXME event manager error callback */
                return OPJ_FALSE;
            }
        }
        t1->flagssize = flagssize;

        memset(t1->flags, 0, flagssize);
    }

    t1->w = w;
    t1->h = h;

    return OPJ_TRUE;
}

//************************************************************************/
/** @brief Decodes one codeblock, processing the cleanup, siginificance
  *         propagation, and magnitude refinement pass
  *
  *  @param [in, out]  t1 is codeblock cofficients storage
  *  @param [in]       cblk is codeblock properties
  *  @param [in]       orient is the subband to which the codeblock belongs (not needed)
  *  @param [in]       roishift is region of interest shift
  *  @param [in]       cblksty is codeblock style
  *  @param [in]       p_manager is events print manager
  *  @param [in]       p_manager_mutex a mutex to control access to p_manager
  *  @param [in]       check_pterm: check termination (not used)
  */
OPJ_BOOL opj_t1_ht_decode_cblk(opj_t1_t *t1,
                               opj_tcd_cblk_dec_t* cblk,
                               OPJ_UINT32 orient,
                               OPJ_UINT32 roishift,
                               OPJ_UINT32 cblksty,
                               opj_event_mgr_t *p_manager,
                               opj_mutex_t* p_manager_mutex,
                               OPJ_BOOL check_pterm)
{
    OPJ_BYTE* cblkdata = NULL;
    OPJ_UINT8* coded_data;
    OPJ_UINT32* decoded_data;
    OPJ_UINT32 zero_bplanes;
    OPJ_UINT32 num_passes;
    OPJ_UINT32 lengths1;
    OPJ_UINT32 lengths2;
    OPJ_INT32 width;
    OPJ_INT32 height;
    OPJ_INT32 stride;
    OPJ_UINT32 *pflags, *sigma1, *sigma2, *mbr1, *mbr2, *sip, sip_shift;
    OPJ_UINT32 p;
    OPJ_UINT32 zero_bplanes_p1;
    int lcup, scup;
    dec_mel_t mel;
    rev_struct_t vlc;
    frwd_struct_t magsgn;
    frwd_struct_t sigprop;
    rev_struct_t magref;
    OPJ_UINT8 *lsp, *line_state;
    int run;
    OPJ_UINT32 vlc_val;              // fetched data from VLC bitstream
    OPJ_UINT32 qinf[2];
    OPJ_UINT32 c_q;
    OPJ_UINT32* sp;
    OPJ_INT32 x, y; // loop indices
    OPJ_BOOL stripe_causal = (cblksty & J2K_CCP_CBLKSTY_VSC) != 0;
    OPJ_UINT32 cblk_len = 0;

    (void)(orient);      // stops unused parameter message
    (void)(check_pterm); // stops unused parameter message

    // We ignor orient, because the same decoder is used for all subbands
    // We also ignore check_pterm, because I am not sure how it applies
    if (roishift != 0) {
        if (p_manager_mutex) {
            opj_mutex_lock(p_manager_mutex);
        }
        opj_event_msg(p_manager, EVT_ERROR, "We do not support ROI in decoding "
                      "HT codeblocks\n");
        if (p_manager_mutex) {
            opj_mutex_unlock(p_manager_mutex);
        }
        return OPJ_FALSE;
    }

    if (!opj_t1_allocate_buffers(
                t1,
                (OPJ_UINT32)(cblk->x1 - cblk->x0),
                (OPJ_UINT32)(cblk->y1 - cblk->y0))) {
        return OPJ_FALSE;
    }

    if (cblk->Mb == 0) {
        return OPJ_TRUE;
    }

    /* numbps = Mb + 1 - zero_bplanes, Mb = Kmax, zero_bplanes = missing_msbs */
    zero_bplanes = (cblk->Mb + 1) - cblk->numbps;

    /* Compute whole codeblock length from chunk lengths */
    cblk_len = 0;
    {
        OPJ_UINT32 i;
        for (i = 0; i < cblk->numchunks; i++) {
            cblk_len += cblk->chunks[i].len;
        }
    }

    if (cblk->numchunks > 1 || t1->mustuse_cblkdatabuffer) {
        OPJ_UINT32 i;

        /* Allocate temporary memory if needed */
        if (cblk_len > t1->cblkdatabuffersize) {
            cblkdata = (OPJ_BYTE*)opj_realloc(
                           t1->cblkdatabuffer, cblk_len);
            if (cblkdata == NULL) {
                return OPJ_FALSE;
            }
            t1->cblkdatabuffer = cblkdata;
            t1->cblkdatabuffersize = cblk_len;
        }

        /* Concatenate all chunks */
        cblkdata = t1->cblkdatabuffer;
        cblk_len = 0;
        for (i = 0; i < cblk->numchunks; i++) {
            memcpy(cblkdata + cblk_len, cblk->chunks[i].data, cblk->chunks[i].len);
            cblk_len += cblk->chunks[i].len;
        }
    } else if (cblk->numchunks == 1) {
        cblkdata = cblk->chunks[0].data;
    } else {
        /* Not sure if that can happen in practice, but avoid Coverity to */
        /* think we will dereference a null cblkdta pointer */
        return OPJ_TRUE;
    }

    // OPJ_BYTE* coded_data is a pointer to bitstream
    coded_data = cblkdata;
    // OPJ_UINT32* decoded_data is a pointer to decoded codeblock data buf.
    decoded_data = (OPJ_UINT32*)t1->data;
    // OPJ_UINT32 num_passes is the number of passes: 1 if CUP only, 2 for
    // CUP+SPP, and 3 for CUP+SPP+MRP
    num_passes = cblk->numsegs > 0 ? cblk->segs[0].real_num_passes : 0;
    num_passes += cblk->numsegs > 1 ? cblk->segs[1].real_num_passes : 0;
    // OPJ_UINT32 lengths1 is the length of cleanup pass
    lengths1 = num_passes > 0 ? cblk->segs[0].len : 0;
    // OPJ_UINT32 lengths2 is the length of refinement passes (either SPP only or SPP+MRP)
    lengths2 = num_passes > 1 ? cblk->segs[1].len : 0;
    // OPJ_INT32 width is the decoded codeblock width
    width = cblk->x1 - cblk->x0;
    // OPJ_INT32 height is the decoded codeblock height
    height = cblk->y1 - cblk->y0;
    // OPJ_INT32 stride is the decoded codeblock buffer stride
    stride = width;

    /*  sigma1 and sigma2 contains significant (i.e., non-zero) pixel
     *  locations.  The buffers are used interchangeably, because we need
     *  more than 4 rows of significance information at a given time.
     *  Each 32 bits contain significance information for 4 rows of 8
     *  columns each.  If we denote 32 bits by 0xaaaaaaaa, the each "a" is
     *  called a nibble and has significance information for 4 rows.
     *  The least significant nibble has information for the first column,
     *  and so on. The nibble's LSB is for the first row, and so on.
     *  Since, at most, we can have 1024 columns in a quad, we need 128
     *  entries; we added 1 for convenience when propagation of signifcance
     *  goes outside the structure
     *  To work in OpenJPEG these buffers has been expanded to 132.
     */
    // OPJ_UINT32 *pflags, *sigma1, *sigma2, *mbr1, *mbr2, *sip, sip_shift;
    pflags = (OPJ_UINT32 *)t1->flags;
    sigma1 = pflags;
    sigma2 = sigma1 + 132;
    // mbr arrangement is similar to sigma; mbr contains locations
    // that become significant during significance propagation pass
    mbr1 = sigma2 + 132;
    mbr2 = mbr1 + 132;
    //a pointer to sigma
    sip = sigma1;  //pointers to arrays to be used interchangeably
    sip_shift = 0; //the amount of shift needed for sigma

