#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===- Sequence.h - Utility for producing sequences of values ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// Provides some synthesis utilities to produce sequences of values. The names
/// are intentionally kept very short as they tend to occur in common and
/// widely used contexts.
///
/// The `seq(A, B)` function produces a sequence of values from `A` to up to
/// (but not including) `B`, i.e., [`A`, `B`), that can be safely iterated over.
/// `seq` supports both integral (e.g., `int`, `char`, `uint32_t`) and enum
/// types. `seq_inclusive(A, B)` produces a sequence of values from `A` to `B`,
/// including `B`.
///
/// Examples with integral types:
/// ```
/// for (int x : seq(0, 3))
/// outs() << x << " ";
/// ```
///
/// Prints: `0 1 2 `.
///
/// ```
/// for (int x : seq_inclusive(0, 3))
/// outs() << x << " ";
/// ```
///
/// Prints: `0 1 2 3 `.
///
/// Similar to `seq` and `seq_inclusive`, the `enum_seq` and
/// `enum_seq_inclusive` functions produce sequences of enum values that can be
/// iterated over.
/// To enable iteration with enum types, you need to either mark enums as safe
/// to iterate on by specializing `enum_iteration_traits`, or opt into
/// potentially unsafe iteration at every callsite by passing
/// `force_iteration_on_noniterable_enum`.
///
/// Examples with enum types:
/// ```
/// namespace X {
/// enum class MyEnum : unsigned {A = 0, B, C};
/// } // namespace X
///
/// template <> struct enum_iteration_traits<X::MyEnum> {
/// static contexpr bool is_iterable = true;
/// };
///
/// class MyClass {
/// public:
/// enum Safe { D = 3, E, F };
/// enum MaybeUnsafe { G = 1, H = 2, I = 4 };
/// };
///
/// template <> struct enum_iteration_traits<MyClass::Safe> {
/// static contexpr bool is_iterable = true;
/// };
/// ```
///
/// ```
/// for (auto v : enum_seq(MyClass::Safe::D, MyClass::Safe::F))
/// outs() << int(v) << " ";
/// ```
///
/// Prints: `3 4 `.
///
/// ```
/// for (auto v : enum_seq(MyClass::MaybeUnsafe::H, MyClass::MaybeUnsafe::I,
/// force_iteration_on_noniterable_enum))
/// outs() << int(v) << " ";
/// ```
///
/// Prints: `2 3 `.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SEQUENCE_H
#define LLVM_ADT_SEQUENCE_H
#include <cassert> // assert
#include <iterator> // std::random_access_iterator_tag
#include <limits> // std::numeric_limits
#include <type_traits> // std::is_integral, std::is_enum, std::underlying_type,
// std::enable_if
#include "llvm/Support/MathExtras.h" // AddOverflow / SubOverflow
namespace llvm {
// Enum traits that marks enums as safe or unsafe to iterate over.
// By default, enum types are *not* considered safe for iteration.
// To allow iteration for your enum type, provide a specialization with
// `is_iterable` set to `true` in the `llvm` namespace.
// Alternatively, you can pass the `force_iteration_on_noniterable_enum` tag
// to `enum_seq` or `enum_seq_inclusive`.
template <typename EnumT> struct enum_iteration_traits {
static constexpr bool is_iterable = false;
};
struct force_iteration_on_noniterable_enum_t {
explicit force_iteration_on_noniterable_enum_t() = default;
};
// TODO: Make this `inline` once we update to C++17 to avoid ORD violations.
constexpr force_iteration_on_noniterable_enum_t
force_iteration_on_noniterable_enum;
namespace detail {
// Returns whether a value of type U can be represented with type T.
template <typename T, typename U> bool canTypeFitValue(const U Value) {
const intmax_t BotT = intmax_t(std::numeric_limits<T>::min());
const intmax_t BotU = intmax_t(std::numeric_limits<U>::min());
const uintmax_t TopT = uintmax_t(std::numeric_limits<T>::max());
const uintmax_t TopU = uintmax_t(std::numeric_limits<U>::max());
return !((BotT > BotU && Value < static_cast<U>(BotT)) ||
(TopT < TopU && Value > static_cast<U>(TopT)));
}
// An integer type that asserts when:
// - constructed from a value that doesn't fit into intmax_t,
// - casted to a type that cannot hold the current value,
// - its internal representation overflows.
struct CheckedInt {
// Integral constructor, asserts if Value cannot be represented as intmax_t.
