aboutsummaryrefslogblamecommitdiffstats
path: root/contrib/libs/llvm14/lib/Analysis/DependenceAnalysis.cpp
blob: f827f74d5367e1d70f0f873511e43cbe38e4069f (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136






































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                      
//===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// DependenceAnalysis is an LLVM pass that analyses dependences between memory
// accesses. Currently, it is an (incomplete) implementation of the approach
// described in
//
//            Practical Dependence Testing
//            Goff, Kennedy, Tseng
//            PLDI 1991
//
// There's a single entry point that analyzes the dependence between a pair
// of memory references in a function, returning either NULL, for no dependence,
// or a more-or-less detailed description of the dependence between them.
//
// Currently, the implementation cannot propagate constraints between
// coupled RDIV subscripts and lacks a multi-subscript MIV test.
// Both of these are conservative weaknesses;
// that is, not a source of correctness problems.
//
// Since Clang linearizes some array subscripts, the dependence
// analysis is using SCEV->delinearize to recover the representation of multiple
// subscripts, and thus avoid the more expensive and less precise MIV tests. The
// delinearization is controlled by the flag -da-delinearize.
//
// We should pay some careful attention to the possibility of integer overflow
// in the implementation of the various tests. This could happen with Add,
// Subtract, or Multiply, with both APInt's and SCEV's.
//
// Some non-linear subscript pairs can be handled by the GCD test
// (and perhaps other tests).
// Should explore how often these things occur.
//
// Finally, it seems like certain test cases expose weaknesses in the SCEV
// simplification, especially in the handling of sign and zero extensions.
// It could be useful to spend time exploring these.
//
// Please note that this is work in progress and the interface is subject to
// change.
//
//===----------------------------------------------------------------------===//
//                                                                            //
//                   In memory of Ken Kennedy, 1945 - 2007                    //
//                                                                            //
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Delinearization.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

#define DEBUG_TYPE "da"

//===----------------------------------------------------------------------===//
// statistics

STATISTIC(TotalArrayPairs, "Array pairs tested");
STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
STATISTIC(ZIVapplications, "ZIV applications");
STATISTIC(ZIVindependence, "ZIV independence");
STATISTIC(StrongSIVapplications, "Strong SIV applications");
STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
STATISTIC(StrongSIVindependence, "Strong SIV independence");
STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
STATISTIC(ExactSIVapplications, "Exact SIV applications");
STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
STATISTIC(ExactSIVindependence, "Exact SIV independence");
STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
STATISTIC(DeltaApplications, "Delta applications");
STATISTIC(DeltaSuccesses, "Delta successes");
STATISTIC(DeltaIndependence, "Delta independence");
STATISTIC(DeltaPropagations, "Delta propagations");
STATISTIC(GCDapplications, "GCD applications");
STATISTIC(GCDsuccesses, "GCD successes");
STATISTIC(GCDindependence, "GCD independence");
STATISTIC(BanerjeeApplications, "Banerjee applications");
STATISTIC(BanerjeeIndependence, "Banerjee independence");
STATISTIC(BanerjeeSuccesses, "Banerjee successes");

static cl::opt<bool>
    Delinearize("da-delinearize", cl::init(true), cl::Hidden, cl::ZeroOrMore,
                cl::desc("Try to delinearize array references."));
static cl::opt<bool> DisableDelinearizationChecks(
    "da-disable-delinearization-checks", cl::init(false), cl::Hidden,
    cl::ZeroOrMore,
    cl::desc(
        "Disable checks that try to statically verify validity of "
        "delinearized subscripts. Enabling this option may result in incorrect "
        "dependence vectors for languages that allow the subscript of one "
        "dimension to underflow or overflow into another dimension."));

static cl::opt<unsigned> MIVMaxLevelThreshold(
    "da-miv-max-level-threshold", cl::init(7), cl::Hidden, cl::ZeroOrMore,
    cl::desc("Maximum depth allowed for the recursive algorithm used to "
             "explore MIV direction vectors."));

//===----------------------------------------------------------------------===//
// basics

DependenceAnalysis::Result
DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
  auto &AA = FAM.getResult<AAManager>(F);
  auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
  auto &LI = FAM.getResult<LoopAnalysis>(F);
  return DependenceInfo(&F, &AA, &SE, &LI);
}

AnalysisKey DependenceAnalysis::Key;

INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da",
                      "Dependence Analysis", true, true)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis",
                    true, true)

char DependenceAnalysisWrapperPass::ID = 0;

DependenceAnalysisWrapperPass::DependenceAnalysisWrapperPass()
    : FunctionPass(ID) {
  initializeDependenceAnalysisWrapperPassPass(*PassRegistry::getPassRegistry());
}

FunctionPass *llvm::createDependenceAnalysisWrapperPass() {
  return new DependenceAnalysisWrapperPass();
}

bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) {
  auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
  auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  info.reset(new DependenceInfo(&F, &AA, &SE, &LI));
  return false;
}

DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; }

void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); }

void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequiredTransitive<AAResultsWrapperPass>();
  AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
  AU.addRequiredTransitive<LoopInfoWrapperPass>();
}

// Used to test the dependence analyzer.
// Looks through the function, noting instructions that may access memory.
// Calls depends() on every possible pair and prints out the result.
// Ignores all other instructions.
static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA) {
  auto *F = DA->getFunction();
  for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE;
       ++SrcI) {
    if (SrcI->mayReadOrWriteMemory()) {
      for (inst_iterator DstI = SrcI, DstE = inst_end(F);
           DstI != DstE; ++DstI) {
        if (DstI->mayReadOrWriteMemory()) {
          OS << "Src:" << *SrcI << " --> Dst:" << *DstI << "\n";
          OS << "  da analyze - ";
          if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
            D->dump(OS);
            for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
              if (D->isSplitable(Level)) {
                OS << "  da analyze - split level = " << Level;
                OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
                OS << "!\n";
              }
            }
          }
          else
            OS << "none!\n";
        }
      }
    }
  }
}

void DependenceAnalysisWrapperPass::print(raw_ostream &OS,
                                          const Module *) const {
  dumpExampleDependence(OS, info.get());
}

PreservedAnalyses
DependenceAnalysisPrinterPass::run(Function &F, FunctionAnalysisManager &FAM) {
  OS << "'Dependence Analysis' for function '" << F.getName() << "':\n";
  dumpExampleDependence(OS, &FAM.getResult<DependenceAnalysis>(F));
  return PreservedAnalyses::all();
}

//===----------------------------------------------------------------------===//
// Dependence methods

// Returns true if this is an input dependence.
bool Dependence::isInput() const {
  return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
}


// Returns true if this is an output dependence.
bool Dependence::isOutput() const {
  return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
}


// Returns true if this is an flow (aka true)  dependence.
bool Dependence::isFlow() const {
  return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
}


// Returns true if this is an anti dependence.
bool Dependence::isAnti() const {
  return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
}


// Returns true if a particular level is scalar; that is,
// if no subscript in the source or destination mention the induction
// variable associated with the loop at this level.
// Leave this out of line, so it will serve as a virtual method anchor
bool Dependence::isScalar(unsigned level) const {
  return false;
}


//===----------------------------------------------------------------------===//
// FullDependence methods

FullDependence::FullDependence(Instruction *Source, Instruction *Destination,
                               bool PossiblyLoopIndependent,
                               unsigned CommonLevels)
    : Dependence(Source, Destination), Levels(CommonLevels),
      LoopIndependent(PossiblyLoopIndependent) {
  Consistent = true;
  if (CommonLevels)
    DV = std::make_unique<DVEntry[]>(CommonLevels);
}

// The rest are simple getters that hide the implementation.

// getDirection - Returns the direction associated with a particular level.
unsigned FullDependence::getDirection(unsigned Level) const {
  assert(0 < Level && Level <= Levels && "Level out of range");
  return DV[Level - 1].Direction;
}


// Returns the distance (or NULL) associated with a particular level.
const SCEV *FullDependence::getDistance(unsigned Level) const {
  assert(0 < Level && Level <= Levels && "Level out of range");
  return DV[Level - 1].Distance;
}


// Returns true if a particular level is scalar; that is,
// if no subscript in the source or destination mention the induction
// variable associated with the loop at this level.
bool FullDependence::isScalar(unsigned Level) const {
  assert(0 < Level && Level <= Levels && "Level out of range");
  return DV[Level - 1].Scalar;
}


// Returns true if peeling the first iteration from this loop
// will break this dependence.
bool FullDependence::isPeelFirst(unsigned Level) const {
  assert(0 < Level && Level <= Levels && "Level out of range");
  return DV[Level - 1].PeelFirst;
}


// Returns true if peeling the last iteration from this loop
// will break this dependence.
bool FullDependence::isPeelLast(unsigned Level) const {
  assert(0 < Level && Level <= Levels && "Level out of range");
  return DV[Level - 1].PeelLast;
}


// Returns true if splitting this loop will break the dependence.
bool FullDependence::isSplitable(unsigned Level) const {
  assert(0 < Level && Level <= Levels && "Level out of range");
  return DV[Level - 1].Splitable;
}


//===----------------------------------------------------------------------===//
// DependenceInfo::Constraint methods

// If constraint is a point <X, Y>, returns X.
// Otherwise assert.
const SCEV *DependenceInfo::Constraint::getX() const {
  assert(Kind == Point && "Kind should be Point");
  return A;
}


// If constraint is a point <X, Y>, returns Y.
// Otherwise assert.
const SCEV *DependenceInfo::Constraint::getY() const {
  assert(Kind == Point && "Kind should be Point");
  return B;
}


// If constraint is a line AX + BY = C, returns A.
// Otherwise assert.
const SCEV *DependenceInfo::Constraint::getA() const {
  assert((Kind == Line || Kind == Distance) &&
         "Kind should be Line (or Distance)");
  return A;
}


// If constraint is a line AX + BY = C, returns B.
// Otherwise assert.
const SCEV *DependenceInfo::Constraint::getB() const {
  assert((Kind == Line || Kind == Distance) &&
         "Kind should be Line (or Distance)");
  return B;
}


// If constraint is a line AX + BY = C, returns C.
// Otherwise assert.
const SCEV *DependenceInfo::Constraint::getC() const {
  assert((Kind == Line || Kind == Distance) &&
         "Kind should be Line (or Distance)");
  return C;
}


// If constraint is a distance, returns D.
// Otherwise assert.
const SCEV *DependenceInfo::Constraint::getD() const {
  assert(Kind == Distance && "Kind should be Distance");
  return SE->getNegativeSCEV(C);
}


// Returns the loop associated with this constraint.
const Loop *DependenceInfo::Constraint::getAssociatedLoop() const {
  assert((Kind == Distance || Kind == Line || Kind == Point) &&
         "Kind should be Distance, Line, or Point");
  return AssociatedLoop;
}

void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y,
                                          const Loop *CurLoop) {
  Kind = Point;
  A = X;
  B = Y;
  AssociatedLoop = CurLoop;
}

void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB,
                                         const SCEV *CC, const Loop *CurLoop) {
  Kind = Line;
  A = AA;
  B = BB;
  C = CC;
  AssociatedLoop = CurLoop;
}

void DependenceInfo::Constraint::setDistance(const SCEV *D,
                                             const Loop *CurLoop) {
  Kind = Distance;
  A = SE->getOne(D->getType());
  B = SE->getNegativeSCEV(A);
  C = SE->getNegativeSCEV(D);
  AssociatedLoop = CurLoop;
}

void DependenceInfo::Constraint::setEmpty() { Kind = Empty; }

void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) {
  SE = NewSE;
  Kind = Any;
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
// For debugging purposes. Dumps the constraint out to OS.
LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const {
  if (isEmpty())
    OS << " Empty\n";
  else if (isAny())
    OS << " Any\n";
  else if (isPoint())
    OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
  else if (isDistance())
    OS << " Distance is " << *getD() <<
      " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
  else if (isLine())
    OS << " Line is " << *getA() << "*X + " <<
      *getB() << "*Y = " << *getC() << "\n";
  else
    llvm_unreachable("unknown constraint type in Constraint::dump");
}
#endif


// Updates X with the intersection
// of the Constraints X and Y. Returns true if X has changed.
// Corresponds to Figure 4 from the paper
//
//            Practical Dependence Testing
//            Goff, Kennedy, Tseng
//            PLDI 1991
bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
  ++DeltaApplications;
  LLVM_DEBUG(dbgs() << "\tintersect constraints\n");
  LLVM_DEBUG(dbgs() << "\t    X ="; X->dump(dbgs()));
  LLVM_DEBUG(dbgs() << "\t    Y ="; Y->dump(dbgs()));
  assert(!Y->isPoint() && "Y must not be a Point");
  if (X->isAny()) {
    if (Y->isAny())
      return false;
    *X = *Y;
    return true;
  }
  if (X->isEmpty())
    return false;
  if (Y->isEmpty()) {
    X->setEmpty();
    return true;
  }

  if (X->isDistance() && Y->isDistance()) {
    LLVM_DEBUG(dbgs() << "\t    intersect 2 distances\n");
    if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
      return false;
    if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
      X->setEmpty();
      ++DeltaSuccesses;
      return true;
    }
    // Hmmm, interesting situation.
    // I guess if either is constant, keep it and ignore the other.
    if (isa<SCEVConstant>(Y->getD())) {
      *X = *Y;
      return true;
    }
    return false;
  }

  // At this point, the pseudo-code in Figure 4 of the paper
  // checks if (X->isPoint() && Y->isPoint()).
  // This case can't occur in our implementation,
  // since a Point can only arise as the result of intersecting
  // two Line constraints, and the right-hand value, Y, is never
  // the result of an intersection.
  assert(!(X->isPoint() && Y->isPoint()) &&
         "We shouldn't ever see X->isPoint() && Y->isPoint()");

  if (X->isLine() && Y->isLine()) {
    LLVM_DEBUG(dbgs() << "\t    intersect 2 lines\n");
    const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
    const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
    if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
      // slopes are equal, so lines are parallel
      LLVM_DEBUG(dbgs() << "\t\tsame slope\n");
      Prod1 = SE->getMulExpr(X->getC(), Y->getB());
      Prod2 = SE->getMulExpr(X->getB(), Y->getC());
      if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
        return false;
      if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
        X->setEmpty();
        ++DeltaSuccesses;
        return true;
      }
      return false;
    }
    if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
      // slopes differ, so lines intersect
      LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n");
      const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
      const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
      const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
      const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
      const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
      const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
      const SCEVConstant *C1A2_C2A1 =
        dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
      const SCEVConstant *C1B2_C2B1 =
        dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
      const SCEVConstant *A1B2_A2B1 =
        dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
      const SCEVConstant *A2B1_A1B2 =
        dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
      if (!C1B2_C2B1 || !C1A2_C2A1 ||
          !A1B2_A2B1 || !A2B1_A1B2)
        return false;
      APInt Xtop = C1B2_C2B1->getAPInt();
      APInt Xbot = A1B2_A2B1->getAPInt();
      APInt Ytop = C1A2_C2A1->getAPInt();
      APInt Ybot = A2B1_A1B2->getAPInt();
      LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
      LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
      LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
      LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
      APInt Xq = Xtop; // these need to be initialized, even
      APInt Xr = Xtop; // though they're just going to be overwritten
      APInt::sdivrem(Xtop, Xbot, Xq, Xr);
      APInt Yq = Ytop;
      APInt Yr = Ytop;
      APInt::sdivrem(Ytop, Ybot, Yq, Yr);
      if (Xr != 0 || Yr != 0) {
        X->setEmpty();
        ++DeltaSuccesses;
        return true;
      }
      LLVM_DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
      if (Xq.slt(0) || Yq.slt(0)) {
        X->setEmpty();
        ++DeltaSuccesses;
        return true;
      }
      if (const SCEVConstant *CUB =
          collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
        const APInt &UpperBound = CUB->getAPInt();
        LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
        if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
          X->setEmpty();
          ++DeltaSuccesses;
          return true;
        }
      }
      X->setPoint(SE->getConstant(Xq),
                  SE->getConstant(Yq),
                  X->getAssociatedLoop());
      ++DeltaSuccesses;
      return true;
    }
    return false;
  }

  // if (X->isLine() && Y->isPoint()) This case can't occur.
  assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");

  if (X->isPoint() && Y->isLine()) {
    LLVM_DEBUG(dbgs() << "\t    intersect Point and Line\n");
    const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
    const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
    const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
    if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
      return false;
    if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
      X->setEmpty();
      ++DeltaSuccesses;
      return true;
    }
    return false;
  }

  llvm_unreachable("shouldn't reach the end of Constraint intersection");
  return false;
}


//===----------------------------------------------------------------------===//
// DependenceInfo methods