    if (num_passes > 1 && lengths2 == 0) {
        if (p_manager_mutex) {
            opj_mutex_lock(p_manager_mutex);
        }
        opj_event_msg(p_manager, EVT_WARNING, "A malformed codeblock that has "
                      "more than one coding pass, but zero length for "
                      "2nd and potentially the 3rd pass in an HT codeblock.\n");
        if (p_manager_mutex) {
            opj_mutex_unlock(p_manager_mutex);
        }
        num_passes = 1;
    }
    if (num_passes > 3) {
        if (p_manager_mutex) {
            opj_mutex_lock(p_manager_mutex);
        }
        opj_event_msg(p_manager, EVT_ERROR, "We do not support more than 3 "
                      "coding passes in an HT codeblock; This codeblocks has "
                      "%d passes.\n", num_passes);
        if (p_manager_mutex) {
            opj_mutex_unlock(p_manager_mutex);
        }
        return OPJ_FALSE;
    }

    if (cblk->Mb > 30) {
        /* This check is better moved to opj_t2_read_packet_header() in t2.c
           We do not have enough precision to decode any passes
           The design of openjpeg assumes that the bits of a 32-bit integer are
           assigned as follows:
           bit 31 is for sign
           bits 30-1 are for magnitude
           bit 0 is for the center of the quantization bin
           Therefore we can only do values of cblk->Mb <= 30
         */
        if (p_manager_mutex) {
            opj_mutex_lock(p_manager_mutex);
        }
        opj_event_msg(p_manager, EVT_ERROR, "32 bits are not enough to "
                      "decode this codeblock, since the number of "
                      "bitplane, %d, is larger than 30.\n", cblk->Mb);
        if (p_manager_mutex) {
            opj_mutex_unlock(p_manager_mutex);
        }
        return OPJ_FALSE;
    }
    if (zero_bplanes > cblk->Mb) {
        /* This check is better moved to opj_t2_read_packet_header() in t2.c,
           in the line "l_cblk->numbps = (OPJ_UINT32)l_band->numbps + 1 - i;"
           where i is the zero bitplanes, and should be no larger than cblk->Mb
           We cannot have more zero bitplanes than there are planes. */
        if (p_manager_mutex) {
            opj_mutex_lock(p_manager_mutex);
        }
        opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. "
                      "Decoding this codeblock is stopped. There are "
                      "%d zero bitplanes in %d bitplanes.\n",
                      zero_bplanes, cblk->Mb);

        if (p_manager_mutex) {
            opj_mutex_unlock(p_manager_mutex);
        }
        return OPJ_FALSE;
    } else if (zero_bplanes == cblk->Mb && num_passes > 1) {
        /* When the number of zero bitplanes is equal to the number of bitplanes,
           only the cleanup pass makes sense*/
        if (only_cleanup_pass_is_decoded == OPJ_FALSE) {
            if (p_manager_mutex) {
                opj_mutex_lock(p_manager_mutex);
            }
            /* We have a second check to prevent the possibility of an overrun condition,
               in the very unlikely event of a second thread discovering that
               only_cleanup_pass_is_decoded is false before the first thread changing
               the condition. */
            if (only_cleanup_pass_is_decoded == OPJ_FALSE) {
                only_cleanup_pass_is_decoded = OPJ_TRUE;
                opj_event_msg(p_manager, EVT_WARNING, "Malformed HT codeblock. "
                              "When the number of zero planes bitplanes is "
                              "equal to the number of bitplanes, only the cleanup "
                              "pass makes sense, but we have %d passes in this "
                              "codeblock. Therefore, only the cleanup pass will be "
                              "decoded. This message will not be displayed again.\n",
                              num_passes);
            }
            if (p_manager_mutex) {
                opj_mutex_unlock(p_manager_mutex);
            }
        }
        num_passes = 1;
    }

    /* OPJ_UINT32 */
    p = cblk->numbps;

    // OPJ_UINT32 zero planes plus 1
    zero_bplanes_p1 = zero_bplanes + 1;

    if (lengths1 < 2 || (OPJ_UINT32)lengths1 > cblk_len ||
            (OPJ_UINT32)(lengths1 + lengths2) > cblk_len) {
        if (p_manager_mutex) {
            opj_mutex_lock(p_manager_mutex);
        }
        opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. "
                      "Invalid codeblock length values.\n");

        if (p_manager_mutex) {
            opj_mutex_unlock(p_manager_mutex);
        }
        return OPJ_FALSE;
    }
    // read scup and fix the bytes there
    lcup = (int)lengths1;  // length of CUP
    //scup is the length of MEL + VLC
    scup = (((int)coded_data[lcup - 1]) << 4) + (coded_data[lcup - 2] & 0xF);
    if (scup < 2 || scup > lcup || scup > 4079) { //something is wrong
        /* The standard stipulates 2 <= Scup <= min(Lcup, 4079) */
        if (p_manager_mutex) {
            opj_mutex_lock(p_manager_mutex);
        }
        opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. "
                      "One of the following condition is not met: "
                      "2 <= Scup <= min(Lcup, 4079)\n");

        if (p_manager_mutex) {
            opj_mutex_unlock(p_manager_mutex);
        }
        return OPJ_FALSE;
    }

    // init structures
    mel_init(&mel, coded_data, lcup, scup);
    rev_init(&vlc, coded_data, lcup, scup);
    frwd_init(&magsgn, coded_data, lcup - scup, 0xFF);
    if (num_passes > 1) { // needs to be tested
        frwd_init(&sigprop, coded_data + lengths1, (int)lengths2, 0);
    }
    if (num_passes > 2) {
        rev_init_mrp(&magref, coded_data, (int)lengths1, (int)lengths2);
    }

    /** State storage
      *  One byte per quad; for 1024 columns, or 512 quads, we need
      *  512 bytes. We are using 2 extra bytes one on the left and one on
      *  the right for convenience.
      *
      *  The MSB bit in each byte is (\sigma^nw | \sigma^n), and the 7 LSBs
      *  contain max(E^nw | E^n)
      */

    // 514 is enough for a block width of 1024, +2 extra
    // here expanded to 528
    line_state = (OPJ_UINT8 *)(mbr2 + 132);

    //initial 2 lines
    /////////////////
    lsp = line_state;              // point to line state
    lsp[0] = 0;                    // for initial row of quad, we set to 0
    run = mel_get_run(&mel);    // decode runs of events from MEL bitstrm
    // data represented as runs of 0 events
    // See mel_decode description
    qinf[0] = qinf[1] = 0;      // quad info decoded from VLC bitstream
    c_q = 0;                    // context for quad q
    sp = decoded_data;          // decoded codeblock samples
    // vlc_val;                 // fetched data from VLC bitstream

    for (x = 0; x < width; x += 4) { // one iteration per quad pair
        OPJ_UINT32 U_q[2]; // u values for the quad pair
        OPJ_UINT32 uvlc_mode;
        OPJ_UINT32 consumed_bits;
        OPJ_UINT32 m_n, v_n;
        OPJ_UINT32 ms_val;
        OPJ_UINT32 locs;

        // decode VLC
        /////////////

        //first quad
        // Get the head of the VLC bitstream. One fetch is enough for two
        // quads, since the largest VLC code is 7 bits, and maximum number of
        // bits used for u is 8.  Therefore for two quads we need 30 bits
        // (if we include unstuffing, then 32 bits are enough, since we have
        // a maximum of one stuffing per two bytes)
        vlc_val = rev_fetch(&vlc);

        //decode VLC using the context c_q and the head of the VLC bitstream
        qinf[0] = vlc_tbl0[(c_q << 7) | (vlc_val & 0x7F) ];

        if (c_q == 0) { // if zero context, we need to use one MEL event
            run -= 2; //the number of 0 events is multiplied by 2, so subtract 2

            // Is the run terminated in 1? if so, use decoded VLC code,
            // otherwise, discard decoded data, since we will decoded again
            // using a different context
            qinf[0] = (run == -1) ? qinf[0] : 0;

            // is run -1 or -2? this means a run has been consumed
            if (run < 0) {
                run = mel_get_run(&mel);    // get another run
            }
        }