template <typename Integral, typename std::enable_if_t<
std::is_integral<Integral>::value, bool> = 0>
static CheckedInt from(Integral FromValue) {
if (!canTypeFitValue<intmax_t>(FromValue))
assertOutOfBounds();
CheckedInt Result;
Result.Value = static_cast<intmax_t>(FromValue);
return Result;
}
// Enum constructor, asserts if Value cannot be represented as intmax_t.
template <typename Enum,
typename std::enable_if_t<std::is_enum<Enum>::value, bool> = 0>
static CheckedInt from(Enum FromValue) {
using type = typename std::underlying_type<Enum>::type;
return from<type>(static_cast<type>(FromValue));
}
// Equality
bool operator==(const CheckedInt &O) const { return Value == O.Value; }
bool operator!=(const CheckedInt &O) const { return Value != O.Value; }
CheckedInt operator+(intmax_t Offset) const {
CheckedInt Result;
if (AddOverflow(Value, Offset, Result.Value))
assertOutOfBounds();
return Result;
}
intmax_t operator-(CheckedInt Other) const {
intmax_t Result;
if (SubOverflow(Value, Other.Value, Result))
assertOutOfBounds();
return Result;
}
// Convert to integral, asserts if Value cannot be represented as Integral.
template <typename Integral, typename std::enable_if_t<
std::is_integral<Integral>::value, bool> = 0>
Integral to() const {
if (!canTypeFitValue<Integral>(Value))
assertOutOfBounds();
return static_cast<Integral>(Value);
}
// Convert to enum, asserts if Value cannot be represented as Enum's
// underlying type.
template <typename Enum,
typename std::enable_if_t<std::is_enum<Enum>::value, bool> = 0>
Enum to() const {
using type = typename std::underlying_type<Enum>::type;
return Enum(to<type>());
}
private:
static void assertOutOfBounds() { assert(false && "Out of bounds"); }
intmax_t Value;
};
template <typename T, bool IsReverse> struct SafeIntIterator {
using iterator_category = std::random_access_iterator_tag;
using value_type = T;
using difference_type = intmax_t;
using pointer = T *;
using reference = T &;
// Construct from T.
explicit SafeIntIterator(T Value) : SI(CheckedInt::from<T>(Value)) {}
// Construct from other direction.
SafeIntIterator(const SafeIntIterator<T, !IsReverse> &O) : SI(O.SI) {}
// Dereference
value_type operator*() const { return SI.to<T>(); }
// Indexing
value_type operator[](intmax_t Offset) const { return *(*this + Offset); }
// Can be compared for equivalence using the equality/inequality operators.
bool operator==(const SafeIntIterator &O) const { return SI == O.SI; }
bool operator!=(const SafeIntIterator &O) const { return SI != O.SI; }
// Comparison
bool operator<(const SafeIntIterator &O) const { return (*this - O) < 0; }
bool operator>(const SafeIntIterator &O) const { return (*this - O) > 0; }
bool operator<=(const SafeIntIterator &O) const { return (*this - O) <= 0; }
bool operator>=(const SafeIntIterator &O) const { return (*this - O) >= 0; }
// Pre Increment/Decrement
void operator++() { offset(1); }
void operator--() { offset(-1); }
// Post Increment/Decrement
SafeIntIterator operator++(int) {
const auto Copy = *this;
++*this;
return Copy;
}
SafeIntIterator operator--(int) {
const auto Copy = *this;
--*this;
return Copy;
}
// Compound assignment operators
void operator+=(intmax_t Offset) { offset(Offset); }
void operator-=(intmax_t Offset) { offset(-Offset); }
// Arithmetic
SafeIntIterator operator+(intmax_t Offset) const { return add(Offset); }
SafeIntIterator operator-(intmax_t Offset) const { return add(-Offset); }
// Difference
intmax_t operator-(const SafeIntIterator &O) const {
return IsReverse ? O.SI - SI : SI - O.SI;
}
private:
SafeIntIterator(const CheckedInt &SI) : SI(SI) {}
static intmax_t getOffset(intmax_t Offset) {
return IsReverse ? -Offset : Offset;
}
CheckedInt add(intmax_t Offset) const { return SI + getOffset(Offset); }
void offset(intmax_t Offset) { SI = SI + getOffset(Offset); }
CheckedInt SI;
// To allow construction from the other direction.