// For debugging purposes. Dumps a dependence to OS.
void Dependence::dump(raw_ostream &OS) const {
  bool Splitable = false;
  if (isConfused())
    OS << "confused";
  else {
    if (isConsistent())
      OS << "consistent ";
    if (isFlow())
      OS << "flow";
    else if (isOutput())
      OS << "output";
    else if (isAnti())
      OS << "anti";
    else if (isInput())
      OS << "input";
    unsigned Levels = getLevels();
    OS << " [";
    for (unsigned II = 1; II <= Levels; ++II) {
      if (isSplitable(II))
        Splitable = true;
      if (isPeelFirst(II))
        OS << 'p';
      const SCEV *Distance = getDistance(II);
      if (Distance)
        OS << *Distance;
      else if (isScalar(II))
        OS << "S";
      else {
        unsigned Direction = getDirection(II);
        if (Direction == DVEntry::ALL)
          OS << "*";
        else {
          if (Direction & DVEntry::LT)
            OS << "<";
          if (Direction & DVEntry::EQ)
            OS << "=";
          if (Direction & DVEntry::GT)
            OS << ">";
        }
      }
      if (isPeelLast(II))
        OS << 'p';
      if (II < Levels)
        OS << " ";
    }
    if (isLoopIndependent())
      OS << "|<";
    OS << "]";
    if (Splitable)
      OS << " splitable";
  }
  OS << "!\n";
}

// Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their
// underlaying objects. If LocA and LocB are known to not alias (for any reason:
// tbaa, non-overlapping regions etc), then it is known there is no dependecy.
// Otherwise the underlying objects are checked to see if they point to
// different identifiable objects.
static AliasResult underlyingObjectsAlias(AAResults *AA,
                                          const DataLayout &DL,
                                          const MemoryLocation &LocA,
                                          const MemoryLocation &LocB) {
  // Check the original locations (minus size) for noalias, which can happen for
  // tbaa, incompatible underlying object locations, etc.
  MemoryLocation LocAS =
      MemoryLocation::getBeforeOrAfter(LocA.Ptr, LocA.AATags);
  MemoryLocation LocBS =
      MemoryLocation::getBeforeOrAfter(LocB.Ptr, LocB.AATags);
  if (AA->isNoAlias(LocAS, LocBS))
    return AliasResult::NoAlias;

  // Check the underlying objects are the same
  const Value *AObj = getUnderlyingObject(LocA.Ptr);
  const Value *BObj = getUnderlyingObject(LocB.Ptr);

  // If the underlying objects are the same, they must alias
  if (AObj == BObj)
    return AliasResult::MustAlias;

  // We may have hit the recursion limit for underlying objects, or have
  // underlying objects where we don't know they will alias.
  if (!isIdentifiedObject(AObj) || !isIdentifiedObject(BObj))
    return AliasResult::MayAlias;

  // Otherwise we know the objects are different and both identified objects so
  // must not alias.
  return AliasResult::NoAlias;
}


// Returns true if the load or store can be analyzed. Atomic and volatile
// operations have properties which this analysis does not understand.
static
bool isLoadOrStore(const Instruction *I) {
  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
    return LI->isUnordered();
  else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
    return SI->isUnordered();
  return false;
}


// Examines the loop nesting of the Src and Dst
// instructions and establishes their shared loops. Sets the variables
// CommonLevels, SrcLevels, and MaxLevels.
// The source and destination instructions needn't be contained in the same
// loop. The routine establishNestingLevels finds the level of most deeply
// nested loop that contains them both, CommonLevels. An instruction that's
// not contained in a loop is at level = 0. MaxLevels is equal to the level
// of the source plus the level of the destination, minus CommonLevels.
// This lets us allocate vectors MaxLevels in length, with room for every
// distinct loop referenced in both the source and destination subscripts.
// The variable SrcLevels is the nesting depth of the source instruction.
// It's used to help calculate distinct loops referenced by the destination.
// Here's the map from loops to levels:
//            0 - unused
//            1 - outermost common loop
//          ... - other common loops
// CommonLevels - innermost common loop
//          ... - loops containing Src but not Dst
//    SrcLevels - innermost loop containing Src but not Dst
//          ... - loops containing Dst but not Src
//    MaxLevels - innermost loops containing Dst but not Src
// Consider the follow code fragment:
//   for (a = ...) {
//     for (b = ...) {
//       for (c = ...) {
//         for (d = ...) {
//           A[] = ...;
//         }
//       }
//       for (e = ...) {
//         for (f = ...) {
//           for (g = ...) {
//             ... = A[];
//           }
//         }
//       }
//     }
//   }
// If we're looking at the possibility of a dependence between the store
// to A (the Src) and the load from A (the Dst), we'll note that they
// have 2 loops in common, so CommonLevels will equal 2 and the direction
// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
// A map from loop names to loop numbers would look like
//     a - 1
//     b - 2 = CommonLevels
//     c - 3
//     d - 4 = SrcLevels
//     e - 5
//     f - 6
//     g - 7 = MaxLevels
void DependenceInfo::establishNestingLevels(const Instruction *Src,
                                            const Instruction *Dst) {
  const BasicBlock *SrcBlock = Src->getParent();
  const BasicBlock *DstBlock = Dst->getParent();
  unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
  unsigned DstLevel = LI->getLoopDepth(DstBlock);
  const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
  const Loop *DstLoop = LI->getLoopFor(DstBlock);
  SrcLevels = SrcLevel;
  MaxLevels = SrcLevel + DstLevel;
  while (SrcLevel > DstLevel) {
    SrcLoop = SrcLoop->getParentLoop();
    SrcLevel--;
  }
  while (DstLevel > SrcLevel) {
    DstLoop = DstLoop->getParentLoop();
    DstLevel--;
  }
  while (SrcLoop != DstLoop) {
    SrcLoop = SrcLoop->getParentLoop();
    DstLoop = DstLoop->getParentLoop();
    SrcLevel--;
  }
  CommonLevels = SrcLevel;
  MaxLevels -= CommonLevels;
}


// Given one of the loops containing the source, return
// its level index in our numbering scheme.
unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const {
  return SrcLoop->getLoopDepth();
}


// Given one of the loops containing the destination,
// return its level index in our numbering scheme.
unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
  unsigned D = DstLoop->getLoopDepth();
  if (D > CommonLevels)
    return D - CommonLevels + SrcLevels;
  else
    return D;
}


// Returns true if Expression is loop invariant in LoopNest.
bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
                                     const Loop *LoopNest) const {
  if (!LoopNest)
    return true;
  return SE->isLoopInvariant(Expression, LoopNest) &&
    isLoopInvariant(Expression, LoopNest->getParentLoop());
}



// Finds the set of loops from the LoopNest that
// have a level <= CommonLevels and are referred to by the SCEV Expression.
void DependenceInfo::collectCommonLoops(const SCEV *Expression,
                                        const Loop *LoopNest,
                                        SmallBitVector &Loops) const {
  while (LoopNest) {
    unsigned Level = LoopNest->getLoopDepth();
    if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
      Loops.set(Level);
    LoopNest = LoopNest->getParentLoop();
  }
}

void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {

  unsigned widestWidthSeen = 0;
  Type *widestType;

  // Go through each pair and find the widest bit to which we need
  // to extend all of them.
  for (Subscript *Pair : Pairs) {
    const SCEV *Src = Pair->Src;
    const SCEV *Dst = Pair->Dst;
    IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
    IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
    if (SrcTy == nullptr || DstTy == nullptr) {
      assert(SrcTy == DstTy && "This function only unify integer types and "
             "expect Src and Dst share the same type "
             "otherwise.");
      continue;
    }
    if (SrcTy->getBitWidth() > widestWidthSeen) {
      widestWidthSeen = SrcTy->getBitWidth();
      widestType = SrcTy;
    }
    if (DstTy->getBitWidth() > widestWidthSeen) {
      widestWidthSeen = DstTy->getBitWidth();
      widestType = DstTy;
    }
  }


  assert(widestWidthSeen > 0);

  // Now extend each pair to the widest seen.
  for (Subscript *Pair : Pairs) {
    const SCEV *Src = Pair->Src;
    const SCEV *Dst = Pair->Dst;
    IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
    IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
    if (SrcTy == nullptr || DstTy == nullptr) {
      assert(SrcTy == DstTy && "This function only unify integer types and "
             "expect Src and Dst share the same type "
             "otherwise.");
      continue;
    }
    if (SrcTy->getBitWidth() < widestWidthSeen)
      // Sign-extend Src to widestType
      Pair->Src = SE->getSignExtendExpr(Src, widestType);
    if (DstTy->getBitWidth() < widestWidthSeen) {
      // Sign-extend Dst to widestType
      Pair->Dst = SE->getSignExtendExpr(Dst, widestType);
    }
  }
}

// removeMatchingExtensions - Examines a subscript pair.
// If the source and destination are identically sign (or zero)
// extended, it strips off the extension in an effect to simplify
// the actual analysis.
void DependenceInfo::removeMatchingExtensions(Subscript *Pair) {
  const SCEV *Src = Pair->Src;
  const SCEV *Dst = Pair->Dst;
  if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
      (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
    const SCEVIntegralCastExpr *SrcCast = cast<SCEVIntegralCastExpr>(Src);
    const SCEVIntegralCastExpr *DstCast = cast<SCEVIntegralCastExpr>(Dst);
    const SCEV *SrcCastOp = SrcCast->getOperand();
    const SCEV *DstCastOp = DstCast->getOperand();
    if (SrcCastOp->getType() == DstCastOp->getType()) {
      Pair->Src = SrcCastOp;
      Pair->Dst = DstCastOp;
    }
  }
}

// Examine the scev and return true iff it's linear.
// Collect any loops mentioned in the set of "Loops".
bool DependenceInfo::checkSubscript(const SCEV *Expr, const Loop *LoopNest,
                                    SmallBitVector &Loops, bool IsSrc) {
  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
  if (!AddRec)
    return isLoopInvariant(Expr, LoopNest);
  const SCEV *Start = AddRec->getStart();
  const SCEV *Step = AddRec->getStepRecurrence(*SE);
  const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
  if (!isa<SCEVCouldNotCompute>(UB)) {
    if (SE->getTypeSizeInBits(Start->getType()) <
        SE->getTypeSizeInBits(UB->getType())) {
      if (!AddRec->getNoWrapFlags())
        return false;
    }
  }
  if (!isLoopInvariant(Step, LoopNest))
    return false;
  if (IsSrc)
    Loops.set(mapSrcLoop(AddRec->getLoop()));
  else
    Loops.set(mapDstLoop(AddRec->getLoop()));
  return checkSubscript(Start, LoopNest, Loops, IsSrc);
}

// Examine the scev and return true iff it's linear.
// Collect any loops mentioned in the set of "Loops".
bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest,
                                       SmallBitVector &Loops) {
  return checkSubscript(Src, LoopNest, Loops, true);
}

// Examine the scev and return true iff it's linear.
// Collect any loops mentioned in the set of "Loops".
bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
                                       SmallBitVector &Loops) {
  return checkSubscript(Dst, LoopNest, Loops, false);
}


// Examines the subscript pair (the Src and Dst SCEVs)
// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
// Collects the associated loops in a set.
DependenceInfo::Subscript::ClassificationKind
DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
                             const SCEV *Dst, const Loop *DstLoopNest,
                             SmallBitVector &Loops) {
  SmallBitVector SrcLoops(MaxLevels + 1);
  SmallBitVector DstLoops(MaxLevels + 1);
  if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
    return Subscript::NonLinear;
  if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
    return Subscript::NonLinear;
  Loops = SrcLoops;
  Loops |= DstLoops;
  unsigned N = Loops.count();
  if (N == 0)
    return Subscript::ZIV;
  if (N == 1)
    return Subscript::SIV;
  if (N == 2 && (SrcLoops.count() == 0 ||
                 DstLoops.count() == 0 ||
                 (SrcLoops.count() == 1 && DstLoops.count() == 1)))
    return Subscript::RDIV;
  return Subscript::MIV;
}


// A wrapper around SCEV::isKnownPredicate.
// Looks for cases where we're interested in comparing for equality.
// If both X and Y have been identically sign or zero extended,
// it strips off the (confusing) extensions before invoking
// SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
// will be similarly updated.
//
// If SCEV::isKnownPredicate can't prove the predicate,
// we try simple subtraction, which seems to help in some cases
// involving symbolics.
bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
                                      const SCEV *Y) const {
  if (Pred == CmpInst::ICMP_EQ ||
      Pred == CmpInst::ICMP_NE) {
    if ((isa<SCEVSignExtendExpr>(X) &&
         isa<SCEVSignExtendExpr>(Y)) ||
        (isa<SCEVZeroExtendExpr>(X) &&
         isa<SCEVZeroExtendExpr>(Y))) {
      const SCEVIntegralCastExpr *CX = cast<SCEVIntegralCastExpr>(X);
      const SCEVIntegralCastExpr *CY = cast<SCEVIntegralCastExpr>(Y);
      const SCEV *Xop = CX->getOperand();
      const SCEV *Yop = CY->getOperand();
      if (Xop->getType() == Yop->getType()) {
        X = Xop;
        Y = Yop;
      }
    }
  }
  if (SE->isKnownPredicate(Pred, X, Y))
    return true;
  // If SE->isKnownPredicate can't prove the condition,
  // we try the brute-force approach of subtracting
  // and testing the difference.
  // By testing with SE->isKnownPredicate first, we avoid
  // the possibility of overflow when the arguments are constants.
  const SCEV *Delta = SE->getMinusSCEV(X, Y);
  switch (Pred) {
  case CmpInst::ICMP_EQ:
    return Delta->isZero();
  case CmpInst::ICMP_NE:
    return SE->isKnownNonZero(Delta);
  case CmpInst::ICMP_SGE:
    return SE->isKnownNonNegative(Delta);
  case CmpInst::ICMP_SLE:
    return SE->isKnownNonPositive(Delta);
  case CmpInst::ICMP_SGT:
    return SE->isKnownPositive(Delta);
  case CmpInst::ICMP_SLT:
    return SE->isKnownNegative(Delta);
  default:
    llvm_unreachable("unexpected predicate in isKnownPredicate");
  }
}

/// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1))
/// with some extra checking if S is an AddRec and we can prove less-than using
/// the loop bounds.
bool DependenceInfo::isKnownLessThan(const SCEV *S, const SCEV *Size) const {
  // First unify to the same type
  auto *SType = dyn_cast<IntegerType>(S->getType());
  auto *SizeType = dyn_cast<IntegerType>(Size->getType());
  if (!SType || !SizeType)
    return false;
  Type *MaxType =
      (SType->getBitWidth() >= SizeType->getBitWidth()) ? SType : SizeType;
  S = SE->getTruncateOrZeroExtend(S, MaxType);
  Size = SE->getTruncateOrZeroExtend(Size, MaxType);

  // Special check for addrecs using BE taken count
  const SCEV *Bound = SE->getMinusSCEV(S, Size);
  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Bound)) {
    if (AddRec->isAffine()) {
      const SCEV *BECount = SE->getBackedgeTakenCount(AddRec->getLoop());
      if (!isa<SCEVCouldNotCompute>(BECount)) {
        const SCEV *Limit = AddRec->evaluateAtIteration(BECount, *SE);
        if (SE->isKnownNegative(Limit))
          return true;
      }
    }
  }

  // Check using normal isKnownNegative
  const SCEV *LimitedBound =
      SE->getMinusSCEV(S, SE->getSMaxExpr(Size, SE->getOne(Size->getType())));
  return SE->isKnownNegative(LimitedBound);
}

bool DependenceInfo::isKnownNonNegative(const SCEV *S, const Value *Ptr) const {
  bool Inbounds = false;
  if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(Ptr))
    Inbounds = SrcGEP->isInBounds();
  if (Inbounds) {
    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
      if (AddRec->isAffine()) {
        // We know S is for Ptr, the operand on a load/store, so doesn't wrap.
        // If both parts are NonNegative, the end result will be NonNegative
        if (SE->isKnownNonNegative(AddRec->getStart()) &&
            SE->isKnownNonNegative(AddRec->getOperand(1)))
          return true;
      }
    }
  }

  return SE->isKnownNonNegative(S);
}

// All subscripts are all the same type.
// Loop bound may be smaller (e.g., a char).
// Should zero extend loop bound, since it's always >= 0.
// This routine collects upper bound and extends or truncates if needed.
// Truncating is safe when subscripts are known not to wrap. Cases without
// nowrap flags should have been rejected earlier.
// Return null if no bound available.
const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const {
  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
    const SCEV *UB = SE->getBackedgeTakenCount(L);
    return SE->getTruncateOrZeroExtend(UB, T);
  }
  return nullptr;
}


// Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
// If the cast fails, returns NULL.
const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
                                                              Type *T) const {
  if (const SCEV *UB = collectUpperBound(L, T))
    return dyn_cast<SCEVConstant>(UB);
  return nullptr;
}


// testZIV -
// When we have a pair of subscripts of the form [c1] and [c2],
// where c1 and c2 are both loop invariant, we attack it using
// the ZIV test. Basically, we test by comparing the two values,
// but there are actually three possible results:
// 1) the values are equal, so there's a dependence
// 2) the values are different, so there's no dependence
// 3) the values might be equal, so we have to assume a dependence.
//
// Return true if dependence disproved.
bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst,
                             FullDependence &Result) const {
  LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
  LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
  ++ZIVapplications;
  if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
    LLVM_DEBUG(dbgs() << "    provably dependent\n");
    return false; // provably dependent
  }
  if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
    LLVM_DEBUG(dbgs() << "    provably independent\n");
    ++ZIVindependence;
    return true; // provably independent
  }
  LLVM_DEBUG(dbgs() << "    possibly dependent\n");
  Result.Consistent = false;
  return false; // possibly dependent
}


// strongSIVtest -
// From the paper, Practical Dependence Testing, Section 4.2.1
//
// When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
// where i is an induction variable, c1 and c2 are loop invariant,
//  and a is a constant, we can solve it exactly using the Strong SIV test.
//
// Can prove independence. Failing that, can compute distance (and direction).
// In the presence of symbolic terms, we can sometimes make progress.
//
// If there's a dependence,
//
//    c1 + a*i = c2 + a*i'
//
// The dependence distance is
//
//    d = i' - i = (c1 - c2)/a
//
// A dependence only exists if d is an integer and abs(d) <= U, where U is the
// loop's upper bound. If a dependence exists, the dependence direction is
// defined as
//
//                { < if d > 0
//    direction = { = if d = 0
//                { > if d < 0
//
// Return true if dependence disproved.
bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
                                   const SCEV *DstConst, const Loop *CurLoop,
                                   unsigned Level, FullDependence &Result,
                                   Constraint &NewConstraint) const {
  LLVM_DEBUG(dbgs() << "\tStrong SIV test\n");
  LLVM_DEBUG(dbgs() << "\t    Coeff = " << *Coeff);
  LLVM_DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
  LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst);
  LLVM_DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
  LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst);
  LLVM_DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
  ++StrongSIVapplications;
  assert(0 < Level && Level <= CommonLevels && "level out of range");
  Level--;

  const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
  LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta);
  LLVM_DEBUG(dbgs() << ", " << *Delta->getType() << "\n");

  // check that |Delta| < iteration count
  if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
    LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound);
    LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
    const SCEV *AbsDelta =
      SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
    const SCEV *AbsCoeff =
      SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
    const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
    if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
      // Distance greater than trip count - no dependence
      ++StrongSIVindependence;
      ++StrongSIVsuccesses;
      return true;
    }
  }

  // Can we compute distance?
  if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
    APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt();
    APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt();
    APInt Distance  = ConstDelta; // these need to be initialized
    APInt Remainder = ConstDelta;
    APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
    LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
    LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
    // Make sure Coeff divides Delta exactly
    if (Remainder != 0) {
      // Coeff doesn't divide Distance, no dependence
      ++StrongSIVindependence;
      ++StrongSIVsuccesses;
      return true;
    }
    Result.DV[Level].Distance = SE->getConstant(Distance);
    NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
    if (Distance.sgt(0))
      Result.DV[Level].Direction &= Dependence::DVEntry::LT;
    else if (Distance.slt(0))
      Result.DV[Level].Direction &= Dependence::DVEntry::GT;
    else
      Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
    ++StrongSIVsuccesses;
  }
  else if (Delta->isZero()) {
    // since 0/X == 0
    Result.DV[Level].Distance = Delta;
    NewConstraint.setDistance(Delta, CurLoop);
    Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
    ++StrongSIVsuccesses;
  }
  else {
    if (Coeff->isOne()) {
      LLVM_DEBUG(dbgs() << "\t    Distance = " << *Delta << "\n");
      Result.DV[Level].Distance = Delta; // since X/1 == X
      NewConstraint.setDistance(Delta, CurLoop);
    }
    else {
      Result.Consistent = false;
      NewConstraint.setLine(Coeff,
                            SE->getNegativeSCEV(Coeff),
                            SE->getNegativeSCEV(Delta), CurLoop);
    }

    // maybe we can get a useful direction
    bool DeltaMaybeZero     = !SE->isKnownNonZero(Delta);
    bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
    bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
    bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
    bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
    // The double negatives above are confusing.
    // It helps to read !SE->isKnownNonZero(Delta)
    // as "Delta might be Zero"
    unsigned NewDirection = Dependence::DVEntry::NONE;
    if ((DeltaMaybePositive && CoeffMaybePositive) ||
        (DeltaMaybeNegative && CoeffMaybeNegative))
      NewDirection = Dependence::DVEntry::LT;
    if (DeltaMaybeZero)
      NewDirection |= Dependence::DVEntry::EQ;
    if ((DeltaMaybeNegative && CoeffMaybePositive) ||
        (DeltaMaybePositive && CoeffMaybeNegative))
      NewDirection |= Dependence::DVEntry::GT;
    if (NewDirection < Result.DV[Level].Direction)
      ++StrongSIVsuccesses;
    Result.DV[Level].Direction &= NewDirection;
  }
  return false;
}


// weakCrossingSIVtest -
// From the paper, Practical Dependence Testing, Section 4.2.2
//
// When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
// where i is an induction variable, c1 and c2 are loop invariant,
// and a is a constant, we can solve it exactly using the
// Weak-Crossing SIV test.
//
// Given c1 + a*i = c2 - a*i', we can look for the intersection of
// the two lines, where i = i', yielding
//
//    c1 + a*i = c2 - a*i
//    2a*i = c2 - c1
//    i = (c2 - c1)/2a
//
// If i < 0, there is no dependence.
// If i > upperbound, there is no dependence.
// If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
// If i = upperbound, there's a dependence with distance = 0.
// If i is integral, there's a dependence (all directions).
// If the non-integer part = 1/2, there's a dependence (<> directions).
// Otherwise, there's no dependence.
//
// Can prove independence. Failing that,
// can sometimes refine the directions.
// Can determine iteration for splitting.
//
// Return true if dependence disproved.
bool DependenceInfo::weakCrossingSIVtest(
    const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst,
    const Loop *CurLoop, unsigned Level, FullDependence &Result,
    Constraint &NewConstraint, const SCEV *&SplitIter) const {
  LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
  LLVM_DEBUG(dbgs() << "\t    Coeff = " << *Coeff << "\n");
  LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
  LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
  ++WeakCrossingSIVapplications;
  assert(0 < Level && Level <= CommonLevels && "Level out of range");
  Level--;
  Result.Consistent = false;
  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
  LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
  NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
  if (Delta->isZero()) {
    Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
    Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
    ++WeakCrossingSIVsuccesses;
    if (!Result.DV[Level].Direction) {
      ++WeakCrossingSIVindependence;
      return true;
    }
    Result.DV[Level].Distance = Delta; // = 0
    return false;
  }
  const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
  if (!ConstCoeff)
    return false;

  Result.DV[Level].Splitable = true;
  if (SE->isKnownNegative(ConstCoeff)) {
    ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
    assert(ConstCoeff &&
           "dynamic cast of negative of ConstCoeff should yield constant");
    Delta = SE->getNegativeSCEV(Delta);
  }
  assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");

  // compute SplitIter for use by DependenceInfo::getSplitIteration()
  SplitIter = SE->getUDivExpr(
      SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta),
      SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff));
  LLVM_DEBUG(dbgs() << "\t    Split iter = " << *SplitIter << "\n");

  const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
  if (!ConstDelta)
    return false;

  // We're certain that ConstCoeff > 0; therefore,
  // if Delta < 0, then no dependence.
  LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
  LLVM_DEBUG(dbgs() << "\t    ConstCoeff = " << *ConstCoeff << "\n");
  if (SE->isKnownNegative(Delta)) {
    // No dependence, Delta < 0
    ++WeakCrossingSIVindependence;
    ++WeakCrossingSIVsuccesses;
    return true;
  }

  // We're certain that Delta > 0 and ConstCoeff > 0.
  // Check Delta/(2*ConstCoeff) against upper loop bound
  if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
    LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
    const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
    const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
                                    ConstantTwo);
    LLVM_DEBUG(dbgs() << "\t    ML = " << *ML << "\n");
    if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
      // Delta too big, no dependence
      ++WeakCrossingSIVindependence;
      ++WeakCrossingSIVsuccesses;
      return true;
    }
    if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
      // i = i' = UB
      Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
      Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
      ++WeakCrossingSIVsuccesses;
      if (!Result.DV[Level].Direction) {
        ++WeakCrossingSIVindependence;
        return true;
      }
      Result.DV[Level].Splitable = false;
      Result.DV[Level].Distance = SE->getZero(Delta->getType());
      return false;
    }
  }

  // check that Coeff divides Delta
  APInt APDelta = ConstDelta->getAPInt();
  APInt APCoeff = ConstCoeff->getAPInt();
  APInt Distance = APDelta; // these need to be initialzed
  APInt Remainder = APDelta;
  APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
  LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
  if (Remainder != 0) {
    // Coeff doesn't divide Delta, no dependence
    ++WeakCrossingSIVindependence;
    ++WeakCrossingSIVsuccesses;
    return true;
  }
  LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");

  // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
  APInt Two = APInt(Distance.getBitWidth(), 2, true);
  Remainder = Distance.srem(Two);
  LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
  if (Remainder != 0) {
    // Equal direction isn't possible
    Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
    ++WeakCrossingSIVsuccesses;
  }
  return false;
}


// Kirch's algorithm, from
//
//        Optimizing Supercompilers for Supercomputers
//        Michael Wolfe
//        MIT Press, 1989
//
// Program 2.1, page 29.
// Computes the GCD of AM and BM.
// Also finds a solution to the equation ax - by = gcd(a, b).
// Returns true if dependence disproved; i.e., gcd does not divide Delta.
static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM,
                    const APInt &Delta, APInt &G, APInt &X, APInt &Y) {
  APInt A0(Bits, 1, true), A1(Bits, 0, true);
  APInt B0(Bits, 0, true), B1(Bits, 1, true);
  APInt G0 = AM.abs();
  APInt G1 = BM.abs();
  APInt Q = G0; // these need to be initialized
  APInt R = G0;
  APInt::sdivrem(G0, G1, Q, R);
  while (R != 0) {
    APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
    APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
    G0 = G1; G1 = R;
    APInt::sdivrem(G0, G1, Q, R);
  }
  G = G1;
  LLVM_DEBUG(dbgs() << "\t    GCD = " << G << "\n");
  X = AM.slt(0) ? -A1 : A1;
  Y = BM.slt(0) ? B1 : -B1;

  // make sure gcd divides Delta
  R = Delta.srem(G);
  if (R != 0)
    return true; // gcd doesn't divide Delta, no dependence
  Q = Delta.sdiv(G);
  return false;
}

static APInt floorOfQuotient(const APInt &A, const APInt &B) {
  APInt Q = A; // these need to be initialized
  APInt R = A;
  APInt::sdivrem(A, B, Q, R);
  if (R == 0)
    return Q;
  if ((A.sgt(0) && B.sgt(0)) ||
      (A.slt(0) && B.slt(0)))
    return Q;
  else
    return Q - 1;
}

static APInt ceilingOfQuotient(const APInt &A, const APInt &B) {
  APInt Q = A; // these need to be initialized
  APInt R = A;
  APInt::sdivrem(A, B, Q, R);
  if (R == 0)
    return Q;
  if ((A.sgt(0) && B.sgt(0)) ||
      (A.slt(0) && B.slt(0)))
    return Q + 1;
  else
    return Q;
}

// exactSIVtest -
// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
// where i is an induction variable, c1 and c2 are loop invariant, and a1
// and a2 are constant, we can solve it exactly using an algorithm developed
// by Banerjee and Wolfe. See Algorithm 6.2.1 (case 2.5) in:
//
//        Dependence Analysis for Supercomputing
//        Utpal Banerjee
//        Kluwer Academic Publishers, 1988
//
// It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
// so use them if possible. They're also a bit better with symbolics and,
// in the case of the strong SIV test, can compute Distances.
//
// Return true if dependence disproved.
//
// This is a modified version of the original Banerjee algorithm. The original
// only tested whether Dst depends on Src. This algorithm extends that and
// returns all the dependencies that exist between Dst and Src.
bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
                                  const SCEV *SrcConst, const SCEV *DstConst,
                                  const Loop *CurLoop, unsigned Level,
                                  FullDependence &Result,
                                  Constraint &NewConstraint) const {
  LLVM_DEBUG(dbgs() << "\tExact SIV test\n");
  LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
  LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
  LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
  LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
  ++ExactSIVapplications;
  assert(0 < Level && Level <= CommonLevels && "Level out of range");
  Level--;
  Result.Consistent = false;
  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
  LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
  NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff), Delta,
                        CurLoop);
  const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
  const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
  const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
  if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
    return false;

  // find gcd
  APInt G, X, Y;
  APInt AM = ConstSrcCoeff->getAPInt();
  APInt BM = ConstDstCoeff->getAPInt();
  APInt CM = ConstDelta->getAPInt();
  unsigned Bits = AM.getBitWidth();
  if (findGCD(Bits, AM, BM, CM, G, X, Y)) {
    // gcd doesn't divide Delta, no dependence
    ++ExactSIVindependence;
    ++ExactSIVsuccesses;
    return true;
  }

  LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");

  // since SCEV construction normalizes, LM = 0
  APInt UM(Bits, 1, true);
  bool UMValid = false;
  // UM is perhaps unavailable, let's check
  if (const SCEVConstant *CUB =
          collectConstantUpperBound(CurLoop, Delta->getType())) {
    UM = CUB->getAPInt();
    LLVM_DEBUG(dbgs() << "\t    UM = " << UM << "\n");
    UMValid = true;
  }

  APInt TU(APInt::getSignedMaxValue(Bits));
  APInt TL(APInt::getSignedMinValue(Bits));
  APInt TC = CM.sdiv(G);
  APInt TX = X * TC;
  APInt TY = Y * TC;
  LLVM_DEBUG(dbgs() << "\t    TC = " << TC << "\n");
  LLVM_DEBUG(dbgs() << "\t    TX = " << TX << "\n");
  LLVM_DEBUG(dbgs() << "\t    TY = " << TY << "\n");

  SmallVector<APInt, 2> TLVec, TUVec;
  APInt TB = BM.sdiv(G);
  if (TB.sgt(0)) {
    TLVec.push_back(ceilingOfQuotient(-TX, TB));
    LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
    // New bound check - modification to Banerjee's e3 check
    if (UMValid) {
      TUVec.push_back(floorOfQuotient(UM - TX, TB));
      LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
    }
  } else {
    TUVec.push_back(floorOfQuotient(-TX, TB));
    LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
    // New bound check - modification to Banerjee's e3 check
    if (UMValid) {
      TLVec.push_back(ceilingOfQuotient(UM - TX, TB));
      LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
    }
  }

  APInt TA = AM.sdiv(G);
  if (TA.sgt(0)) {
    if (UMValid) {
      TUVec.push_back(floorOfQuotient(UM - TY, TA));
      LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
    }
    // New bound check - modification to Banerjee's e3 check
    TLVec.push_back(ceilingOfQuotient(-TY, TA));
    LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
  } else {
    if (UMValid) {
      TLVec.push_back(ceilingOfQuotient(UM - TY, TA));
      LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
    }
    // New bound check - modification to Banerjee's e3 check
    TUVec.push_back(floorOfQuotient(-TY, TA));
    LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
  }

  LLVM_DEBUG(dbgs() << "\t    TA = " << TA << "\n");
  LLVM_DEBUG(dbgs() << "\t    TB = " << TB << "\n");

  if (TLVec.empty() || TUVec.empty())
    return false;
  TL = APIntOps::smax(TLVec.front(), TLVec.back());
  TU = APIntOps::smin(TUVec.front(), TUVec.back());
  LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
  LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");

  if (TL.sgt(TU)) {
    ++ExactSIVindependence;
    ++ExactSIVsuccesses;
    return true;
  }

  // explore directions
  unsigned NewDirection = Dependence::DVEntry::NONE;
  APInt LowerDistance, UpperDistance;
  if (TA.sgt(TB)) {
    LowerDistance = (TY - TX) + (TA - TB) * TL;
    UpperDistance = (TY - TX) + (TA - TB) * TU;
  } else {
    LowerDistance = (TY - TX) + (TA - TB) * TU;
    UpperDistance = (TY - TX) + (TA - TB) * TL;
  }