        // prepare context for the next quad; eqn. 1 in ITU T.814
        c_q = ((qinf[0] & 0x10) >> 4) | ((qinf[0] & 0xE0) >> 5);

        //remove data from vlc stream (0 bits are removed if qinf is not used)
        vlc_val = rev_advance(&vlc, qinf[0] & 0x7);

        //update sigma
        // The update depends on the value of x; consider one OPJ_UINT32
        // if x is 0, 8, 16 and so on, then this line update c locations
        //      nibble (4 bits) number   0 1 2 3 4 5 6 7
        //                         LSB   c c 0 0 0 0 0 0
        //                               c c 0 0 0 0 0 0
        //                               0 0 0 0 0 0 0 0
        //                               0 0 0 0 0 0 0 0
        // if x is 4, 12, 20, then this line update locations c
        //      nibble (4 bits) number   0 1 2 3 4 5 6 7
        //                         LSB   0 0 0 0 c c 0 0
        //                               0 0 0 0 c c 0 0
        //                               0 0 0 0 0 0 0 0
        //                               0 0 0 0 0 0 0 0
        *sip |= (((qinf[0] & 0x30) >> 4) | ((qinf[0] & 0xC0) >> 2)) << sip_shift;

        //second quad
        qinf[1] = 0;
        if (x + 2 < width) { // do not run if codeblock is narrower
            //decode VLC using the context c_q and the head of the VLC bitstream
            qinf[1] = vlc_tbl0[(c_q << 7) | (vlc_val & 0x7F)];

            // if context is zero, use one MEL event
            if (c_q == 0) { //zero context
                run -= 2; //subtract 2, since events number if multiplied by 2

                // if event is 0, discard decoded qinf
                qinf[1] = (run == -1) ? qinf[1] : 0;

                if (run < 0) { // have we consumed all events in a run
                    run = mel_get_run(&mel);    // if yes, then get another run
                }
            }

            //prepare context for the next quad, eqn. 1 in ITU T.814
            c_q = ((qinf[1] & 0x10) >> 4) | ((qinf[1] & 0xE0) >> 5);

            //remove data from vlc stream, if qinf is not used, cwdlen is 0
            vlc_val = rev_advance(&vlc, qinf[1] & 0x7);
        }

        //update sigma
        // The update depends on the value of x; consider one OPJ_UINT32
        // if x is 0, 8, 16 and so on, then this line update c locations
        //      nibble (4 bits) number   0 1 2 3 4 5 6 7
        //                         LSB   0 0 c c 0 0 0 0
        //                               0 0 c c 0 0 0 0
        //                               0 0 0 0 0 0 0 0
        //                               0 0 0 0 0 0 0 0
        // if x is 4, 12, 20, then this line update locations c
        //      nibble (4 bits) number   0 1 2 3 4 5 6 7
        //                         LSB   0 0 0 0 0 0 c c
        //                               0 0 0 0 0 0 c c
        //                               0 0 0 0 0 0 0 0
        //                               0 0 0 0 0 0 0 0
        *sip |= (((qinf[1] & 0x30) | ((qinf[1] & 0xC0) << 2))) << (4 + sip_shift);

        sip += x & 0x7 ? 1 : 0; // move sigma pointer to next entry
        sip_shift ^= 0x10;      // increment/decrement sip_shift by 16

        // retrieve u
        /////////////

        // uvlc_mode is made up of u_offset bits from the quad pair
        uvlc_mode = ((qinf[0] & 0x8) >> 3) | ((qinf[1] & 0x8) >> 2);
        if (uvlc_mode == 3) { // if both u_offset are set, get an event from
            // the MEL run of events
            run -= 2; //subtract 2, since events number if multiplied by 2
            uvlc_mode += (run == -1) ? 1 : 0; //increment uvlc_mode if event is 1
            if (run < 0) { // if run is consumed (run is -1 or -2), get another run
                run = mel_get_run(&mel);
            }
        }
        //decode uvlc_mode to get u for both quads
        consumed_bits = decode_init_uvlc(vlc_val, uvlc_mode, U_q);
        if (U_q[0] > zero_bplanes_p1 || U_q[1] > zero_bplanes_p1) {
            if (p_manager_mutex) {
                opj_mutex_lock(p_manager_mutex);
            }
            opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. Decoding "
                          "this codeblock is stopped. U_q is larger than zero "
                          "bitplanes + 1 \n");
            if (p_manager_mutex) {
                opj_mutex_unlock(p_manager_mutex);
            }
            return OPJ_FALSE;
        }

        //consume u bits in the VLC code
        vlc_val = rev_advance(&vlc, consumed_bits);

        //decode magsgn and update line_state
        /////////////////////////////////////

        //We obtain a mask for the samples locations that needs evaluation
        locs = 0xFF;
        if (x + 4 > width) {
            locs >>= (x + 4 - width) << 1;    // limits width
        }
        locs = height > 1 ? locs : (locs & 0x55);         // limits height

        if ((((qinf[0] & 0xF0) >> 4) | (qinf[1] & 0xF0)) & ~locs) {
            if (p_manager_mutex) {
                opj_mutex_lock(p_manager_mutex);
            }
            opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. "
                          "VLC code produces significant samples outside "
                          "the codeblock area.\n");
            if (p_manager_mutex) {
                opj_mutex_unlock(p_manager_mutex);
            }
            return OPJ_FALSE;
        }

        //first quad, starting at first sample in quad and moving on
        if (qinf[0] & 0x10) { //is it significant? (sigma_n)
            OPJ_UINT32 val;

            ms_val = frwd_fetch(&magsgn);         //get 32 bits of magsgn data
            m_n = U_q[0] - ((qinf[0] >> 12) & 1); //evaluate m_n (number of bits
            // to read from bitstream), using EMB e_k
            frwd_advance(&magsgn, m_n);         //consume m_n
            val = ms_val << 31;                 //get sign bit
            v_n = ms_val & ((1U << m_n) - 1);   //keep only m_n bits
            v_n |= ((qinf[0] & 0x100) >> 8) << m_n;  //add EMB e_1 as MSB
            v_n |= 1;                                //add center of bin
            //v_n now has 2 * (\mu - 1) + 0.5 with correct sign bit
            //add 2 to make it 2*\mu+0.5, shift it up to missing MSBs
            sp[0] = val | ((v_n + 2) << (p - 1));
        } else if (locs & 0x1) { // if this is inside the codeblock, set the
            sp[0] = 0;           // sample to zero
        }

        if (qinf[0] & 0x20) { //sigma_n
            OPJ_UINT32 val, t;

            ms_val = frwd_fetch(&magsgn);         //get 32 bits
            m_n = U_q[0] - ((qinf[0] >> 13) & 1); //m_n, uses EMB e_k
            frwd_advance(&magsgn, m_n);           //consume m_n
            val = ms_val << 31;                   //get sign bit
            v_n = ms_val & ((1U << m_n) - 1);     //keep only m_n bits
            v_n |= ((qinf[0] & 0x200) >> 9) << m_n; //add EMB e_1
            v_n |= 1;                               //bin center
            //v_n now has 2 * (\mu - 1) + 0.5 with correct sign bit
            //add 2 to make it 2*\mu+0.5, shift it up to missing MSBs
            sp[stride] = val | ((v_n + 2) << (p - 1));

            //update line_state: bit 7 (\sigma^N), and E^N
            t = lsp[0] & 0x7F;       // keep E^NW
            v_n = 32 - count_leading_zeros(v_n);
            lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n)); //max(E^NW, E^N) | s
        } else if (locs & 0x2) { // if this is inside the codeblock, set the
            sp[stride] = 0;      // sample to zero
        }

        ++lsp; // move to next quad information
        ++sp;  // move to next column of samples