  LLVM_DEBUG(dbgs() << "\t    LowerDistance = " << LowerDistance << "\n");
  LLVM_DEBUG(dbgs() << "\t    UpperDistance = " << UpperDistance << "\n");

  APInt Zero(Bits, 0, true);
  if (LowerDistance.sle(Zero) && UpperDistance.sge(Zero)) {
    NewDirection |= Dependence::DVEntry::EQ;
    ++ExactSIVsuccesses;
  }
  if (LowerDistance.slt(0)) {
    NewDirection |= Dependence::DVEntry::GT;
    ++ExactSIVsuccesses;
  }
  if (UpperDistance.sgt(0)) {
    NewDirection |= Dependence::DVEntry::LT;
    ++ExactSIVsuccesses;
  }

  // finished
  Result.DV[Level].Direction &= NewDirection;
  if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
    ++ExactSIVindependence;
  LLVM_DEBUG(dbgs() << "\t    Result = ");
  LLVM_DEBUG(Result.dump(dbgs()));
  return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
}


// Return true if the divisor evenly divides the dividend.
static
bool isRemainderZero(const SCEVConstant *Dividend,
                     const SCEVConstant *Divisor) {
  const APInt &ConstDividend = Dividend->getAPInt();
  const APInt &ConstDivisor = Divisor->getAPInt();
  return ConstDividend.srem(ConstDivisor) == 0;
}


// weakZeroSrcSIVtest -
// From the paper, Practical Dependence Testing, Section 4.2.2
//
// When we have a pair of subscripts of the form [c1] and [c2 + a*i],
// where i is an induction variable, c1 and c2 are loop invariant,
// and a is a constant, we can solve it exactly using the
// Weak-Zero SIV test.
//
// Given
//
//    c1 = c2 + a*i
//
// we get
//
//    (c1 - c2)/a = i
//
// If i is not an integer, there's no dependence.
// If i < 0 or > UB, there's no dependence.
// If i = 0, the direction is >= and peeling the
// 1st iteration will break the dependence.
// If i = UB, the direction is <= and peeling the
// last iteration will break the dependence.
// Otherwise, the direction is *.
//
// Can prove independence. Failing that, we can sometimes refine
// the directions. Can sometimes show that first or last
// iteration carries all the dependences (so worth peeling).
//
// (see also weakZeroDstSIVtest)
//
// Return true if dependence disproved.
bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
                                        const SCEV *SrcConst,
                                        const SCEV *DstConst,
                                        const Loop *CurLoop, unsigned Level,
                                        FullDependence &Result,
                                        Constraint &NewConstraint) const {
  // For the WeakSIV test, it's possible the loop isn't common to
  // the Src and Dst loops. If it isn't, then there's no need to
  // record a direction.
  LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
  LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << "\n");
  LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
  LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
  ++WeakZeroSIVapplications;
  assert(0 < Level && Level <= MaxLevels && "Level out of range");
  Level--;
  Result.Consistent = false;
  const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
  NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta,
                        CurLoop);
  LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
  if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
    if (Level < CommonLevels) {
      Result.DV[Level].Direction &= Dependence::DVEntry::GE;
      Result.DV[Level].PeelFirst = true;
      ++WeakZeroSIVsuccesses;
    }
    return false; // dependences caused by first iteration
  }
  const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
  if (!ConstCoeff)
    return false;
  const SCEV *AbsCoeff =
    SE->isKnownNegative(ConstCoeff) ?
    SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
  const SCEV *NewDelta =
    SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;

  // check that Delta/SrcCoeff < iteration count
  // really check NewDelta < count*AbsCoeff
  if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
    LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
    const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
    if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
      ++WeakZeroSIVindependence;
      ++WeakZeroSIVsuccesses;
      return true;
    }
    if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
      // dependences caused by last iteration
      if (Level < CommonLevels) {
        Result.DV[Level].Direction &= Dependence::DVEntry::LE;
        Result.DV[Level].PeelLast = true;
        ++WeakZeroSIVsuccesses;
      }
      return false;
    }
  }

  // check that Delta/SrcCoeff >= 0
  // really check that NewDelta >= 0
  if (SE->isKnownNegative(NewDelta)) {
    // No dependence, newDelta < 0
    ++WeakZeroSIVindependence;
    ++WeakZeroSIVsuccesses;
    return true;
  }

  // if SrcCoeff doesn't divide Delta, then no dependence
  if (isa<SCEVConstant>(Delta) &&
      !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
    ++WeakZeroSIVindependence;
    ++WeakZeroSIVsuccesses;
    return true;
  }
  return false;
}


// weakZeroDstSIVtest -
// From the paper, Practical Dependence Testing, Section 4.2.2
//
// When we have a pair of subscripts of the form [c1 + a*i] and [c2],
// where i is an induction variable, c1 and c2 are loop invariant,
// and a is a constant, we can solve it exactly using the
// Weak-Zero SIV test.
//
// Given
//
//    c1 + a*i = c2
//
// we get
//
//    i = (c2 - c1)/a
//
// If i is not an integer, there's no dependence.
// If i < 0 or > UB, there's no dependence.
// If i = 0, the direction is <= and peeling the
// 1st iteration will break the dependence.
// If i = UB, the direction is >= and peeling the
// last iteration will break the dependence.
// Otherwise, the direction is *.
//
// Can prove independence. Failing that, we can sometimes refine
// the directions. Can sometimes show that first or last
// iteration carries all the dependences (so worth peeling).
//
// (see also weakZeroSrcSIVtest)
//
// Return true if dependence disproved.
bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
                                        const SCEV *SrcConst,
                                        const SCEV *DstConst,
                                        const Loop *CurLoop, unsigned Level,
                                        FullDependence &Result,
                                        Constraint &NewConstraint) const {
  // For the WeakSIV test, it's possible the loop isn't common to the
  // Src and Dst loops. If it isn't, then there's no need to record a direction.
  LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
  LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << "\n");
  LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
  LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
  ++WeakZeroSIVapplications;
  assert(0 < Level && Level <= SrcLevels && "Level out of range");
  Level--;
  Result.Consistent = false;
  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
  NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta,
                        CurLoop);
  LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
  if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
    if (Level < CommonLevels) {
      Result.DV[Level].Direction &= Dependence::DVEntry::LE;
      Result.DV[Level].PeelFirst = true;
      ++WeakZeroSIVsuccesses;
    }
    return false; // dependences caused by first iteration
  }
  const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
  if (!ConstCoeff)
    return false;
  const SCEV *AbsCoeff =
    SE->isKnownNegative(ConstCoeff) ?
    SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
  const SCEV *NewDelta =
    SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;

  // check that Delta/SrcCoeff < iteration count
  // really check NewDelta < count*AbsCoeff
  if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
    LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
    const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
    if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
      ++WeakZeroSIVindependence;
      ++WeakZeroSIVsuccesses;
      return true;
    }
    if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
      // dependences caused by last iteration
      if (Level < CommonLevels) {
        Result.DV[Level].Direction &= Dependence::DVEntry::GE;
        Result.DV[Level].PeelLast = true;
        ++WeakZeroSIVsuccesses;
      }
      return false;
    }
  }

  // check that Delta/SrcCoeff >= 0
  // really check that NewDelta >= 0
  if (SE->isKnownNegative(NewDelta)) {
    // No dependence, newDelta < 0
    ++WeakZeroSIVindependence;
    ++WeakZeroSIVsuccesses;
    return true;
  }

  // if SrcCoeff doesn't divide Delta, then no dependence
  if (isa<SCEVConstant>(Delta) &&
      !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
    ++WeakZeroSIVindependence;
    ++WeakZeroSIVsuccesses;
    return true;
  }
  return false;
}


// exactRDIVtest - Tests the RDIV subscript pair for dependence.
// Things of the form [c1 + a*i] and [c2 + b*j],
// where i and j are induction variable, c1 and c2 are loop invariant,
// and a and b are constants.
// Returns true if any possible dependence is disproved.
// Marks the result as inconsistent.
// Works in some cases that symbolicRDIVtest doesn't, and vice versa.
bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
                                   const SCEV *SrcConst, const SCEV *DstConst,
                                   const Loop *SrcLoop, const Loop *DstLoop,
                                   FullDependence &Result) const {
  LLVM_DEBUG(dbgs() << "\tExact RDIV test\n");
  LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
  LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
  LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
  LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
  ++ExactRDIVapplications;
  Result.Consistent = false;
  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
  LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
  const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
  const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
  const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
  if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
    return false;

  // find gcd
  APInt G, X, Y;
  APInt AM = ConstSrcCoeff->getAPInt();
  APInt BM = ConstDstCoeff->getAPInt();
  APInt CM = ConstDelta->getAPInt();
  unsigned Bits = AM.getBitWidth();
  if (findGCD(Bits, AM, BM, CM, G, X, Y)) {
    // gcd doesn't divide Delta, no dependence
    ++ExactRDIVindependence;
    return true;
  }

  LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");

  // since SCEV construction seems to normalize, LM = 0
  APInt SrcUM(Bits, 1, true);
  bool SrcUMvalid = false;
  // SrcUM is perhaps unavailable, let's check
  if (const SCEVConstant *UpperBound =
          collectConstantUpperBound(SrcLoop, Delta->getType())) {
    SrcUM = UpperBound->getAPInt();
    LLVM_DEBUG(dbgs() << "\t    SrcUM = " << SrcUM << "\n");
    SrcUMvalid = true;
  }

  APInt DstUM(Bits, 1, true);
  bool DstUMvalid = false;
  // UM is perhaps unavailable, let's check
  if (const SCEVConstant *UpperBound =
          collectConstantUpperBound(DstLoop, Delta->getType())) {
    DstUM = UpperBound->getAPInt();
    LLVM_DEBUG(dbgs() << "\t    DstUM = " << DstUM << "\n");
    DstUMvalid = true;
  }

  APInt TU(APInt::getSignedMaxValue(Bits));
  APInt TL(APInt::getSignedMinValue(Bits));
  APInt TC = CM.sdiv(G);
  APInt TX = X * TC;
  APInt TY = Y * TC;
  LLVM_DEBUG(dbgs() << "\t    TC = " << TC << "\n");
  LLVM_DEBUG(dbgs() << "\t    TX = " << TX << "\n");
  LLVM_DEBUG(dbgs() << "\t    TY = " << TY << "\n");

  SmallVector<APInt, 2> TLVec, TUVec;
  APInt TB = BM.sdiv(G);
  if (TB.sgt(0)) {
    TLVec.push_back(ceilingOfQuotient(-TX, TB));
    LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
    if (SrcUMvalid) {
      TUVec.push_back(floorOfQuotient(SrcUM - TX, TB));
      LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
    }
  } else {
    TUVec.push_back(floorOfQuotient(-TX, TB));
    LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
    if (SrcUMvalid) {
      TLVec.push_back(ceilingOfQuotient(SrcUM - TX, TB));
      LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
    }
  }

  APInt TA = AM.sdiv(G);
  if (TA.sgt(0)) {
    TLVec.push_back(ceilingOfQuotient(-TY, TA));
    LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
    if (DstUMvalid) {
      TUVec.push_back(floorOfQuotient(DstUM - TY, TA));
      LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
    }
  } else {
    TUVec.push_back(floorOfQuotient(-TY, TA));
    LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
    if (DstUMvalid) {
      TLVec.push_back(ceilingOfQuotient(DstUM - TY, TA));
      LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
    }
  }

  if (TLVec.empty() || TUVec.empty())
    return false;

  LLVM_DEBUG(dbgs() << "\t    TA = " << TA << "\n");
  LLVM_DEBUG(dbgs() << "\t    TB = " << TB << "\n");

  TL = APIntOps::smax(TLVec.front(), TLVec.back());
  TU = APIntOps::smin(TUVec.front(), TUVec.back());
  LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
  LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");

  if (TL.sgt(TU))
    ++ExactRDIVindependence;
  return TL.sgt(TU);
}


// symbolicRDIVtest -
// In Section 4.5 of the Practical Dependence Testing paper,the authors
// introduce a special case of Banerjee's Inequalities (also called the
// Extreme-Value Test) that can handle some of the SIV and RDIV cases,
// particularly cases with symbolics. Since it's only able to disprove
// dependence (not compute distances or directions), we'll use it as a
// fall back for the other tests.
//
// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
// where i and j are induction variables and c1 and c2 are loop invariants,
// we can use the symbolic tests to disprove some dependences, serving as a
// backup for the RDIV test. Note that i and j can be the same variable,
// letting this test serve as a backup for the various SIV tests.
//
// For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
//  0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
// loop bounds for the i and j loops, respectively. So, ...
//
// c1 + a1*i = c2 + a2*j
// a1*i - a2*j = c2 - c1
//
// To test for a dependence, we compute c2 - c1 and make sure it's in the
// range of the maximum and minimum possible values of a1*i - a2*j.
// Considering the signs of a1 and a2, we have 4 possible cases:
//
// 1) If a1 >= 0 and a2 >= 0, then
//        a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
//              -a2*N2 <= c2 - c1 <= a1*N1
//
// 2) If a1 >= 0 and a2 <= 0, then
//        a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
//                  0 <= c2 - c1 <= a1*N1 - a2*N2
//
// 3) If a1 <= 0 and a2 >= 0, then
//        a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
//        a1*N1 - a2*N2 <= c2 - c1 <= 0
//
// 4) If a1 <= 0 and a2 <= 0, then
//        a1*N1 - a2*0  <= c2 - c1 <= a1*0 - a2*N2
//        a1*N1         <= c2 - c1 <=       -a2*N2
//
// return true if dependence disproved
bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
                                      const SCEV *C1, const SCEV *C2,
                                      const Loop *Loop1,
                                      const Loop *Loop2) const {
  ++SymbolicRDIVapplications;
  LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
  LLVM_DEBUG(dbgs() << "\t    A1 = " << *A1);
  LLVM_DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
  LLVM_DEBUG(dbgs() << "\t    A2 = " << *A2 << "\n");
  LLVM_DEBUG(dbgs() << "\t    C1 = " << *C1 << "\n");
  LLVM_DEBUG(dbgs() << "\t    C2 = " << *C2 << "\n");
  const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
  const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
  LLVM_DEBUG(if (N1) dbgs() << "\t    N1 = " << *N1 << "\n");
  LLVM_DEBUG(if (N2) dbgs() << "\t    N2 = " << *N2 << "\n");
  const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
  const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
  LLVM_DEBUG(dbgs() << "\t    C2 - C1 = " << *C2_C1 << "\n");
  LLVM_DEBUG(dbgs() << "\t    C1 - C2 = " << *C1_C2 << "\n");
  if (SE->isKnownNonNegative(A1)) {
    if (SE->isKnownNonNegative(A2)) {
      // A1 >= 0 && A2 >= 0
      if (N1) {
        // make sure that c2 - c1 <= a1*N1
        const SCEV *A1N1 = SE->getMulExpr(A1, N1);
        LLVM_DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
        if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
          ++SymbolicRDIVindependence;
          return true;
        }
      }
      if (N2) {
        // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
        const SCEV *A2N2 = SE->getMulExpr(A2, N2);
        LLVM_DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
        if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
          ++SymbolicRDIVindependence;
          return true;
        }
      }
    }
    else if (SE->isKnownNonPositive(A2)) {
      // a1 >= 0 && a2 <= 0
      if (N1 && N2) {
        // make sure that c2 - c1 <= a1*N1 - a2*N2
        const SCEV *A1N1 = SE->getMulExpr(A1, N1);
        const SCEV *A2N2 = SE->getMulExpr(A2, N2);
        const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
        LLVM_DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
        if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
          ++SymbolicRDIVindependence;
          return true;
        }
      }
      // make sure that 0 <= c2 - c1
      if (SE->isKnownNegative(C2_C1)) {
        ++SymbolicRDIVindependence;
        return true;
      }
    }
  }
  else if (SE->isKnownNonPositive(A1)) {
    if (SE->isKnownNonNegative(A2)) {
      // a1 <= 0 && a2 >= 0
      if (N1 && N2) {
        // make sure that a1*N1 - a2*N2 <= c2 - c1
        const SCEV *A1N1 = SE->getMulExpr(A1, N1);
        const SCEV *A2N2 = SE->getMulExpr(A2, N2);
        const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
        LLVM_DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
        if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
          ++SymbolicRDIVindependence;
          return true;
        }
      }
      // make sure that c2 - c1 <= 0
      if (SE->isKnownPositive(C2_C1)) {
        ++SymbolicRDIVindependence;
        return true;
      }
    }
    else if (SE->isKnownNonPositive(A2)) {
      // a1 <= 0 && a2 <= 0
      if (N1) {
        // make sure that a1*N1 <= c2 - c1
        const SCEV *A1N1 = SE->getMulExpr(A1, N1);
        LLVM_DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
        if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
          ++SymbolicRDIVindependence;
          return true;
        }
      }
      if (N2) {
        // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
        const SCEV *A2N2 = SE->getMulExpr(A2, N2);
        LLVM_DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
        if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
          ++SymbolicRDIVindependence;
          return true;
        }
      }
    }
  }
  return false;
}