        //this is similar to the above two samples
        if (qinf[0] & 0x40) {
            OPJ_UINT32 val;

            ms_val = frwd_fetch(&magsgn);
            m_n = U_q[0] - ((qinf[0] >> 14) & 1);
            frwd_advance(&magsgn, m_n);
            val = ms_val << 31;
            v_n = ms_val & ((1U << m_n) - 1);
            v_n |= (((qinf[0] & 0x400) >> 10) << m_n);
            v_n |= 1;
            sp[0] = val | ((v_n + 2) << (p - 1));
        } else if (locs & 0x4) {
            sp[0] = 0;
        }

        lsp[0] = 0;
        if (qinf[0] & 0x80) {
            OPJ_UINT32 val;
            ms_val = frwd_fetch(&magsgn);
            m_n = U_q[0] - ((qinf[0] >> 15) & 1); //m_n
            frwd_advance(&magsgn, m_n);
            val = ms_val << 31;
            v_n = ms_val & ((1U << m_n) - 1);
            v_n |= ((qinf[0] & 0x800) >> 11) << m_n;
            v_n |= 1; //center of bin
            sp[stride] = val | ((v_n + 2) << (p - 1));

            //line_state: bit 7 (\sigma^NW), and E^NW for next quad
            lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n)));
        } else if (locs & 0x8) { //if outside set to 0
            sp[stride] = 0;
        }

        ++sp; //move to next column

        //second quad
        if (qinf[1] & 0x10) {
            OPJ_UINT32 val;

            ms_val = frwd_fetch(&magsgn);
            m_n = U_q[1] - ((qinf[1] >> 12) & 1); //m_n
            frwd_advance(&magsgn, m_n);
            val = ms_val << 31;
            v_n = ms_val & ((1U << m_n) - 1);
            v_n |= (((qinf[1] & 0x100) >> 8) << m_n);
            v_n |= 1;
            sp[0] = val | ((v_n + 2) << (p - 1));
        } else if (locs & 0x10) {
            sp[0] = 0;
        }

        if (qinf[1] & 0x20) {
            OPJ_UINT32 val, t;

            ms_val = frwd_fetch(&magsgn);
            m_n = U_q[1] - ((qinf[1] >> 13) & 1); //m_n
            frwd_advance(&magsgn, m_n);
            val = ms_val << 31;
            v_n = ms_val & ((1U << m_n) - 1);
            v_n |= (((qinf[1] & 0x200) >> 9) << m_n);
            v_n |= 1;
            sp[stride] = val | ((v_n + 2) << (p - 1));

            //update line_state: bit 7 (\sigma^N), and E^N
            t = lsp[0] & 0x7F;            //E^NW
            v_n = 32 - count_leading_zeros(v_n);     //E^N
            lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n)); //max(E^NW, E^N) | s
        } else if (locs & 0x20) {
            sp[stride] = 0;    //no need to update line_state
        }

        ++lsp; //move line state to next quad
        ++sp;  //move to next sample

        if (qinf[1] & 0x40) {
            OPJ_UINT32 val;

            ms_val = frwd_fetch(&magsgn);
            m_n = U_q[1] - ((qinf[1] >> 14) & 1); //m_n
            frwd_advance(&magsgn, m_n);
            val = ms_val << 31;
            v_n = ms_val & ((1U << m_n) - 1);
            v_n |= (((qinf[1] & 0x400) >> 10) << m_n);
            v_n |= 1;
            sp[0] = val | ((v_n + 2) << (p - 1));
        } else if (locs & 0x40) {
            sp[0] = 0;
        }

        lsp[0] = 0;
        if (qinf[1] & 0x80) {
            OPJ_UINT32 val;

            ms_val = frwd_fetch(&magsgn);
            m_n = U_q[1] - ((qinf[1] >> 15) & 1); //m_n
            frwd_advance(&magsgn, m_n);
            val = ms_val << 31;
            v_n = ms_val & ((1U << m_n) - 1);
            v_n |= (((qinf[1] & 0x800) >> 11) << m_n);
            v_n |= 1; //center of bin
            sp[stride] = val | ((v_n + 2) << (p - 1));

            //line_state: bit 7 (\sigma^NW), and E^NW for next quad
            lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n)));
        } else if (locs & 0x80) {
            sp[stride] = 0;
        }

        ++sp;
    }

    //non-initial lines
    //////////////////////////
    for (y = 2; y < height; /*done at the end of loop*/) {
        OPJ_UINT32 *sip;
        OPJ_UINT8 ls0;
        OPJ_INT32 x;

        sip_shift ^= 0x2;  // shift sigma to the upper half od the nibble
        sip_shift &= 0xFFFFFFEFU; //move back to 0 (it might have been at 0x10)
        sip = y & 0x4 ? sigma2 : sigma1; //choose sigma array

        lsp = line_state;
        ls0 = lsp[0];                   // read the line state value
        lsp[0] = 0;                     // and set it to zero
        sp = decoded_data + y * stride; // generated samples
        c_q = 0;                        // context
        for (x = 0; x < width; x += 4) {
            OPJ_UINT32 U_q[2];
            OPJ_UINT32 uvlc_mode, consumed_bits;
            OPJ_UINT32 m_n, v_n;
            OPJ_UINT32 ms_val;
            OPJ_UINT32 locs;

            // decode vlc
            /////////////

            //first quad
            // get context, eqn. 2 ITU T.814
            // c_q has \sigma^W | \sigma^SW
            c_q |= (ls0 >> 7);          //\sigma^NW | \sigma^N
            c_q |= (lsp[1] >> 5) & 0x4; //\sigma^NE | \sigma^NF

            //the following is very similar to previous code, so please refer to
            // that
            vlc_val = rev_fetch(&vlc);
            qinf[0] = vlc_tbl1[(c_q << 7) | (vlc_val & 0x7F)];
            if (c_q == 0) { //zero context
                run -= 2;
                qinf[0] = (run == -1) ? qinf[0] : 0;
                if (run < 0) {
                    run = mel_get_run(&mel);
                }
            }
            //prepare context for the next quad, \sigma^W | \sigma^SW
            c_q = ((qinf[0] & 0x40) >> 5) | ((qinf[0] & 0x80) >> 6);

            //remove data from vlc stream
            vlc_val = rev_advance(&vlc, qinf[0] & 0x7);

            //update sigma
            // The update depends on the value of x and y; consider one OPJ_UINT32
            // if x is 0, 8, 16 and so on, and y is 2, 6, etc., then this
            // line update c locations
            //      nibble (4 bits) number   0 1 2 3 4 5 6 7
            //                         LSB   0 0 0 0 0 0 0 0
            //                               0 0 0 0 0 0 0 0
            //                               c c 0 0 0 0 0 0
            //                               c c 0 0 0 0 0 0
            *sip |= (((qinf[0] & 0x30) >> 4) | ((qinf[0] & 0xC0) >> 2)) << sip_shift;

            //second quad
            qinf[1] = 0;
            if (x + 2 < width) {
                c_q |= (lsp[1] >> 7);
                c_q |= (lsp[2] >> 5) & 0x4;
                qinf[1] = vlc_tbl1[(c_q << 7) | (vlc_val & 0x7F)];
                if (c_q == 0) { //zero context
                    run -= 2;
                    qinf[1] = (run == -1) ? qinf[1] : 0;
                    if (run < 0) {
                        run = mel_get_run(&mel);
                    }
                }
                //prepare context for the next quad
                c_q = ((qinf[1] & 0x40) >> 5) | ((qinf[1] & 0x80) >> 6);
                //remove data from vlc stream
                vlc_val = rev_advance(&vlc, qinf[1] & 0x7);
            }

            //update sigma
            *sip |= (((qinf[1] & 0x30) | ((qinf[1] & 0xC0) << 2))) << (4 + sip_shift);

            sip += x & 0x7 ? 1 : 0;
            sip_shift ^= 0x10;

            //retrieve u
            ////////////
            uvlc_mode = ((qinf[0] & 0x8) >> 3) | ((qinf[1] & 0x8) >> 2);
            consumed_bits = decode_noninit_uvlc(vlc_val, uvlc_mode, U_q);
            vlc_val = rev_advance(&vlc, consumed_bits);