// testSIV -
// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
// where i is an induction variable, c1 and c2 are loop invariant, and a1 and
// a2 are constant, we attack it with an SIV test. While they can all be
// solved with the Exact SIV test, it's worthwhile to use simpler tests when
// they apply; they're cheaper and sometimes more precise.
//
// Return true if dependence disproved.
bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
                             FullDependence &Result, Constraint &NewConstraint,
                             const SCEV *&SplitIter) const {
  LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
  LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
  const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
  const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
  if (SrcAddRec && DstAddRec) {
    const SCEV *SrcConst = SrcAddRec->getStart();
    const SCEV *DstConst = DstAddRec->getStart();
    const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
    const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
    const Loop *CurLoop = SrcAddRec->getLoop();
    assert(CurLoop == DstAddRec->getLoop() &&
           "both loops in SIV should be same");
    Level = mapSrcLoop(CurLoop);
    bool disproven;
    if (SrcCoeff == DstCoeff)
      disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
                                Level, Result, NewConstraint);
    else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
      disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
                                      Level, Result, NewConstraint, SplitIter);
    else
      disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
                               Level, Result, NewConstraint);
    return disproven ||
      gcdMIVtest(Src, Dst, Result) ||
      symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
  }
  if (SrcAddRec) {
    const SCEV *SrcConst = SrcAddRec->getStart();
    const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
    const SCEV *DstConst = Dst;
    const Loop *CurLoop = SrcAddRec->getLoop();
    Level = mapSrcLoop(CurLoop);
    return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
                              Level, Result, NewConstraint) ||
      gcdMIVtest(Src, Dst, Result);
  }
  if (DstAddRec) {
    const SCEV *DstConst = DstAddRec->getStart();
    const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
    const SCEV *SrcConst = Src;
    const Loop *CurLoop = DstAddRec->getLoop();
    Level = mapDstLoop(CurLoop);
    return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
                              CurLoop, Level, Result, NewConstraint) ||
      gcdMIVtest(Src, Dst, Result);
  }
  llvm_unreachable("SIV test expected at least one AddRec");
  return false;
}


// testRDIV -
// When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
// where i and j are induction variables, c1 and c2 are loop invariant,
// and a1 and a2 are constant, we can solve it exactly with an easy adaptation
// of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
// It doesn't make sense to talk about distance or direction in this case,
// so there's no point in making special versions of the Strong SIV test or
// the Weak-crossing SIV test.
//
// With minor algebra, this test can also be used for things like
// [c1 + a1*i + a2*j][c2].
//
// Return true if dependence disproved.
bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst,
                              FullDependence &Result) const {
  // we have 3 possible situations here:
  //   1) [a*i + b] and [c*j + d]
  //   2) [a*i + c*j + b] and [d]
  //   3) [b] and [a*i + c*j + d]
  // We need to find what we've got and get organized

  const SCEV *SrcConst, *DstConst;
  const SCEV *SrcCoeff, *DstCoeff;
  const Loop *SrcLoop, *DstLoop;

  LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
  LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
  const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
  const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
  if (SrcAddRec && DstAddRec) {
    SrcConst = SrcAddRec->getStart();
    SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
    SrcLoop = SrcAddRec->getLoop();
    DstConst = DstAddRec->getStart();
    DstCoeff = DstAddRec->getStepRecurrence(*SE);
    DstLoop = DstAddRec->getLoop();
  }
  else if (SrcAddRec) {
    if (const SCEVAddRecExpr *tmpAddRec =
        dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
      SrcConst = tmpAddRec->getStart();
      SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
      SrcLoop = tmpAddRec->getLoop();
      DstConst = Dst;
      DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
      DstLoop = SrcAddRec->getLoop();
    }
    else
      llvm_unreachable("RDIV reached by surprising SCEVs");
  }
  else if (DstAddRec) {
    if (const SCEVAddRecExpr *tmpAddRec =
        dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
      DstConst = tmpAddRec->getStart();
      DstCoeff = tmpAddRec->getStepRecurrence(*SE);
      DstLoop = tmpAddRec->getLoop();
      SrcConst = Src;
      SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
      SrcLoop = DstAddRec->getLoop();
    }
    else
      llvm_unreachable("RDIV reached by surprising SCEVs");
  }
  else
    llvm_unreachable("RDIV expected at least one AddRec");
  return exactRDIVtest(SrcCoeff, DstCoeff,
                       SrcConst, DstConst,
                       SrcLoop, DstLoop,
                       Result) ||
    gcdMIVtest(Src, Dst, Result) ||
    symbolicRDIVtest(SrcCoeff, DstCoeff,
                     SrcConst, DstConst,
                     SrcLoop, DstLoop);
}


// Tests the single-subscript MIV pair (Src and Dst) for dependence.
// Return true if dependence disproved.
// Can sometimes refine direction vectors.
bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst,
                             const SmallBitVector &Loops,
                             FullDependence &Result) const {
  LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
  LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
  Result.Consistent = false;
  return gcdMIVtest(Src, Dst, Result) ||
    banerjeeMIVtest(Src, Dst, Loops, Result);
}


// Given a product, e.g., 10*X*Y, returns the first constant operand,
// in this case 10. If there is no constant part, returns NULL.
static
const SCEVConstant *getConstantPart(const SCEV *Expr) {
  if (const auto *Constant = dyn_cast<SCEVConstant>(Expr))
    return Constant;
  else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr))
    if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0)))
      return Constant;
  return nullptr;
}


//===----------------------------------------------------------------------===//
// gcdMIVtest -
// Tests an MIV subscript pair for dependence.
// Returns true if any possible dependence is disproved.
// Marks the result as inconsistent.
// Can sometimes disprove the equal direction for 1 or more loops,
// as discussed in Michael Wolfe's book,
// High Performance Compilers for Parallel Computing, page 235.
//
// We spend some effort (code!) to handle cases like
// [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
// but M and N are just loop-invariant variables.
// This should help us handle linearized subscripts;
// also makes this test a useful backup to the various SIV tests.
//
// It occurs to me that the presence of loop-invariant variables
// changes the nature of the test from "greatest common divisor"
// to "a common divisor".
bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
                                FullDependence &Result) const {
  LLVM_DEBUG(dbgs() << "starting gcd\n");
  ++GCDapplications;
  unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
  APInt RunningGCD = APInt::getZero(BitWidth);

  // Examine Src coefficients.
  // Compute running GCD and record source constant.
  // Because we're looking for the constant at the end of the chain,
  // we can't quit the loop just because the GCD == 1.
  const SCEV *Coefficients = Src;
  while (const SCEVAddRecExpr *AddRec =
         dyn_cast<SCEVAddRecExpr>(Coefficients)) {
    const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
    // If the coefficient is the product of a constant and other stuff,
    // we can use the constant in the GCD computation.
    const auto *Constant = getConstantPart(Coeff);
    if (!Constant)
      return false;
    APInt ConstCoeff = Constant->getAPInt();
    RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
    Coefficients = AddRec->getStart();
  }
  const SCEV *SrcConst = Coefficients;

  // Examine Dst coefficients.
  // Compute running GCD and record destination constant.
  // Because we're looking for the constant at the end of the chain,
  // we can't quit the loop just because the GCD == 1.
  Coefficients = Dst;
  while (const SCEVAddRecExpr *AddRec =
         dyn_cast<SCEVAddRecExpr>(Coefficients)) {
    const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
    // If the coefficient is the product of a constant and other stuff,
    // we can use the constant in the GCD computation.
    const auto *Constant = getConstantPart(Coeff);
    if (!Constant)
      return false;
    APInt ConstCoeff = Constant->getAPInt();
    RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
    Coefficients = AddRec->getStart();
  }
  const SCEV *DstConst = Coefficients;

  APInt ExtraGCD = APInt::getZero(BitWidth);
  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
  LLVM_DEBUG(dbgs() << "    Delta = " << *Delta << "\n");
  const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
  if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
    // If Delta is a sum of products, we may be able to make further progress.
    for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
      const SCEV *Operand = Sum->getOperand(Op);
      if (isa<SCEVConstant>(Operand)) {
        assert(!Constant && "Surprised to find multiple constants");
        Constant = cast<SCEVConstant>(Operand);
      }
      else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
        // Search for constant operand to participate in GCD;
        // If none found; return false.
        const SCEVConstant *ConstOp = getConstantPart(Product);
        if (!ConstOp)
          return false;
        APInt ConstOpValue = ConstOp->getAPInt();
        ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
                                                   ConstOpValue.abs());
      }
      else
        return false;
    }
  }
  if (!Constant)
    return false;
  APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt();
  LLVM_DEBUG(dbgs() << "    ConstDelta = " << ConstDelta << "\n");
  if (ConstDelta == 0)
    return false;
  RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
  LLVM_DEBUG(dbgs() << "    RunningGCD = " << RunningGCD << "\n");
  APInt Remainder = ConstDelta.srem(RunningGCD);
  if (Remainder != 0) {
    ++GCDindependence;
    return true;
  }

  // Try to disprove equal directions.
  // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
  // the code above can't disprove the dependence because the GCD = 1.
  // So we consider what happen if i = i' and what happens if j = j'.
  // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
  // which is infeasible, so we can disallow the = direction for the i level.
  // Setting j = j' doesn't help matters, so we end up with a direction vector
  // of [<>, *]
  //
  // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
  // we need to remember that the constant part is 5 and the RunningGCD should
  // be initialized to ExtraGCD = 30.
  LLVM_DEBUG(dbgs() << "    ExtraGCD = " << ExtraGCD << '\n');

  bool Improved = false;
  Coefficients = Src;
  while (const SCEVAddRecExpr *AddRec =
         dyn_cast<SCEVAddRecExpr>(Coefficients)) {
    Coefficients = AddRec->getStart();
    const Loop *CurLoop = AddRec->getLoop();
    RunningGCD = ExtraGCD;
    const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
    const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
    const SCEV *Inner = Src;
    while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
      AddRec = cast<SCEVAddRecExpr>(Inner);
      const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
      if (CurLoop == AddRec->getLoop())
        ; // SrcCoeff == Coeff
      else {
        // If the coefficient is the product of a constant and other stuff,
        // we can use the constant in the GCD computation.
        Constant = getConstantPart(Coeff);
        if (!Constant)
          return false;
        APInt ConstCoeff = Constant->getAPInt();
        RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
      }
      Inner = AddRec->getStart();
    }
    Inner = Dst;
    while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
      AddRec = cast<SCEVAddRecExpr>(Inner);
      const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
      if (CurLoop == AddRec->getLoop())
        DstCoeff = Coeff;
      else {
        // If the coefficient is the product of a constant and other stuff,
        // we can use the constant in the GCD computation.
        Constant = getConstantPart(Coeff);
        if (!Constant)
          return false;
        APInt ConstCoeff = Constant->getAPInt();
        RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
      }
      Inner = AddRec->getStart();
    }
    Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
    // If the coefficient is the product of a constant and other stuff,
    // we can use the constant in the GCD computation.
    Constant = getConstantPart(Delta);
    if (!Constant)
      // The difference of the two coefficients might not be a product
      // or constant, in which case we give up on this direction.
      continue;
    APInt ConstCoeff = Constant->getAPInt();
    RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
    LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
    if (RunningGCD != 0) {
      Remainder = ConstDelta.srem(RunningGCD);
      LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
      if (Remainder != 0) {
        unsigned Level = mapSrcLoop(CurLoop);
        Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
        Improved = true;
      }
    }
  }
  if (Improved)
    ++GCDsuccesses;
  LLVM_DEBUG(dbgs() << "all done\n");
  return false;
}


//===----------------------------------------------------------------------===//
// banerjeeMIVtest -
// Use Banerjee's Inequalities to test an MIV subscript pair.
// (Wolfe, in the race-car book, calls this the Extreme Value Test.)
// Generally follows the discussion in Section 2.5.2 of
//
//    Optimizing Supercompilers for Supercomputers
//    Michael Wolfe
//
// The inequalities given on page 25 are simplified in that loops are
// normalized so that the lower bound is always 0 and the stride is always 1.
// For example, Wolfe gives
//
//     LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
//
// where A_k is the coefficient of the kth index in the source subscript,
// B_k is the coefficient of the kth index in the destination subscript,
// U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
// index, and N_k is the stride of the kth index. Since all loops are normalized
// by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
// equation to
//
//     LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
//            = (A^-_k - B_k)^- (U_k - 1)  - B_k
//
// Similar simplifications are possible for the other equations.
//
// When we can't determine the number of iterations for a loop,
// we use NULL as an indicator for the worst case, infinity.
// When computing the upper bound, NULL denotes +inf;
// for the lower bound, NULL denotes -inf.
//
// Return true if dependence disproved.
bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
                                     const SmallBitVector &Loops,
                                     FullDependence &Result) const {
  LLVM_DEBUG(dbgs() << "starting Banerjee\n");
  ++BanerjeeApplications;
  LLVM_DEBUG(dbgs() << "    Src = " << *Src << '\n');
  const SCEV *A0;
  CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
  LLVM_DEBUG(dbgs() << "    Dst = " << *Dst << '\n');
  const SCEV *B0;
  CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
  BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
  const SCEV *Delta = SE->getMinusSCEV(B0, A0);
  LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');

  // Compute bounds for all the * directions.
  LLVM_DEBUG(dbgs() << "\tBounds[*]\n");
  for (unsigned K = 1; K <= MaxLevels; ++K) {
    Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
    Bound[K].Direction = Dependence::DVEntry::ALL;
    Bound[K].DirSet = Dependence::DVEntry::NONE;
    findBoundsALL(A, B, Bound, K);
#ifndef NDEBUG
    LLVM_DEBUG(dbgs() << "\t    " << K << '\t');
    if (Bound[K].Lower[Dependence::DVEntry::ALL])
      LLVM_DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
    else
      LLVM_DEBUG(dbgs() << "-inf\t");
    if (Bound[K].Upper[Dependence::DVEntry::ALL])
      LLVM_DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
    else
      LLVM_DEBUG(dbgs() << "+inf\n");
#endif
  }

  // Test the *, *, *, ... case.
  bool Disproved = false;
  if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
    // Explore the direction vector hierarchy.
    unsigned DepthExpanded = 0;
    unsigned NewDeps = exploreDirections(1, A, B, Bound,
                                         Loops, DepthExpanded, Delta);
    if (NewDeps > 0) {
      bool Improved = false;
      for (unsigned K = 1; K <= CommonLevels; ++K) {
        if (Loops[K]) {
          unsigned Old = Result.DV[K - 1].Direction;
          Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
          Improved |= Old != Result.DV[K - 1].Direction;
          if (!Result.DV[K - 1].Direction) {
            Improved = false;
            Disproved = true;
            break;
          }
        }
      }
      if (Improved)
        ++BanerjeeSuccesses;
    }
    else {
      ++BanerjeeIndependence;
      Disproved = true;
    }
  }
  else {
    ++BanerjeeIndependence;
    Disproved = true;
  }
  delete [] Bound;
  delete [] A;
  delete [] B;
  return Disproved;
}