            //calculate E^max and add it to U_q, eqns 5 and 6 in ITU T.814
            if ((qinf[0] & 0xF0) & ((qinf[0] & 0xF0) - 1)) { // is \gamma_q 1?
                OPJ_UINT32 E = (ls0 & 0x7Fu);
                E = E > (lsp[1] & 0x7Fu) ? E : (lsp[1] & 0x7Fu); //max(E, E^NE, E^NF)
                //since U_q already has u_q + 1, we subtract 2 instead of 1
                U_q[0] += E > 2 ? E - 2 : 0;
            }

            if ((qinf[1] & 0xF0) & ((qinf[1] & 0xF0) - 1)) { //is \gamma_q 1?
                OPJ_UINT32 E = (lsp[1] & 0x7Fu);
                E = E > (lsp[2] & 0x7Fu) ? E : (lsp[2] & 0x7Fu); //max(E, E^NE, E^NF)
                //since U_q already has u_q + 1, we subtract 2 instead of 1
                U_q[1] += E > 2 ? E - 2 : 0;
            }

            if (U_q[0] > zero_bplanes_p1 || U_q[1] > zero_bplanes_p1) {
                if (p_manager_mutex) {
                    opj_mutex_lock(p_manager_mutex);
                }
                opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. "
                              "Decoding this codeblock is stopped. U_q is"
                              "larger than bitplanes + 1 \n");
                if (p_manager_mutex) {
                    opj_mutex_unlock(p_manager_mutex);
                }
                return OPJ_FALSE;
            }

            ls0 = lsp[2]; //for next double quad
            lsp[1] = lsp[2] = 0;

            //decode magsgn and update line_state
            /////////////////////////////////////

            //locations where samples need update
            locs = 0xFF;
            if (x + 4 > width) {
                locs >>= (x + 4 - width) << 1;
            }
            locs = y + 2 <= height ? locs : (locs & 0x55);

            if ((((qinf[0] & 0xF0) >> 4) | (qinf[1] & 0xF0)) & ~locs) {
                if (p_manager_mutex) {
                    opj_mutex_lock(p_manager_mutex);
                }
                opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. "
                              "VLC code produces significant samples outside "
                              "the codeblock area.\n");
                if (p_manager_mutex) {
                    opj_mutex_unlock(p_manager_mutex);
                }
                return OPJ_FALSE;
            }



            if (qinf[0] & 0x10) { //sigma_n
                OPJ_UINT32 val;

                ms_val = frwd_fetch(&magsgn);
                m_n = U_q[0] - ((qinf[0] >> 12) & 1); //m_n
                frwd_advance(&magsgn, m_n);
                val = ms_val << 31;
                v_n = ms_val & ((1U << m_n) - 1);
                v_n |= ((qinf[0] & 0x100) >> 8) << m_n;
                v_n |= 1; //center of bin
                sp[0] = val | ((v_n + 2) << (p - 1));
            } else if (locs & 0x1) {
                sp[0] = 0;
            }

            if (qinf[0] & 0x20) { //sigma_n
                OPJ_UINT32 val, t;

                ms_val = frwd_fetch(&magsgn);
                m_n = U_q[0] - ((qinf[0] >> 13) & 1); //m_n
                frwd_advance(&magsgn, m_n);
                val = ms_val << 31;
                v_n = ms_val & ((1U << m_n) - 1);
                v_n |= ((qinf[0] & 0x200) >> 9) << m_n;
                v_n |= 1; //center of bin
                sp[stride] = val | ((v_n + 2) << (p - 1));

                //update line_state: bit 7 (\sigma^N), and E^N
                t = lsp[0] & 0x7F;          //E^NW
                v_n = 32 - count_leading_zeros(v_n);
                lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n));
            } else if (locs & 0x2) {
                sp[stride] = 0;    //no need to update line_state
            }

            ++lsp;
            ++sp;

            if (qinf[0] & 0x40) { //sigma_n
                OPJ_UINT32 val;

                ms_val = frwd_fetch(&magsgn);
                m_n = U_q[0] - ((qinf[0] >> 14) & 1); //m_n
                frwd_advance(&magsgn, m_n);
                val = ms_val << 31;
                v_n = ms_val & ((1U << m_n) - 1);
                v_n |= (((qinf[0] & 0x400) >> 10) << m_n);
                v_n |= 1;                            //center of bin
                sp[0] = val | ((v_n + 2) << (p - 1));
            } else if (locs & 0x4) {
                sp[0] = 0;
            }

            if (qinf[0] & 0x80) { //sigma_n
                OPJ_UINT32 val;

                ms_val = frwd_fetch(&magsgn);
                m_n = U_q[0] - ((qinf[0] >> 15) & 1); //m_n
                frwd_advance(&magsgn, m_n);
                val = ms_val << 31;
                v_n = ms_val & ((1U << m_n) - 1);
                v_n |= ((qinf[0] & 0x800) >> 11) << m_n;
                v_n |= 1; //center of bin
                sp[stride] = val | ((v_n + 2) << (p - 1));

                //update line_state: bit 7 (\sigma^NW), and E^NW for next quad
                lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n)));
            } else if (locs & 0x8) {
                sp[stride] = 0;
            }

            ++sp;

            if (qinf[1] & 0x10) { //sigma_n
                OPJ_UINT32 val;

                ms_val = frwd_fetch(&magsgn);
                m_n = U_q[1] - ((qinf[1] >> 12) & 1); //m_n
                frwd_advance(&magsgn, m_n);
                val = ms_val << 31;
                v_n = ms_val & ((1U << m_n) - 1);
                v_n |= (((qinf[1] & 0x100) >> 8) << m_n);
                v_n |= 1;                            //center of bin
                sp[0] = val | ((v_n + 2) << (p - 1));
            } else if (locs & 0x10) {
                sp[0] = 0;
            }

            if (qinf[1] & 0x20) { //sigma_n
                OPJ_UINT32 val, t;

                ms_val = frwd_fetch(&magsgn);
                m_n = U_q[1] - ((qinf[1] >> 13) & 1); //m_n
                frwd_advance(&magsgn, m_n);
                val = ms_val << 31;
                v_n = ms_val & ((1U << m_n) - 1);
                v_n |= (((qinf[1] & 0x200) >> 9) << m_n);
                v_n |= 1; //center of bin
                sp[stride] = val | ((v_n + 2) << (p - 1));

                //update line_state: bit 7 (\sigma^N), and E^N
                t = lsp[0] & 0x7F;          //E^NW
                v_n = 32 - count_leading_zeros(v_n);
                lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n));
            } else if (locs & 0x20) {
                sp[stride] = 0;    //no need to update line_state
            }

            ++lsp;
            ++sp;

            if (qinf[1] & 0x40) { //sigma_n
                OPJ_UINT32 val;

                ms_val = frwd_fetch(&magsgn);
                m_n = U_q[1] - ((qinf[1] >> 14) & 1); //m_n
                frwd_advance(&magsgn, m_n);
                val = ms_val << 31;
                v_n = ms_val & ((1U << m_n) - 1);
                v_n |= (((qinf[1] & 0x400) >> 10) << m_n);
                v_n |= 1;                            //center of bin
                sp[0] = val | ((v_n + 2) << (p - 1));
            } else if (locs & 0x40) {
                sp[0] = 0;
            }

            if (qinf[1] & 0x80) { //sigma_n
                OPJ_UINT32 val;

                ms_val = frwd_fetch(&magsgn);
                m_n = U_q[1] - ((qinf[1] >> 15) & 1); //m_n
                frwd_advance(&magsgn, m_n);
                val = ms_val << 31;
                v_n = ms_val & ((1U << m_n) - 1);
                v_n |= (((qinf[1] & 0x800) >> 11) << m_n);
                v_n |= 1; //center of bin
                sp[stride] = val | ((v_n + 2) << (p - 1));

                //update line_state: bit 7 (\sigma^NW), and E^NW for next quad
                lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n)));
            } else if (locs & 0x80) {
                sp[stride] = 0;
            }