// Hierarchically expands the direction vector
// search space, combining the directions of discovered dependences
// in the DirSet field of Bound. Returns the number of distinct
// dependences discovered. If the dependence is disproved,
// it will return 0.
unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A,
                                           CoefficientInfo *B, BoundInfo *Bound,
                                           const SmallBitVector &Loops,
                                           unsigned &DepthExpanded,
                                           const SCEV *Delta) const {
  // This algorithm has worst case complexity of O(3^n), where 'n' is the number
  // of common loop levels. To avoid excessive compile-time, pessimize all the
  // results and immediately return when the number of common levels is beyond
  // the given threshold.
  if (CommonLevels > MIVMaxLevelThreshold) {
    LLVM_DEBUG(dbgs() << "Number of common levels exceeded the threshold. MIV "
                         "direction exploration is terminated.\n");
    for (unsigned K = 1; K <= CommonLevels; ++K)
      if (Loops[K])
        Bound[K].DirSet = Dependence::DVEntry::ALL;
    return 1;
  }

  if (Level > CommonLevels) {
    // record result
    LLVM_DEBUG(dbgs() << "\t[");
    for (unsigned K = 1; K <= CommonLevels; ++K) {
      if (Loops[K]) {
        Bound[K].DirSet |= Bound[K].Direction;
#ifndef NDEBUG
        switch (Bound[K].Direction) {
        case Dependence::DVEntry::LT:
          LLVM_DEBUG(dbgs() << " <");
          break;
        case Dependence::DVEntry::EQ:
          LLVM_DEBUG(dbgs() << " =");
          break;
        case Dependence::DVEntry::GT:
          LLVM_DEBUG(dbgs() << " >");
          break;
        case Dependence::DVEntry::ALL:
          LLVM_DEBUG(dbgs() << " *");
          break;
        default:
          llvm_unreachable("unexpected Bound[K].Direction");
        }
#endif
      }
    }
    LLVM_DEBUG(dbgs() << " ]\n");
    return 1;
  }
  if (Loops[Level]) {
    if (Level > DepthExpanded) {
      DepthExpanded = Level;
      // compute bounds for <, =, > at current level
      findBoundsLT(A, B, Bound, Level);
      findBoundsGT(A, B, Bound, Level);
      findBoundsEQ(A, B, Bound, Level);
#ifndef NDEBUG
      LLVM_DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
      LLVM_DEBUG(dbgs() << "\t    <\t");
      if (Bound[Level].Lower[Dependence::DVEntry::LT])
        LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT]
                          << '\t');
      else
        LLVM_DEBUG(dbgs() << "-inf\t");
      if (Bound[Level].Upper[Dependence::DVEntry::LT])
        LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT]
                          << '\n');
      else
        LLVM_DEBUG(dbgs() << "+inf\n");
      LLVM_DEBUG(dbgs() << "\t    =\t");
      if (Bound[Level].Lower[Dependence::DVEntry::EQ])
        LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ]
                          << '\t');
      else
        LLVM_DEBUG(dbgs() << "-inf\t");
      if (Bound[Level].Upper[Dependence::DVEntry::EQ])
        LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ]
                          << '\n');
      else
        LLVM_DEBUG(dbgs() << "+inf\n");
      LLVM_DEBUG(dbgs() << "\t    >\t");
      if (Bound[Level].Lower[Dependence::DVEntry::GT])
        LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT]
                          << '\t');
      else
        LLVM_DEBUG(dbgs() << "-inf\t");
      if (Bound[Level].Upper[Dependence::DVEntry::GT])
        LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT]
                          << '\n');
      else
        LLVM_DEBUG(dbgs() << "+inf\n");
#endif
    }

    unsigned NewDeps = 0;

    // test bounds for <, *, *, ...
    if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
      NewDeps += exploreDirections(Level + 1, A, B, Bound,
                                   Loops, DepthExpanded, Delta);

    // Test bounds for =, *, *, ...
    if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
      NewDeps += exploreDirections(Level + 1, A, B, Bound,
                                   Loops, DepthExpanded, Delta);

    // test bounds for >, *, *, ...
    if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
      NewDeps += exploreDirections(Level + 1, A, B, Bound,
                                   Loops, DepthExpanded, Delta);

    Bound[Level].Direction = Dependence::DVEntry::ALL;
    return NewDeps;
  }
  else
    return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
}


// Returns true iff the current bounds are plausible.
bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
                                BoundInfo *Bound, const SCEV *Delta) const {
  Bound[Level].Direction = DirKind;
  if (const SCEV *LowerBound = getLowerBound(Bound))
    if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
      return false;
  if (const SCEV *UpperBound = getUpperBound(Bound))
    if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
      return false;
  return true;
}


// Computes the upper and lower bounds for level K
// using the * direction. Records them in Bound.
// Wolfe gives the equations
//
//    LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
//    UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
//
// Since we normalize loops, we can simplify these equations to
//
//    LB^*_k = (A^-_k - B^+_k)U_k
//    UB^*_k = (A^+_k - B^-_k)U_k
//
// We must be careful to handle the case where the upper bound is unknown.
// Note that the lower bound is always <= 0
// and the upper bound is always >= 0.
void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
                                   BoundInfo *Bound, unsigned K) const {
  Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
  Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
  if (Bound[K].Iterations) {
    Bound[K].Lower[Dependence::DVEntry::ALL] =
      SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
                     Bound[K].Iterations);
    Bound[K].Upper[Dependence::DVEntry::ALL] =
      SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
                     Bound[K].Iterations);
  }
  else {
    // If the difference is 0, we won't need to know the number of iterations.
    if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
      Bound[K].Lower[Dependence::DVEntry::ALL] =
          SE->getZero(A[K].Coeff->getType());
    if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
      Bound[K].Upper[Dependence::DVEntry::ALL] =
          SE->getZero(A[K].Coeff->getType());
  }
}


// Computes the upper and lower bounds for level K
// using the = direction. Records them in Bound.
// Wolfe gives the equations
//
//    LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
//    UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
//
// Since we normalize loops, we can simplify these equations to
//
//    LB^=_k = (A_k - B_k)^- U_k
//    UB^=_k = (A_k - B_k)^+ U_k
//
// We must be careful to handle the case where the upper bound is unknown.
// Note that the lower bound is always <= 0
// and the upper bound is always >= 0.
void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
                                  BoundInfo *Bound, unsigned K) const {
  Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
  Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
  if (Bound[K].Iterations) {
    const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
    const SCEV *NegativePart = getNegativePart(Delta);
    Bound[K].Lower[Dependence::DVEntry::EQ] =
      SE->getMulExpr(NegativePart, Bound[K].Iterations);
    const SCEV *PositivePart = getPositivePart(Delta);
    Bound[K].Upper[Dependence::DVEntry::EQ] =
      SE->getMulExpr(PositivePart, Bound[K].Iterations);
  }
  else {
    // If the positive/negative part of the difference is 0,
    // we won't need to know the number of iterations.
    const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
    const SCEV *NegativePart = getNegativePart(Delta);
    if (NegativePart->isZero())
      Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
    const SCEV *PositivePart = getPositivePart(Delta);
    if (PositivePart->isZero())
      Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
  }
}


// Computes the upper and lower bounds for level K
// using the < direction. Records them in Bound.
// Wolfe gives the equations
//
//    LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
//    UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
//
// Since we normalize loops, we can simplify these equations to
//
//    LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
//    UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
//
// We must be careful to handle the case where the upper bound is unknown.
void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
                                  BoundInfo *Bound, unsigned K) const {
  Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
  Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
  if (Bound[K].Iterations) {
    const SCEV *Iter_1 = SE->getMinusSCEV(
        Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
    const SCEV *NegPart =
      getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
    Bound[K].Lower[Dependence::DVEntry::LT] =
      SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
    const SCEV *PosPart =
      getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
    Bound[K].Upper[Dependence::DVEntry::LT] =
      SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
  }
  else {
    // If the positive/negative part of the difference is 0,
    // we won't need to know the number of iterations.
    const SCEV *NegPart =
      getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
    if (NegPart->isZero())
      Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
    const SCEV *PosPart =
      getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
    if (PosPart->isZero())
      Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
  }
}


// Computes the upper and lower bounds for level K
// using the > direction. Records them in Bound.
// Wolfe gives the equations
//
//    LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
//    UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
//
// Since we normalize loops, we can simplify these equations to
//
//    LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
//    UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
//
// We must be careful to handle the case where the upper bound is unknown.
void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B,
                                  BoundInfo *Bound, unsigned K) const {
  Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
  Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
  if (Bound[K].Iterations) {
    const SCEV *Iter_1 = SE->getMinusSCEV(
        Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
    const SCEV *NegPart =
      getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
    Bound[K].Lower[Dependence::DVEntry::GT] =
      SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
    const SCEV *PosPart =
      getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
    Bound[K].Upper[Dependence::DVEntry::GT] =
      SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
  }
  else {
    // If the positive/negative part of the difference is 0,
    // we won't need to know the number of iterations.
    const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
    if (NegPart->isZero())
      Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
    const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
    if (PosPart->isZero())
      Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
  }
}


// X^+ = max(X, 0)
const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const {
  return SE->getSMaxExpr(X, SE->getZero(X->getType()));
}


// X^- = min(X, 0)
const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const {
  return SE->getSMinExpr(X, SE->getZero(X->getType()));
}


// Walks through the subscript,
// collecting each coefficient, the associated loop bounds,
// and recording its positive and negative parts for later use.
DependenceInfo::CoefficientInfo *
DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
                                 const SCEV *&Constant) const {
  const SCEV *Zero = SE->getZero(Subscript->getType());
  CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
  for (unsigned K = 1; K <= MaxLevels; ++K) {
    CI[K].Coeff = Zero;
    CI[K].PosPart = Zero;
    CI[K].NegPart = Zero;
    CI[K].Iterations = nullptr;
  }
  while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
    const Loop *L = AddRec->getLoop();
    unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
    CI[K].Coeff = AddRec->getStepRecurrence(*SE);
    CI[K].PosPart = getPositivePart(CI[K].Coeff);
    CI[K].NegPart = getNegativePart(CI[K].Coeff);
    CI[K].Iterations = collectUpperBound(L, Subscript->getType());
    Subscript = AddRec->getStart();
  }
  Constant = Subscript;
#ifndef NDEBUG
  LLVM_DEBUG(dbgs() << "\tCoefficient Info\n");
  for (unsigned K = 1; K <= MaxLevels; ++K) {
    LLVM_DEBUG(dbgs() << "\t    " << K << "\t" << *CI[K].Coeff);
    LLVM_DEBUG(dbgs() << "\tPos Part = ");
    LLVM_DEBUG(dbgs() << *CI[K].PosPart);
    LLVM_DEBUG(dbgs() << "\tNeg Part = ");
    LLVM_DEBUG(dbgs() << *CI[K].NegPart);
    LLVM_DEBUG(dbgs() << "\tUpper Bound = ");
    if (CI[K].Iterations)
      LLVM_DEBUG(dbgs() << *CI[K].Iterations);
    else
      LLVM_DEBUG(dbgs() << "+inf");
    LLVM_DEBUG(dbgs() << '\n');
  }
  LLVM_DEBUG(dbgs() << "\t    Constant = " << *Subscript << '\n');
#endif
  return CI;
}


// Looks through all the bounds info and
// computes the lower bound given the current direction settings
// at each level. If the lower bound for any level is -inf,
// the result is -inf.
const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const {
  const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
  for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
    if (Bound[K].Lower[Bound[K].Direction])
      Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
    else
      Sum = nullptr;
  }
  return Sum;
}


// Looks through all the bounds info and
// computes the upper bound given the current direction settings
// at each level. If the upper bound at any level is +inf,
// the result is +inf.
const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const {
  const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
  for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
    if (Bound[K].Upper[Bound[K].Direction])
      Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
    else
      Sum = nullptr;
  }
  return Sum;
}


//===----------------------------------------------------------------------===//
// Constraint manipulation for Delta test.

// Given a linear SCEV,
// return the coefficient (the step)
// corresponding to the specified loop.
// If there isn't one, return 0.
// For example, given a*i + b*j + c*k, finding the coefficient
// corresponding to the j loop would yield b.
const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr,
                                            const Loop *TargetLoop) const {
  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
  if (!AddRec)
    return SE->getZero(Expr->getType());
  if (AddRec->getLoop() == TargetLoop)
    return AddRec->getStepRecurrence(*SE);
  return findCoefficient(AddRec->getStart(), TargetLoop);
}


// Given a linear SCEV,
// return the SCEV given by zeroing out the coefficient
// corresponding to the specified loop.
// For example, given a*i + b*j + c*k, zeroing the coefficient
// corresponding to the j loop would yield a*i + c*k.
const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr,
                                            const Loop *TargetLoop) const {
  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
  if (!AddRec)
    return Expr; // ignore
  if (AddRec->getLoop() == TargetLoop)
    return AddRec->getStart();
  return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
                           AddRec->getStepRecurrence(*SE),
                           AddRec->getLoop(),
                           AddRec->getNoWrapFlags());
}


// Given a linear SCEV Expr,
// return the SCEV given by adding some Value to the
// coefficient corresponding to the specified TargetLoop.
// For example, given a*i + b*j + c*k, adding 1 to the coefficient
// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
                                             const Loop *TargetLoop,
                                             const SCEV *Value) const {
  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
  if (!AddRec) // create a new addRec
    return SE->getAddRecExpr(Expr,
                             Value,
                             TargetLoop,
                             SCEV::FlagAnyWrap); // Worst case, with no info.
  if (AddRec->getLoop() == TargetLoop) {
    const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
    if (Sum->isZero())
      return AddRec->getStart();
    return SE->getAddRecExpr(AddRec->getStart(),
                             Sum,
                             AddRec->getLoop(),
                             AddRec->getNoWrapFlags());
  }
  if (SE->isLoopInvariant(AddRec, TargetLoop))
    return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
  return SE->getAddRecExpr(
      addToCoefficient(AddRec->getStart(), TargetLoop, Value),
      AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
      AddRec->getNoWrapFlags());
}


// Review the constraints, looking for opportunities
// to simplify a subscript pair (Src and Dst).
// Return true if some simplification occurs.
// If the simplification isn't exact (that is, if it is conservative
// in terms of dependence), set consistent to false.
// Corresponds to Figure 5 from the paper
//
//            Practical Dependence Testing
//            Goff, Kennedy, Tseng
//            PLDI 1991
bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst,
                               SmallBitVector &Loops,
                               SmallVectorImpl<Constraint> &Constraints,
                               bool &Consistent) {
  bool Result = false;
  for (unsigned LI : Loops.set_bits()) {
    LLVM_DEBUG(dbgs() << "\t    Constraint[" << LI << "] is");
    LLVM_DEBUG(Constraints[LI].dump(dbgs()));
    if (Constraints[LI].isDistance())
      Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
    else if (Constraints[LI].isLine())
      Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
    else if (Constraints[LI].isPoint())
      Result |= propagatePoint(Src, Dst, Constraints[LI]);
  }
  return Result;
}


// Attempt to propagate a distance
// constraint into a subscript pair (Src and Dst).
// Return true if some simplification occurs.
// If the simplification isn't exact (that is, if it is conservative
// in terms of dependence), set consistent to false.
bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst,
                                       Constraint &CurConstraint,
                                       bool &Consistent) {
  const Loop *CurLoop = CurConstraint.getAssociatedLoop();
  LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
  const SCEV *A_K = findCoefficient(Src, CurLoop);
  if (A_K->isZero())
    return false;
  const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
  Src = SE->getMinusSCEV(Src, DA_K);
  Src = zeroCoefficient(Src, CurLoop);
  LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
  LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
  Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
  LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
  if (!findCoefficient(Dst, CurLoop)->isZero())
    Consistent = false;
  return true;
}


// Attempt to propagate a line
// constraint into a subscript pair (Src and Dst).
// Return true if some simplification occurs.
// If the simplification isn't exact (that is, if it is conservative
// in terms of dependence), set consistent to false.
bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
                                   Constraint &CurConstraint,
                                   bool &Consistent) {
  const Loop *CurLoop = CurConstraint.getAssociatedLoop();
  const SCEV *A = CurConstraint.getA();
  const SCEV *B = CurConstraint.getB();
  const SCEV *C = CurConstraint.getC();
  LLVM_DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C
                    << "\n");
  LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
  LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
  if (A->isZero()) {
    const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
    const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
    if (!Bconst || !Cconst) return false;
    APInt Beta = Bconst->getAPInt();
    APInt Charlie = Cconst->getAPInt();
    APInt CdivB = Charlie.sdiv(Beta);
    assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
    const SCEV *AP_K = findCoefficient(Dst, CurLoop);
    //    Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
    Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
    Dst = zeroCoefficient(Dst, CurLoop);
    if (!findCoefficient(Src, CurLoop)->isZero())
      Consistent = false;
  }
  else if (B->isZero()) {
    const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
    const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
    if (!Aconst || !Cconst) return false;
    APInt Alpha = Aconst->getAPInt();
    APInt Charlie = Cconst->getAPInt();
    APInt CdivA = Charlie.sdiv(Alpha);
    assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
    const SCEV *A_K = findCoefficient(Src, CurLoop);
    Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
    Src = zeroCoefficient(Src, CurLoop);
    if (!findCoefficient(Dst, CurLoop)->isZero())
      Consistent = false;
  }
  else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
    const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
    const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
    if (!Aconst || !Cconst) return false;
    APInt Alpha = Aconst->getAPInt();
    APInt Charlie = Cconst->getAPInt();
    APInt CdivA = Charlie.sdiv(Alpha);
    assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
    const SCEV *A_K = findCoefficient(Src, CurLoop);
    Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
    Src = zeroCoefficient(Src, CurLoop);
    Dst = addToCoefficient(Dst, CurLoop, A_K);
    if (!findCoefficient(Dst, CurLoop)->isZero())
      Consistent = false;
  }
  else {
    // paper is incorrect here, or perhaps just misleading
    const SCEV *A_K = findCoefficient(Src, CurLoop);
    Src = SE->getMulExpr(Src, A);
    Dst = SE->getMulExpr(Dst, A);
    Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
    Src = zeroCoefficient(Src, CurLoop);
    Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
    if (!findCoefficient(Dst, CurLoop)->isZero())
      Consistent = false;
  }
  LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
  LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
  return true;
}