            ++sp;
        }

        y += 2;
        if (num_passes > 1 && (y & 3) == 0) { //executed at multiples of 4
            // This is for SPP and potentially MRP

            if (num_passes > 2) { //do MRP
                // select the current stripe
                OPJ_UINT32 *cur_sig = y & 0x4 ? sigma1 : sigma2;
                // the address of the data that needs updating
                OPJ_UINT32 *dpp = decoded_data + (y - 4) * stride;
                OPJ_UINT32 half = 1u << (p - 2); // half the center of the bin
                OPJ_INT32 i;
                for (i = 0; i < width; i += 8) {
                    //Process one entry from sigma array at a time
                    // Each nibble (4 bits) in the sigma array represents 4 rows,
                    // and the 32 bits contain 8 columns
                    OPJ_UINT32 cwd = rev_fetch_mrp(&magref); // get 32 bit data
                    OPJ_UINT32 sig = *cur_sig++; // 32 bit that will be processed now
                    OPJ_UINT32 col_mask = 0xFu;  // a mask for a column in sig
                    OPJ_UINT32 *dp = dpp + i;    // next column in decode samples
                    if (sig) { // if any of the 32 bits are set
                        int j;
                        for (j = 0; j < 8; ++j, dp++) { //one column at a time
                            if (sig & col_mask) { // lowest nibble
                                OPJ_UINT32 sample_mask = 0x11111111u & col_mask; //LSB

                                if (sig & sample_mask) { //if LSB is set
                                    OPJ_UINT32 sym;

                                    assert(dp[0] != 0); // decoded value cannot be zero
                                    sym = cwd & 1; // get it value
                                    // remove center of bin if sym is 0
                                    dp[0] ^= (1 - sym) << (p - 1);
                                    dp[0] |= half;      // put half the center of bin
                                    cwd >>= 1;          //consume word
                                }
                                sample_mask += sample_mask; //next row

                                if (sig & sample_mask) {
                                    OPJ_UINT32 sym;

                                    assert(dp[stride] != 0);
                                    sym = cwd & 1;
                                    dp[stride] ^= (1 - sym) << (p - 1);
                                    dp[stride] |= half;
                                    cwd >>= 1;
                                }
                                sample_mask += sample_mask;

                                if (sig & sample_mask) {
                                    OPJ_UINT32 sym;

                                    assert(dp[2 * stride] != 0);
                                    sym = cwd & 1;
                                    dp[2 * stride] ^= (1 - sym) << (p - 1);
                                    dp[2 * stride] |= half;
                                    cwd >>= 1;
                                }
                                sample_mask += sample_mask;

                                if (sig & sample_mask) {
                                    OPJ_UINT32 sym;

                                    assert(dp[3 * stride] != 0);
                                    sym = cwd & 1;
                                    dp[3 * stride] ^= (1 - sym) << (p - 1);
                                    dp[3 * stride] |= half;
                                    cwd >>= 1;
                                }
                                sample_mask += sample_mask;
                            }
                            col_mask <<= 4; //next column
                        }
                    }
                    // consume data according to the number of bits set
                    rev_advance_mrp(&magref, population_count(sig));
                }
            }

            if (y >= 4) { // update mbr array at the end of each stripe
                //generate mbr corresponding to a stripe
                OPJ_UINT32 *sig = y & 0x4 ? sigma1 : sigma2;
                OPJ_UINT32 *mbr = y & 0x4 ? mbr1 : mbr2;

                //data is processed in patches of 8 columns, each
                // each 32 bits in sigma1 or mbr1 represent 4 rows

                //integrate horizontally
                OPJ_UINT32 prev = 0; // previous columns
                OPJ_INT32 i;
                for (i = 0; i < width; i += 8, mbr++, sig++) {
                    OPJ_UINT32 t, z;

                    mbr[0] = sig[0];         //start with significant samples
                    mbr[0] |= prev >> 28;    //for first column, left neighbors
                    mbr[0] |= sig[0] << 4;   //left neighbors
                    mbr[0] |= sig[0] >> 4;   //right neighbors
                    mbr[0] |= sig[1] << 28;  //for last column, right neighbors
                    prev = sig[0];           // for next group of columns

                    //integrate vertically
                    t = mbr[0], z = mbr[0];
                    z |= (t & 0x77777777) << 1; //above neighbors
                    z |= (t & 0xEEEEEEEE) >> 1; //below neighbors
                    mbr[0] = z & ~sig[0]; //remove already significance samples
                }
            }

            if (y >= 8) { //wait until 8 rows has been processed
                OPJ_UINT32 *cur_sig, *cur_mbr, *nxt_sig, *nxt_mbr;
                OPJ_UINT32 prev;
                OPJ_UINT32 val;
                OPJ_INT32 i;

                // add membership from the next stripe, obtained above
                cur_sig = y & 0x4 ? sigma2 : sigma1;
                cur_mbr = y & 0x4 ? mbr2 : mbr1;
                nxt_sig = y & 0x4 ? sigma1 : sigma2;  //future samples
                prev = 0; // the columns before these group of 8 columns
                for (i = 0; i < width; i += 8, cur_mbr++, cur_sig++, nxt_sig++) {
                    OPJ_UINT32 t = nxt_sig[0];
                    t |= prev >> 28;        //for first column, left neighbors
                    t |= nxt_sig[0] << 4;   //left neighbors
                    t |= nxt_sig[0] >> 4;   //right neighbors
                    t |= nxt_sig[1] << 28;  //for last column, right neighbors
                    prev = nxt_sig[0];      // for next group of columns

                    if (!stripe_causal) {
                        cur_mbr[0] |= (t & 0x11111111u) << 3; //propagate up to cur_mbr
                    }
                    cur_mbr[0] &= ~cur_sig[0]; //remove already significance samples
                }

                //find new locations and get signs
                cur_sig = y & 0x4 ? sigma2 : sigma1;
                cur_mbr = y & 0x4 ? mbr2 : mbr1;
                nxt_sig = y & 0x4 ? sigma1 : sigma2; //future samples
                nxt_mbr = y & 0x4 ? mbr1 : mbr2;     //future samples
                val = 3u << (p - 2); // sample values for newly discovered
                // significant samples including the bin center
                for (i = 0; i < width;
                        i += 8, cur_sig++, cur_mbr++, nxt_sig++, nxt_mbr++) {
                    OPJ_UINT32 ux, tx;
                    OPJ_UINT32 mbr = *cur_mbr;
                    OPJ_UINT32 new_sig = 0;
                    if (mbr) { //are there any samples that might be significant
                        OPJ_INT32 n;
                        for (n = 0; n < 8; n += 4) {
                            OPJ_UINT32 col_mask;
                            OPJ_UINT32 inv_sig;
                            OPJ_INT32 end;
                            OPJ_INT32 j;

                            OPJ_UINT32 cwd = frwd_fetch(&sigprop); //get 32 bits
                            OPJ_UINT32 cnt = 0;

                            OPJ_UINT32 *dp = decoded_data + (y - 8) * stride;
                            dp += i + n; //address for decoded samples

                            col_mask = 0xFu << (4 * n); //a mask to select a column

                            inv_sig = ~cur_sig[0]; // insignificant samples

                            //find the last sample we operate on
                            end = n + 4 + i < width ? n + 4 : width - i;

                            for (j = n; j < end; ++j, ++dp, col_mask <<= 4) {
                                OPJ_UINT32 sample_mask;

                                if ((col_mask & mbr) == 0) { //no samples need checking
                                    continue;
                                }

                                //scan mbr to find a new significant sample
                                sample_mask = 0x11111111u & col_mask; // LSB
                                if (mbr & sample_mask) {
                                    assert(dp[0] == 0); // the sample must have been 0
                                    if (cwd & 1) { //if this sample has become significant
                                        // must propagate it to nearby samples
                                        OPJ_UINT32 t;
                                        new_sig |= sample_mask;  // new significant samples
                                        t = 0x32u << (j * 4);// propagation to neighbors
                                        mbr |= t & inv_sig; //remove already significant samples
                                    }
                                    cwd >>= 1;
                                    ++cnt; //consume bit and increment number of
                                    //consumed bits
                                }