// Attempt to propagate a point
// constraint into a subscript pair (Src and Dst).
// Return true if some simplification occurs.
bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst,
                                    Constraint &CurConstraint) {
  const Loop *CurLoop = CurConstraint.getAssociatedLoop();
  const SCEV *A_K = findCoefficient(Src, CurLoop);
  const SCEV *AP_K = findCoefficient(Dst, CurLoop);
  const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
  const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
  LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
  Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
  Src = zeroCoefficient(Src, CurLoop);
  LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
  LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
  Dst = zeroCoefficient(Dst, CurLoop);
  LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
  return true;
}


// Update direction vector entry based on the current constraint.
void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
                                     const Constraint &CurConstraint) const {
  LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint =");
  LLVM_DEBUG(CurConstraint.dump(dbgs()));
  if (CurConstraint.isAny())
    ; // use defaults
  else if (CurConstraint.isDistance()) {
    // this one is consistent, the others aren't
    Level.Scalar = false;
    Level.Distance = CurConstraint.getD();
    unsigned NewDirection = Dependence::DVEntry::NONE;
    if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
      NewDirection = Dependence::DVEntry::EQ;
    if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
      NewDirection |= Dependence::DVEntry::LT;
    if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
      NewDirection |= Dependence::DVEntry::GT;
    Level.Direction &= NewDirection;
  }
  else if (CurConstraint.isLine()) {
    Level.Scalar = false;
    Level.Distance = nullptr;
    // direction should be accurate
  }
  else if (CurConstraint.isPoint()) {
    Level.Scalar = false;
    Level.Distance = nullptr;
    unsigned NewDirection = Dependence::DVEntry::NONE;
    if (!isKnownPredicate(CmpInst::ICMP_NE,
                          CurConstraint.getY(),
                          CurConstraint.getX()))
      // if X may be = Y
      NewDirection |= Dependence::DVEntry::EQ;
    if (!isKnownPredicate(CmpInst::ICMP_SLE,
                          CurConstraint.getY(),
                          CurConstraint.getX()))
      // if Y may be > X
      NewDirection |= Dependence::DVEntry::LT;
    if (!isKnownPredicate(CmpInst::ICMP_SGE,
                          CurConstraint.getY(),
                          CurConstraint.getX()))
      // if Y may be < X
      NewDirection |= Dependence::DVEntry::GT;
    Level.Direction &= NewDirection;
  }
  else
    llvm_unreachable("constraint has unexpected kind");
}

/// Check if we can delinearize the subscripts. If the SCEVs representing the
/// source and destination array references are recurrences on a nested loop,
/// this function flattens the nested recurrences into separate recurrences
/// for each loop level.
bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst,
                                    SmallVectorImpl<Subscript> &Pair) {
  assert(isLoadOrStore(Src) && "instruction is not load or store");
  assert(isLoadOrStore(Dst) && "instruction is not load or store");
  Value *SrcPtr = getLoadStorePointerOperand(Src);
  Value *DstPtr = getLoadStorePointerOperand(Dst);
  Loop *SrcLoop = LI->getLoopFor(Src->getParent());
  Loop *DstLoop = LI->getLoopFor(Dst->getParent());
  const SCEV *SrcAccessFn = SE->getSCEVAtScope(SrcPtr, SrcLoop);
  const SCEV *DstAccessFn = SE->getSCEVAtScope(DstPtr, DstLoop);
  const SCEVUnknown *SrcBase =
      dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
  const SCEVUnknown *DstBase =
      dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));

  if (!SrcBase || !DstBase || SrcBase != DstBase)
    return false;

  SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;

  if (!tryDelinearizeFixedSize(Src, Dst, SrcAccessFn, DstAccessFn,
                               SrcSubscripts, DstSubscripts) &&
      !tryDelinearizeParametricSize(Src, Dst, SrcAccessFn, DstAccessFn,
                                    SrcSubscripts, DstSubscripts))
    return false;

  int Size = SrcSubscripts.size();
  LLVM_DEBUG({
    dbgs() << "\nSrcSubscripts: ";
    for (int I = 0; I < Size; I++)
      dbgs() << *SrcSubscripts[I];
    dbgs() << "\nDstSubscripts: ";
    for (int I = 0; I < Size; I++)
      dbgs() << *DstSubscripts[I];
  });

  // The delinearization transforms a single-subscript MIV dependence test into
  // a multi-subscript SIV dependence test that is easier to compute. So we
  // resize Pair to contain as many pairs of subscripts as the delinearization
  // has found, and then initialize the pairs following the delinearization.
  Pair.resize(Size);
  for (int I = 0; I < Size; ++I) {
    Pair[I].Src = SrcSubscripts[I];
    Pair[I].Dst = DstSubscripts[I];
    unifySubscriptType(&Pair[I]);
  }

  return true;
}

bool DependenceInfo::tryDelinearizeFixedSize(
    Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
    const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
    SmallVectorImpl<const SCEV *> &DstSubscripts) {

  Value *SrcPtr = getLoadStorePointerOperand(Src);
  Value *DstPtr = getLoadStorePointerOperand(Dst);
  const SCEVUnknown *SrcBase =
      dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
  const SCEVUnknown *DstBase =
      dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
  assert(SrcBase && DstBase && SrcBase == DstBase &&
         "expected src and dst scev unknowns to be equal");

  // Check the simple case where the array dimensions are fixed size.
  auto *SrcGEP = dyn_cast<GetElementPtrInst>(SrcPtr);
  auto *DstGEP = dyn_cast<GetElementPtrInst>(DstPtr);
  if (!SrcGEP || !DstGEP)
    return false;

  SmallVector<int, 4> SrcSizes, DstSizes;
  getIndexExpressionsFromGEP(*SE, SrcGEP, SrcSubscripts, SrcSizes);
  getIndexExpressionsFromGEP(*SE, DstGEP, DstSubscripts, DstSizes);

  // Check that the two size arrays are non-empty and equal in length and
  // value.
  if (SrcSizes.empty() || SrcSubscripts.size() <= 1 ||
      SrcSizes.size() != DstSizes.size() ||
      !std::equal(SrcSizes.begin(), SrcSizes.end(), DstSizes.begin())) {
    SrcSubscripts.clear();
    DstSubscripts.clear();
    return false;
  }

  Value *SrcBasePtr = SrcGEP->getOperand(0);
  Value *DstBasePtr = DstGEP->getOperand(0);
  while (auto *PCast = dyn_cast<BitCastInst>(SrcBasePtr))
    SrcBasePtr = PCast->getOperand(0);
  while (auto *PCast = dyn_cast<BitCastInst>(DstBasePtr))
    DstBasePtr = PCast->getOperand(0);

  // Check that for identical base pointers we do not miss index offsets
  // that have been added before this GEP is applied.
  if (SrcBasePtr != SrcBase->getValue() || DstBasePtr != DstBase->getValue()) {
    SrcSubscripts.clear();
    DstSubscripts.clear();
    return false;
  }

  assert(SrcSubscripts.size() == DstSubscripts.size() &&
         SrcSubscripts.size() == SrcSizes.size() + 1 &&
         "Expected equal number of entries in the list of sizes and "
         "subscripts.");

  // In general we cannot safely assume that the subscripts recovered from GEPs
  // are in the range of values defined for their corresponding array
  // dimensions. For example some C language usage/interpretation make it
  // impossible to verify this at compile-time. As such we can only delinearize
  // iff the subscripts are positive and are less than the range of the
  // dimension.
  if (!DisableDelinearizationChecks) {
    auto AllIndiciesInRange = [&](SmallVector<int, 4> &DimensionSizes,
                                  SmallVectorImpl<const SCEV *> &Subscripts,
                                  Value *Ptr) {
      size_t SSize = Subscripts.size();
      for (size_t I = 1; I < SSize; ++I) {
        const SCEV *S = Subscripts[I];
        if (!isKnownNonNegative(S, Ptr))
          return false;
        if (auto *SType = dyn_cast<IntegerType>(S->getType())) {
          const SCEV *Range = SE->getConstant(
              ConstantInt::get(SType, DimensionSizes[I - 1], false));
          if (!isKnownLessThan(S, Range))
            return false;
        }
      }
      return true;
    };

    if (!AllIndiciesInRange(SrcSizes, SrcSubscripts, SrcPtr) ||
        !AllIndiciesInRange(DstSizes, DstSubscripts, DstPtr)) {
      SrcSubscripts.clear();
      DstSubscripts.clear();
      return false;
    }
  }
  LLVM_DEBUG({
    dbgs() << "Delinearized subscripts of fixed-size array\n"
           << "SrcGEP:" << *SrcGEP << "\n"
           << "DstGEP:" << *DstGEP << "\n";
  });
  return true;
}

bool DependenceInfo::tryDelinearizeParametricSize(
    Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
    const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
    SmallVectorImpl<const SCEV *> &DstSubscripts) {

  Value *SrcPtr = getLoadStorePointerOperand(Src);
  Value *DstPtr = getLoadStorePointerOperand(Dst);
  const SCEVUnknown *SrcBase =
      dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
  const SCEVUnknown *DstBase =
      dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
  assert(SrcBase && DstBase && SrcBase == DstBase &&
         "expected src and dst scev unknowns to be equal");

  const SCEV *ElementSize = SE->getElementSize(Src);
  if (ElementSize != SE->getElementSize(Dst))
    return false;

  const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase);
  const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase);

  const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
  const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
  if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
    return false;

  // First step: collect parametric terms in both array references.
  SmallVector<const SCEV *, 4> Terms;
  collectParametricTerms(*SE, SrcAR, Terms);
  collectParametricTerms(*SE, DstAR, Terms);

  // Second step: find subscript sizes.
  SmallVector<const SCEV *, 4> Sizes;
  findArrayDimensions(*SE, Terms, Sizes, ElementSize);

  // Third step: compute the access functions for each subscript.
  computeAccessFunctions(*SE, SrcAR, SrcSubscripts, Sizes);
  computeAccessFunctions(*SE, DstAR, DstSubscripts, Sizes);

  // Fail when there is only a subscript: that's a linearized access function.
  if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
      SrcSubscripts.size() != DstSubscripts.size())
    return false;

  size_t Size = SrcSubscripts.size();

  // Statically check that the array bounds are in-range. The first subscript we
  // don't have a size for and it cannot overflow into another subscript, so is
  // always safe. The others need to be 0 <= subscript[i] < bound, for both src
  // and dst.
  // FIXME: It may be better to record these sizes and add them as constraints
  // to the dependency checks.
  if (!DisableDelinearizationChecks)
    for (size_t I = 1; I < Size; ++I) {
      if (!isKnownNonNegative(SrcSubscripts[I], SrcPtr))
        return false;

      if (!isKnownLessThan(SrcSubscripts[I], Sizes[I - 1]))
        return false;

      if (!isKnownNonNegative(DstSubscripts[I], DstPtr))
        return false;

      if (!isKnownLessThan(DstSubscripts[I], Sizes[I - 1]))
        return false;
    }

  return true;
}

//===----------------------------------------------------------------------===//

#ifndef NDEBUG
// For debugging purposes, dump a small bit vector to dbgs().
static void dumpSmallBitVector(SmallBitVector &BV) {
  dbgs() << "{";
  for (unsigned VI : BV.set_bits()) {
    dbgs() << VI;
    if (BV.find_next(VI) >= 0)
      dbgs() << ' ';
  }
  dbgs() << "}\n";
}
#endif

bool DependenceInfo::invalidate(Function &F, const PreservedAnalyses &PA,
                                FunctionAnalysisManager::Invalidator &Inv) {
  // Check if the analysis itself has been invalidated.
  auto PAC = PA.getChecker<DependenceAnalysis>();
  if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
    return true;

  // Check transitive dependencies.
  return Inv.invalidate<AAManager>(F, PA) ||
         Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
         Inv.invalidate<LoopAnalysis>(F, PA);
}

// depends -
// Returns NULL if there is no dependence.
// Otherwise, return a Dependence with as many details as possible.
// Corresponds to Section 3.1 in the paper
//
//            Practical Dependence Testing
//            Goff, Kennedy, Tseng
//            PLDI 1991
//
// Care is required to keep the routine below, getSplitIteration(),
// up to date with respect to this routine.
std::unique_ptr<Dependence>
DependenceInfo::depends(Instruction *Src, Instruction *Dst,
                        bool PossiblyLoopIndependent) {
  if (Src == Dst)
    PossiblyLoopIndependent = false;

  if (!(Src->mayReadOrWriteMemory() && Dst->mayReadOrWriteMemory()))
    // if both instructions don't reference memory, there's no dependence
    return nullptr;

  if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
    // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
    LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n");
    return std::make_unique<Dependence>(Src, Dst);
  }

  assert(isLoadOrStore(Src) && "instruction is not load or store");
  assert(isLoadOrStore(Dst) && "instruction is not load or store");
  Value *SrcPtr = getLoadStorePointerOperand(Src);
  Value *DstPtr = getLoadStorePointerOperand(Dst);

  switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
                                 MemoryLocation::get(Dst),
                                 MemoryLocation::get(Src))) {
  case AliasResult::MayAlias:
  case AliasResult::PartialAlias:
    // cannot analyse objects if we don't understand their aliasing.
    LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n");
    return std::make_unique<Dependence>(Src, Dst);
  case AliasResult::NoAlias:
    // If the objects noalias, they are distinct, accesses are independent.
    LLVM_DEBUG(dbgs() << "no alias\n");
    return nullptr;
  case AliasResult::MustAlias:
    break; // The underlying objects alias; test accesses for dependence.
  }

  // establish loop nesting levels
  establishNestingLevels(Src, Dst);
  LLVM_DEBUG(dbgs() << "    common nesting levels = " << CommonLevels << "\n");
  LLVM_DEBUG(dbgs() << "    maximum nesting levels = " << MaxLevels << "\n");

  FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
  ++TotalArrayPairs;

  unsigned Pairs = 1;
  SmallVector<Subscript, 2> Pair(Pairs);
  const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
  const SCEV *DstSCEV = SE->getSCEV(DstPtr);
  LLVM_DEBUG(dbgs() << "    SrcSCEV = " << *SrcSCEV << "\n");
  LLVM_DEBUG(dbgs() << "    DstSCEV = " << *DstSCEV << "\n");
  if (SE->getPointerBase(SrcSCEV) != SE->getPointerBase(DstSCEV)) {
    // If two pointers have different bases, trying to analyze indexes won't
    // work; we can't compare them to each other. This can happen, for example,
    // if one is produced by an LCSSA PHI node.
    //
    // We check this upfront so we don't crash in cases where getMinusSCEV()
    // returns a SCEVCouldNotCompute.
    LLVM_DEBUG(dbgs() << "can't analyze SCEV with different pointer base\n");
    return std::make_unique<Dependence>(Src, Dst);
  }
  Pair[0].Src = SrcSCEV;
  Pair[0].Dst = DstSCEV;

  if (Delinearize) {
    if (tryDelinearize(Src, Dst, Pair)) {
      LLVM_DEBUG(dbgs() << "    delinearized\n");
      Pairs = Pair.size();
    }
  }

  for (unsigned P = 0; P < Pairs; ++P) {
    Pair[P].Loops.resize(MaxLevels + 1);
    Pair[P].GroupLoops.resize(MaxLevels + 1);
    Pair[P].Group.resize(Pairs);
    removeMatchingExtensions(&Pair[P]);
    Pair[P].Classification =
      classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
                   Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
                   Pair[P].Loops);
    Pair[P].GroupLoops = Pair[P].Loops;
    Pair[P].Group.set(P);
    LLVM_DEBUG(dbgs() << "    subscript " << P << "\n");
    LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
    LLVM_DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
    LLVM_DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
    LLVM_DEBUG(dbgs() << "\tloops = ");
    LLVM_DEBUG(dumpSmallBitVector(Pair[P].Loops));
  }

  SmallBitVector Separable(Pairs);
  SmallBitVector Coupled(Pairs);