                                sample_mask += sample_mask;  // next row
                                if (mbr & sample_mask) {
                                    assert(dp[stride] == 0);
                                    if (cwd & 1) {
                                        OPJ_UINT32 t;
                                        new_sig |= sample_mask;
                                        t = 0x74u << (j * 4);
                                        mbr |= t & inv_sig;
                                    }
                                    cwd >>= 1;
                                    ++cnt;
                                }

                                sample_mask += sample_mask;
                                if (mbr & sample_mask) {
                                    assert(dp[2 * stride] == 0);
                                    if (cwd & 1) {
                                        OPJ_UINT32 t;
                                        new_sig |= sample_mask;
                                        t = 0xE8u << (j * 4);
                                        mbr |= t & inv_sig;
                                    }
                                    cwd >>= 1;
                                    ++cnt;
                                }

                                sample_mask += sample_mask;
                                if (mbr & sample_mask) {
                                    assert(dp[3 * stride] == 0);
                                    if (cwd & 1) {
                                        OPJ_UINT32 t;
                                        new_sig |= sample_mask;
                                        t = 0xC0u << (j * 4);
                                        mbr |= t & inv_sig;
                                    }
                                    cwd >>= 1;
                                    ++cnt;
                                }
                            }

                            //obtain signs here
                            if (new_sig & (0xFFFFu << (4 * n))) { //if any
                                OPJ_UINT32 col_mask;
                                OPJ_INT32 j;
                                OPJ_UINT32 *dp = decoded_data + (y - 8) * stride;
                                dp += i + n; // decoded samples address
                                col_mask = 0xFu << (4 * n); //mask to select a column

                                for (j = n; j < end; ++j, ++dp, col_mask <<= 4) {
                                    OPJ_UINT32 sample_mask;

                                    if ((col_mask & new_sig) == 0) { //if non is significant
                                        continue;
                                    }

                                    //scan 4 signs
                                    sample_mask = 0x11111111u & col_mask;
                                    if (new_sig & sample_mask) {
                                        assert(dp[0] == 0);
                                        dp[0] |= ((cwd & 1) << 31) | val; //put value and sign
                                        cwd >>= 1;
                                        ++cnt; //consume bit and increment number
                                        //of consumed bits
                                    }

                                    sample_mask += sample_mask;
                                    if (new_sig & sample_mask) {
                                        assert(dp[stride] == 0);
                                        dp[stride] |= ((cwd & 1) << 31) | val;
                                        cwd >>= 1;
                                        ++cnt;
                                    }

                                    sample_mask += sample_mask;
                                    if (new_sig & sample_mask) {
                                        assert(dp[2 * stride] == 0);
                                        dp[2 * stride] |= ((cwd & 1) << 31) | val;
                                        cwd >>= 1;
                                        ++cnt;
                                    }

                                    sample_mask += sample_mask;
                                    if (new_sig & sample_mask) {
                                        assert(dp[3 * stride] == 0);
                                        dp[3 * stride] |= ((cwd & 1) << 31) | val;
                                        cwd >>= 1;
                                        ++cnt;
                                    }
                                }

                            }
                            frwd_advance(&sigprop, cnt); //consume the bits from bitstrm
                            cnt = 0;

                            //update the next 8 columns
                            if (n == 4) {
                                //horizontally
                                OPJ_UINT32 t = new_sig >> 28;
                                t |= ((t & 0xE) >> 1) | ((t & 7) << 1);
                                cur_mbr[1] |= t & ~cur_sig[1];
                            }
                        }
                    }
                    //update the next stripe (vertically propagation)
                    new_sig |= cur_sig[0];
                    ux = (new_sig & 0x88888888) >> 3;
                    tx = ux | (ux << 4) | (ux >> 4); //left and right neighbors
                    if (i > 0) {
                        nxt_mbr[-1] |= (ux << 28) & ~nxt_sig[-1];
                    }
                    nxt_mbr[0] |= tx & ~nxt_sig[0];
                    nxt_mbr[1] |= (ux >> 28) & ~nxt_sig[1];
                }

                //clear current sigma
                //mbr need not be cleared because it is overwritten
                cur_sig = y & 0x4 ? sigma2 : sigma1;
                memset(cur_sig, 0, ((((OPJ_UINT32)width + 7u) >> 3) + 1u) << 2);
            }
        }
    }

    //terminating
    if (num_passes > 1) {
        OPJ_INT32 st, y;

        if (num_passes > 2 && ((height & 3) == 1 || (height & 3) == 2)) {
            //do magref
            OPJ_UINT32 *cur_sig = height & 0x4 ? sigma2 : sigma1; //reversed
            OPJ_UINT32 *dpp = decoded_data + (height & 0xFFFFFC) * stride;
            OPJ_UINT32 half = 1u << (p - 2);
            OPJ_INT32 i;
            for (i = 0; i < width; i += 8) {
                OPJ_UINT32 cwd = rev_fetch_mrp(&magref);
                OPJ_UINT32 sig = *cur_sig++;
                OPJ_UINT32 col_mask = 0xF;
                OPJ_UINT32 *dp = dpp + i;
                if (sig) {
                    int j;
                    for (j = 0; j < 8; ++j, dp++) {
                        if (sig & col_mask) {
                            OPJ_UINT32 sample_mask = 0x11111111 & col_mask;

                            if (sig & sample_mask) {
                                OPJ_UINT32 sym;
                                assert(dp[0] != 0);
                                sym = cwd & 1;
                                dp[0] ^= (1 - sym) << (p - 1);
                                dp[0] |= half;
                                cwd >>= 1;
                            }
                            sample_mask += sample_mask;

                            if (sig & sample_mask) {
                                OPJ_UINT32 sym;
                                assert(dp[stride] != 0);
                                sym = cwd & 1;
                                dp[stride] ^= (1 - sym) << (p - 1);
                                dp[stride] |= half;
                                cwd >>= 1;
                            }
                            sample_mask += sample_mask;

                            if (sig & sample_mask) {
                                OPJ_UINT32 sym;
                                assert(dp[2 * stride] != 0);
                                sym = cwd & 1;
                                dp[2 * stride] ^= (1 - sym) << (p - 1);
                                dp[2 * stride] |= half;
                                cwd >>= 1;
                            }
                            sample_mask += sample_mask;

                            if (sig & sample_mask) {
                                OPJ_UINT32 sym;
                                assert(dp[3 * stride] != 0);
                                sym = cwd & 1;
                                dp[3 * stride] ^= (1 - sym) << (p - 1);
                                dp[3 * stride] |= half;
                                cwd >>= 1;
                            }
                            sample_mask += sample_mask;
                        }
                        col_mask <<= 4;
                    }
                }
                rev_advance_mrp(&magref, population_count(sig));
            }
        }

        //do the last incomplete stripe
        // for cases of (height & 3) == 0 and 3
        // the should have been processed previously
        if ((height & 3) == 1 || (height & 3) == 2) {
            //generate mbr of first stripe
            OPJ_UINT32 *sig = height & 0x4 ? sigma2 : sigma1;
            OPJ_UINT32 *mbr = height & 0x4 ? mbr2 : mbr1;
            //integrate horizontally
            OPJ_UINT32 prev = 0;
            OPJ_INT32 i;
            for (i = 0; i < width; i += 8, mbr++, sig++) {
                OPJ_UINT32 t, z;

                mbr[0] = sig[0];
                mbr[0] |= prev >> 28;    //for first column, left neighbors
                mbr[0] |= sig[0] << 4;   //left neighbors
                mbr[0] |= sig[0] >> 4;   //left neighbors
                mbr[0] |= sig[1] << 28;  //for last column, right neighbors
                prev = sig[0];