  // Partition subscripts into separable and minimally-coupled groups
  // Algorithm in paper is algorithmically better;
  // this may be faster in practice. Check someday.
  //
  // Here's an example of how it works. Consider this code:
  //
  //   for (i = ...) {
  //     for (j = ...) {
  //       for (k = ...) {
  //         for (l = ...) {
  //           for (m = ...) {
  //             A[i][j][k][m] = ...;
  //             ... = A[0][j][l][i + j];
  //           }
  //         }
  //       }
  //     }
  //   }
  //
  // There are 4 subscripts here:
  //    0 [i] and [0]
  //    1 [j] and [j]
  //    2 [k] and [l]
  //    3 [m] and [i + j]
  //
  // We've already classified each subscript pair as ZIV, SIV, etc.,
  // and collected all the loops mentioned by pair P in Pair[P].Loops.
  // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
  // and set Pair[P].Group = {P}.
  //
  //      Src Dst    Classification Loops  GroupLoops Group
  //    0 [i] [0]         SIV       {1}      {1}        {0}
  //    1 [j] [j]         SIV       {2}      {2}        {1}
  //    2 [k] [l]         RDIV      {3,4}    {3,4}      {2}
  //    3 [m] [i + j]     MIV       {1,2,5}  {1,2,5}    {3}
  //
  // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
  // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
  //
  // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
  // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
  // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
  // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
  // to either Separable or Coupled).
  //
  // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
  // Next, 1 and 3. The intersection of their GroupLoops = {2}, not empty,
  // so Pair[3].Group = {0, 1, 3} and Done = false.
  //
  // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
  // Since Done remains true, we add 2 to the set of Separable pairs.
  //
  // Finally, we consider 3. There's nothing to compare it with,
  // so Done remains true and we add it to the Coupled set.
  // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
  //
  // In the end, we've got 1 separable subscript and 1 coupled group.
  for (unsigned SI = 0; SI < Pairs; ++SI) {
    if (Pair[SI].Classification == Subscript::NonLinear) {
      // ignore these, but collect loops for later
      ++NonlinearSubscriptPairs;
      collectCommonLoops(Pair[SI].Src,
                         LI->getLoopFor(Src->getParent()),
                         Pair[SI].Loops);
      collectCommonLoops(Pair[SI].Dst,
                         LI->getLoopFor(Dst->getParent()),
                         Pair[SI].Loops);
      Result.Consistent = false;
    } else if (Pair[SI].Classification == Subscript::ZIV) {
      // always separable
      Separable.set(SI);
    }
    else {
      // SIV, RDIV, or MIV, so check for coupled group
      bool Done = true;
      for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
        SmallBitVector Intersection = Pair[SI].GroupLoops;
        Intersection &= Pair[SJ].GroupLoops;
        if (Intersection.any()) {
          // accumulate set of all the loops in group
          Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
          // accumulate set of all subscripts in group
          Pair[SJ].Group |= Pair[SI].Group;
          Done = false;
        }
      }
      if (Done) {
        if (Pair[SI].Group.count() == 1) {
          Separable.set(SI);
          ++SeparableSubscriptPairs;
        }
        else {
          Coupled.set(SI);
          ++CoupledSubscriptPairs;
        }
      }
    }
  }

  LLVM_DEBUG(dbgs() << "    Separable = ");
  LLVM_DEBUG(dumpSmallBitVector(Separable));
  LLVM_DEBUG(dbgs() << "    Coupled = ");
  LLVM_DEBUG(dumpSmallBitVector(Coupled));

  Constraint NewConstraint;
  NewConstraint.setAny(SE);

  // test separable subscripts
  for (unsigned SI : Separable.set_bits()) {
    LLVM_DEBUG(dbgs() << "testing subscript " << SI);
    switch (Pair[SI].Classification) {
    case Subscript::ZIV:
      LLVM_DEBUG(dbgs() << ", ZIV\n");
      if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
        return nullptr;
      break;
    case Subscript::SIV: {
      LLVM_DEBUG(dbgs() << ", SIV\n");
      unsigned Level;
      const SCEV *SplitIter = nullptr;
      if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
                  SplitIter))
        return nullptr;
      break;
    }
    case Subscript::RDIV:
      LLVM_DEBUG(dbgs() << ", RDIV\n");
      if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
        return nullptr;
      break;
    case Subscript::MIV:
      LLVM_DEBUG(dbgs() << ", MIV\n");
      if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
        return nullptr;
      break;
    default:
      llvm_unreachable("subscript has unexpected classification");
    }
  }

  if (Coupled.count()) {
    // test coupled subscript groups
    LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n");
    LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
    SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
    for (unsigned II = 0; II <= MaxLevels; ++II)
      Constraints[II].setAny(SE);
    for (unsigned SI : Coupled.set_bits()) {
      LLVM_DEBUG(dbgs() << "testing subscript group " << SI << " { ");
      SmallBitVector Group(Pair[SI].Group);
      SmallBitVector Sivs(Pairs);
      SmallBitVector Mivs(Pairs);
      SmallBitVector ConstrainedLevels(MaxLevels + 1);
      SmallVector<Subscript *, 4> PairsInGroup;
      for (unsigned SJ : Group.set_bits()) {
        LLVM_DEBUG(dbgs() << SJ << " ");
        if (Pair[SJ].Classification == Subscript::SIV)
          Sivs.set(SJ);
        else
          Mivs.set(SJ);
        PairsInGroup.push_back(&Pair[SJ]);
      }
      unifySubscriptType(PairsInGroup);
      LLVM_DEBUG(dbgs() << "}\n");
      while (Sivs.any()) {
        bool Changed = false;
        for (unsigned SJ : Sivs.set_bits()) {
          LLVM_DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
          // SJ is an SIV subscript that's part of the current coupled group
          unsigned Level;
          const SCEV *SplitIter = nullptr;
          LLVM_DEBUG(dbgs() << "SIV\n");
          if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint,
                      SplitIter))
            return nullptr;
          ConstrainedLevels.set(Level);
          if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
            if (Constraints[Level].isEmpty()) {
              ++DeltaIndependence;
              return nullptr;
            }
            Changed = true;
          }
          Sivs.reset(SJ);
        }
        if (Changed) {
          // propagate, possibly creating new SIVs and ZIVs
          LLVM_DEBUG(dbgs() << "    propagating\n");
          LLVM_DEBUG(dbgs() << "\tMivs = ");
          LLVM_DEBUG(dumpSmallBitVector(Mivs));
          for (unsigned SJ : Mivs.set_bits()) {
            // SJ is an MIV subscript that's part of the current coupled group
            LLVM_DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
            if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
                          Constraints, Result.Consistent)) {
              LLVM_DEBUG(dbgs() << "\t    Changed\n");
              ++DeltaPropagations;
              Pair[SJ].Classification =
                classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
                             Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
                             Pair[SJ].Loops);
              switch (Pair[SJ].Classification) {
              case Subscript::ZIV:
                LLVM_DEBUG(dbgs() << "ZIV\n");
                if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
                  return nullptr;
                Mivs.reset(SJ);
                break;
              case Subscript::SIV:
                Sivs.set(SJ);
                Mivs.reset(SJ);
                break;
              case Subscript::RDIV:
              case Subscript::MIV:
                break;
              default:
                llvm_unreachable("bad subscript classification");
              }
            }
          }
        }
      }

      // test & propagate remaining RDIVs
      for (unsigned SJ : Mivs.set_bits()) {
        if (Pair[SJ].Classification == Subscript::RDIV) {
          LLVM_DEBUG(dbgs() << "RDIV test\n");
          if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
            return nullptr;
          // I don't yet understand how to propagate RDIV results
          Mivs.reset(SJ);
        }
      }

      // test remaining MIVs
      // This code is temporary.
      // Better to somehow test all remaining subscripts simultaneously.
      for (unsigned SJ : Mivs.set_bits()) {
        if (Pair[SJ].Classification == Subscript::MIV) {
          LLVM_DEBUG(dbgs() << "MIV test\n");
          if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
            return nullptr;
        }
        else
          llvm_unreachable("expected only MIV subscripts at this point");
      }

      // update Result.DV from constraint vector
      LLVM_DEBUG(dbgs() << "    updating\n");
      for (unsigned SJ : ConstrainedLevels.set_bits()) {
        if (SJ > CommonLevels)
          break;
        updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
        if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
          return nullptr;
      }
    }
  }

  // Make sure the Scalar flags are set correctly.
  SmallBitVector CompleteLoops(MaxLevels + 1);
  for (unsigned SI = 0; SI < Pairs; ++SI)
    CompleteLoops |= Pair[SI].Loops;
  for (unsigned II = 1; II <= CommonLevels; ++II)
    if (CompleteLoops[II])
      Result.DV[II - 1].Scalar = false;

  if (PossiblyLoopIndependent) {
    // Make sure the LoopIndependent flag is set correctly.
    // All directions must include equal, otherwise no
    // loop-independent dependence is possible.
    for (unsigned II = 1; II <= CommonLevels; ++II) {
      if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
        Result.LoopIndependent = false;
        break;
      }
    }
  }
  else {
    // On the other hand, if all directions are equal and there's no
    // loop-independent dependence possible, then no dependence exists.
    bool AllEqual = true;
    for (unsigned II = 1; II <= CommonLevels; ++II) {
      if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
        AllEqual = false;
        break;
      }
    }
    if (AllEqual)
      return nullptr;
  }

  return std::make_unique<FullDependence>(std::move(Result));
}

//===----------------------------------------------------------------------===//
// getSplitIteration -
// Rather than spend rarely-used space recording the splitting iteration
// during the Weak-Crossing SIV test, we re-compute it on demand.
// The re-computation is basically a repeat of the entire dependence test,
// though simplified since we know that the dependence exists.
// It's tedious, since we must go through all propagations, etc.
//
// Care is required to keep this code up to date with respect to the routine
// above, depends().
//
// Generally, the dependence analyzer will be used to build
// a dependence graph for a function (basically a map from instructions
// to dependences). Looking for cycles in the graph shows us loops
// that cannot be trivially vectorized/parallelized.
//
// We can try to improve the situation by examining all the dependences
// that make up the cycle, looking for ones we can break.
// Sometimes, peeling the first or last iteration of a loop will break
// dependences, and we've got flags for those possibilities.
// Sometimes, splitting a loop at some other iteration will do the trick,
// and we've got a flag for that case. Rather than waste the space to
// record the exact iteration (since we rarely know), we provide
// a method that calculates the iteration. It's a drag that it must work
// from scratch, but wonderful in that it's possible.
//
// Here's an example:
//
//    for (i = 0; i < 10; i++)
//        A[i] = ...
//        ... = A[11 - i]
//
// There's a loop-carried flow dependence from the store to the load,
// found by the weak-crossing SIV test. The dependence will have a flag,
// indicating that the dependence can be broken by splitting the loop.
// Calling getSplitIteration will return 5.
// Splitting the loop breaks the dependence, like so:
//
//    for (i = 0; i <= 5; i++)
//        A[i] = ...
//        ... = A[11 - i]
//    for (i = 6; i < 10; i++)
//        A[i] = ...
//        ... = A[11 - i]
//
// breaks the dependence and allows us to vectorize/parallelize
// both loops.
const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
                                              unsigned SplitLevel) {
  assert(Dep.isSplitable(SplitLevel) &&
         "Dep should be splitable at SplitLevel");
  Instruction *Src = Dep.getSrc();
  Instruction *Dst = Dep.getDst();
  assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
  assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
  assert(isLoadOrStore(Src));
  assert(isLoadOrStore(Dst));
  Value *SrcPtr = getLoadStorePointerOperand(Src);
  Value *DstPtr = getLoadStorePointerOperand(Dst);
  assert(underlyingObjectsAlias(
             AA, F->getParent()->getDataLayout(), MemoryLocation::get(Dst),
             MemoryLocation::get(Src)) == AliasResult::MustAlias);

  // establish loop nesting levels
  establishNestingLevels(Src, Dst);

  FullDependence Result(Src, Dst, false, CommonLevels);

  unsigned Pairs = 1;
  SmallVector<Subscript, 2> Pair(Pairs);
  const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
  const SCEV *DstSCEV = SE->getSCEV(DstPtr);
  Pair[0].Src = SrcSCEV;
  Pair[0].Dst = DstSCEV;

  if (Delinearize) {
    if (tryDelinearize(Src, Dst, Pair)) {
      LLVM_DEBUG(dbgs() << "    delinearized\n");
      Pairs = Pair.size();
    }
  }

  for (unsigned P = 0; P < Pairs; ++P) {
    Pair[P].Loops.resize(MaxLevels + 1);
    Pair[P].GroupLoops.resize(MaxLevels + 1);
    Pair[P].Group.resize(Pairs);
    removeMatchingExtensions(&Pair[P]);
    Pair[P].Classification =
      classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
                   Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
                   Pair[P].Loops);
    Pair[P].GroupLoops = Pair[P].Loops;
    Pair[P].Group.set(P);
  }

  SmallBitVector Separable(Pairs);
  SmallBitVector Coupled(Pairs);

  // partition subscripts into separable and minimally-coupled groups
  for (unsigned SI = 0; SI < Pairs; ++SI) {
    if (Pair[SI].Classification == Subscript::NonLinear) {
      // ignore these, but collect loops for later
      collectCommonLoops(Pair[SI].Src,
                         LI->getLoopFor(Src->getParent()),
                         Pair[SI].Loops);
      collectCommonLoops(Pair[SI].Dst,
                         LI->getLoopFor(Dst->getParent()),
                         Pair[SI].Loops);
      Result.Consistent = false;
    }
    else if (Pair[SI].Classification == Subscript::ZIV)
      Separable.set(SI);
    else {
      // SIV, RDIV, or MIV, so check for coupled group
      bool Done = true;
      for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
        SmallBitVector Intersection = Pair[SI].GroupLoops;
        Intersection &= Pair[SJ].GroupLoops;
        if (Intersection.any()) {
          // accumulate set of all the loops in group
          Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
          // accumulate set of all subscripts in group
          Pair[SJ].Group |= Pair[SI].Group;
          Done = false;
        }
      }
      if (Done) {
        if (Pair[SI].Group.count() == 1)
          Separable.set(SI);
        else
          Coupled.set(SI);
      }
    }
  }

  Constraint NewConstraint;
  NewConstraint.setAny(SE);

  // test separable subscripts
  for (unsigned SI : Separable.set_bits()) {
    switch (Pair[SI].Classification) {
    case Subscript::SIV: {
      unsigned Level;
      const SCEV *SplitIter = nullptr;
      (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
                     Result, NewConstraint, SplitIter);
      if (Level == SplitLevel) {
        assert(SplitIter != nullptr);
        return SplitIter;
      }
      break;
    }
    case Subscript::ZIV:
    case Subscript::RDIV:
    case Subscript::MIV:
      break;
    default:
      llvm_unreachable("subscript has unexpected classification");
    }
  }

  if (Coupled.count()) {
    // test coupled subscript groups
    SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
    for (unsigned II = 0; II <= MaxLevels; ++II)
      Constraints[II].setAny(SE);
    for (unsigned SI : Coupled.set_bits()) {
      SmallBitVector Group(Pair[SI].Group);
      SmallBitVector Sivs(Pairs);
      SmallBitVector Mivs(Pairs);
      SmallBitVector ConstrainedLevels(MaxLevels + 1);
      for (unsigned SJ : Group.set_bits()) {
        if (Pair[SJ].Classification == Subscript::SIV)
          Sivs.set(SJ);
        else
          Mivs.set(SJ);
      }
      while (Sivs.any()) {
        bool Changed = false;
        for (unsigned SJ : Sivs.set_bits()) {
          // SJ is an SIV subscript that's part of the current coupled group
          unsigned Level;
          const SCEV *SplitIter = nullptr;
          (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
                         Result, NewConstraint, SplitIter);
          if (Level == SplitLevel && SplitIter)
            return SplitIter;
          ConstrainedLevels.set(Level);
          if (intersectConstraints(&Constraints[Level], &NewConstraint))
            Changed = true;
          Sivs.reset(SJ);
        }
        if (Changed) {
          // propagate, possibly creating new SIVs and ZIVs
          for (unsigned SJ : Mivs.set_bits()) {
            // SJ is an MIV subscript that's part of the current coupled group
            if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
                          Pair[SJ].Loops, Constraints, Result.Consistent)) {
              Pair[SJ].Classification =
                classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
                             Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
                             Pair[SJ].Loops);
              switch (Pair[SJ].Classification) {
              case Subscript::ZIV:
                Mivs.reset(SJ);
                break;
              case Subscript::SIV:
                Sivs.set(SJ);
                Mivs.reset(SJ);
                break;
              case Subscript::RDIV:
              case Subscript::MIV:
                break;
              default:
                llvm_unreachable("bad subscript classification");
              }
            }
          }
        }
      }
    }
  }
  llvm_unreachable("somehow reached end of routine");
  return nullptr;
}