                //integrate vertically
                t = mbr[0], z = mbr[0];
                z |= (t & 0x77777777) << 1; //above neighbors
                z |= (t & 0xEEEEEEEE) >> 1; //below neighbors
                mbr[0] = z & ~sig[0]; //remove already significance samples
            }
        }

        st = height;
        st -= height > 6 ? (((height + 1) & 3) + 3) : height;
        for (y = st; y < height; y += 4) {
            OPJ_UINT32 *cur_sig, *cur_mbr, *nxt_sig, *nxt_mbr;
            OPJ_UINT32 val;
            OPJ_INT32 i;

            OPJ_UINT32 pattern = 0xFFFFFFFFu; // a pattern needed samples
            if (height - y == 3) {
                pattern = 0x77777777u;
            } else if (height - y == 2) {
                pattern = 0x33333333u;
            } else if (height - y == 1) {
                pattern = 0x11111111u;
            }

            //add membership from the next stripe, obtained above
            if (height - y > 4) {
                OPJ_UINT32 prev = 0;
                OPJ_INT32 i;
                cur_sig = y & 0x4 ? sigma2 : sigma1;
                cur_mbr = y & 0x4 ? mbr2 : mbr1;
                nxt_sig = y & 0x4 ? sigma1 : sigma2;
                for (i = 0; i < width; i += 8, cur_mbr++, cur_sig++, nxt_sig++) {
                    OPJ_UINT32 t = nxt_sig[0];
                    t |= prev >> 28;     //for first column, left neighbors
                    t |= nxt_sig[0] << 4;   //left neighbors
                    t |= nxt_sig[0] >> 4;   //left neighbors
                    t |= nxt_sig[1] << 28;  //for last column, right neighbors
                    prev = nxt_sig[0];

                    if (!stripe_causal) {
                        cur_mbr[0] |= (t & 0x11111111u) << 3;
                    }
                    //remove already significance samples
                    cur_mbr[0] &= ~cur_sig[0];
                }
            }

            //find new locations and get signs
            cur_sig = y & 0x4 ? sigma2 : sigma1;
            cur_mbr = y & 0x4 ? mbr2 : mbr1;
            nxt_sig = y & 0x4 ? sigma1 : sigma2;
            nxt_mbr = y & 0x4 ? mbr1 : mbr2;
            val = 3u << (p - 2);
            for (i = 0; i < width; i += 8,
                    cur_sig++, cur_mbr++, nxt_sig++, nxt_mbr++) {
                OPJ_UINT32 mbr = *cur_mbr & pattern; //skip unneeded samples
                OPJ_UINT32 new_sig = 0;
                OPJ_UINT32 ux, tx;
                if (mbr) {
                    OPJ_INT32 n;
                    for (n = 0; n < 8; n += 4) {
                        OPJ_UINT32 col_mask;
                        OPJ_UINT32 inv_sig;
                        OPJ_INT32 end;
                        OPJ_INT32 j;

                        OPJ_UINT32 cwd = frwd_fetch(&sigprop);
                        OPJ_UINT32 cnt = 0;

                        OPJ_UINT32 *dp = decoded_data + y * stride;
                        dp += i + n;

                        col_mask = 0xFu << (4 * n);

                        inv_sig = ~cur_sig[0] & pattern;

                        end = n + 4 + i < width ? n + 4 : width - i;
                        for (j = n; j < end; ++j, ++dp, col_mask <<= 4) {
                            OPJ_UINT32 sample_mask;

                            if ((col_mask & mbr) == 0) {
                                continue;
                            }

                            //scan 4 mbr
                            sample_mask = 0x11111111u & col_mask;
                            if (mbr & sample_mask) {
                                assert(dp[0] == 0);
                                if (cwd & 1) {
                                    OPJ_UINT32 t;
                                    new_sig |= sample_mask;
                                    t = 0x32u << (j * 4);
                                    mbr |= t & inv_sig;
                                }
                                cwd >>= 1;
                                ++cnt;
                            }

                            sample_mask += sample_mask;
                            if (mbr & sample_mask) {
                                assert(dp[stride] == 0);
                                if (cwd & 1) {
                                    OPJ_UINT32 t;
                                    new_sig |= sample_mask;
                                    t = 0x74u << (j * 4);
                                    mbr |= t & inv_sig;
                                }
                                cwd >>= 1;
                                ++cnt;
                            }

                            sample_mask += sample_mask;
                            if (mbr & sample_mask) {
                                assert(dp[2 * stride] == 0);
                                if (cwd & 1) {
                                    OPJ_UINT32 t;
                                    new_sig |= sample_mask;
                                    t = 0xE8u << (j * 4);
                                    mbr |= t & inv_sig;
                                }
                                cwd >>= 1;
                                ++cnt;
                            }

                            sample_mask += sample_mask;
                            if (mbr & sample_mask) {
                                assert(dp[3 * stride] == 0);
                                if (cwd & 1) {
                                    OPJ_UINT32 t;
                                    new_sig |= sample_mask;
                                    t = 0xC0u << (j * 4);
                                    mbr |= t & inv_sig;
                                }
                                cwd >>= 1;
                                ++cnt;
                            }
                        }

                        //signs here
                        if (new_sig & (0xFFFFu << (4 * n))) {
                            OPJ_UINT32 col_mask;
                            OPJ_INT32 j;
                            OPJ_UINT32 *dp = decoded_data + y * stride;
                            dp += i + n;
                            col_mask = 0xFu << (4 * n);

                            for (j = n; j < end; ++j, ++dp, col_mask <<= 4) {
                                OPJ_UINT32 sample_mask;
                                if ((col_mask & new_sig) == 0) {
                                    continue;
                                }

                                //scan 4 signs
                                sample_mask = 0x11111111u & col_mask;
                                if (new_sig & sample_mask) {
                                    assert(dp[0] == 0);
                                    dp[0] |= ((cwd & 1) << 31) | val;
                                    cwd >>= 1;
                                    ++cnt;
                                }

                                sample_mask += sample_mask;
                                if (new_sig & sample_mask) {
                                    assert(dp[stride] == 0);
                                    dp[stride] |= ((cwd & 1) << 31) | val;
                                    cwd >>= 1;
                                    ++cnt;
                                }

                                sample_mask += sample_mask;
                                if (new_sig & sample_mask) {
                                    assert(dp[2 * stride] == 0);
                                    dp[2 * stride] |= ((cwd & 1) << 31) | val;
                                    cwd >>= 1;
                                    ++cnt;
                                }

                                sample_mask += sample_mask;
                                if (new_sig & sample_mask) {
                                    assert(dp[3 * stride] == 0);
                                    dp[3 * stride] |= ((cwd & 1) << 31) | val;
                                    cwd >>= 1;
                                    ++cnt;
                                }
                            }

                        }
                        frwd_advance(&sigprop, cnt);
                        cnt = 0;

                        //update next columns
                        if (n == 4) {
                            //horizontally
                            OPJ_UINT32 t = new_sig >> 28;
                            t |= ((t & 0xE) >> 1) | ((t & 7) << 1);
                            cur_mbr[1] |= t & ~cur_sig[1];
                        }
                    }
                }
                //propagate down (vertically propagation)
                new_sig |= cur_sig[0];
                ux = (new_sig & 0x88888888) >> 3;
                tx = ux | (ux << 4) | (ux >> 4);
                if (i > 0) {
                    nxt_mbr[-1] |= (ux << 28) & ~nxt_sig[-1];
                }
                nxt_mbr[0] |= tx & ~nxt_sig[0];
                nxt_mbr[1] |= (ux >> 28) & ~nxt_sig[1];
            }
        }
    }

    {
        OPJ_INT32 x, y;
        for (y = 0; y < height; ++y) {
            OPJ_INT32* sp = (OPJ_INT32*)decoded_data + y * stride;
            for (x = 0; x < width; ++x, ++sp) {
                OPJ_INT32 val = (*sp & 0x7FFFFFFF);
                *sp = ((OPJ_UINT32) * sp & 0x80000000) ? -val : val;
            }
        }
    }

    return OPJ_TRUE;
}