template <typename, bool> friend struct SafeIntIterator;
};
} // namespace detail
template <typename T> struct iota_range {
using value_type = T;
using reference = T &;
using const_reference = const T &;
using iterator = detail::SafeIntIterator<value_type, false>;
using const_iterator = iterator;
using reverse_iterator = detail::SafeIntIterator<value_type, true>;
using const_reverse_iterator = reverse_iterator;
using difference_type = intmax_t;
using size_type = std::size_t;
explicit iota_range(T Begin, T End, bool Inclusive)
: BeginValue(Begin), PastEndValue(End) {
assert(Begin <= End && "Begin must be less or equal to End.");
if (Inclusive)
++PastEndValue;
}
size_t size() const { return PastEndValue - BeginValue; }
bool empty() const { return BeginValue == PastEndValue; }
auto begin() const { return const_iterator(BeginValue); }
auto end() const { return const_iterator(PastEndValue); }
auto rbegin() const { return const_reverse_iterator(PastEndValue - 1); }
auto rend() const { return const_reverse_iterator(BeginValue - 1); }
private:
static_assert(std::is_integral<T>::value || std::is_enum<T>::value,
"T must be an integral or enum type");
static_assert(std::is_same<T, std::remove_cv_t<T>>::value,
"T must not be const nor volatile");
iterator BeginValue;
iterator PastEndValue;
};
/// Iterate over an integral type from Begin up to - but not including - End.
/// Note: Begin and End values have to be within [INTMAX_MIN, INTMAX_MAX] for
/// forward iteration (resp. [INTMAX_MIN + 1, INTMAX_MAX] for reverse
/// iteration).
template <typename T, typename = std::enable_if_t<std::is_integral<T>::value &&
!std::is_enum<T>::value>>
auto seq(T Begin, T End) {
return iota_range<T>(Begin, End, false);
}
/// Iterate over an integral type from Begin to End inclusive.
/// Note: Begin and End values have to be within [INTMAX_MIN, INTMAX_MAX - 1]
/// for forward iteration (resp. [INTMAX_MIN + 1, INTMAX_MAX - 1] for reverse
/// iteration).
template <typename T, typename = std::enable_if_t<std::is_integral<T>::value &&
!std::is_enum<T>::value>>
auto seq_inclusive(T Begin, T End) {
return iota_range<T>(Begin, End, true);
}
/// Iterate over an enum type from Begin up to - but not including - End.
/// Note: `enum_seq` will generate each consecutive value, even if no
/// enumerator with that value exists.
/// Note: Begin and End values have to be within [INTMAX_MIN, INTMAX_MAX] for
/// forward iteration (resp. [INTMAX_MIN + 1, INTMAX_MAX] for reverse
/// iteration).
template <typename EnumT,
typename = std::enable_if_t<std::is_enum<EnumT>::value>>
auto enum_seq(EnumT Begin, EnumT End) {
static_assert(enum_iteration_traits<EnumT>::is_iterable,
"Enum type is not marked as iterable.");
return iota_range<EnumT>(Begin, End, false);
}
/// Iterate over an enum type from Begin up to - but not including - End, even
/// when `EnumT` is not marked as safely iterable by `enum_iteration_traits`.
/// Note: `enum_seq` will generate each consecutive value, even if no
/// enumerator with that value exists.
/// Note: Begin and End values have to be within [INTMAX_MIN, INTMAX_MAX] for
/// forward iteration (resp. [INTMAX_MIN + 1, INTMAX_MAX] for reverse
/// iteration).
template <typename EnumT,
typename = std::enable_if_t<std::is_enum<EnumT>::value>>
auto enum_seq(EnumT Begin, EnumT End, force_iteration_on_noniterable_enum_t) {
return iota_range<EnumT>(Begin, End, false);
}
/// Iterate over an enum type from Begin to End inclusive.
/// Note: `enum_seq_inclusive` will generate each consecutive value, even if no
/// enumerator with that value exists.
/// Note: Begin and End values have to be within [INTMAX_MIN, INTMAX_MAX - 1]
/// for forward iteration (resp. [INTMAX_MIN + 1, INTMAX_MAX - 1] for reverse
/// iteration).
template <typename EnumT,
typename = std::enable_if_t<std::is_enum<EnumT>::value>>
auto enum_seq_inclusive(EnumT Begin, EnumT End) {
static_assert(enum_iteration_traits<EnumT>::is_iterable,
"Enum type is not marked as iterable.");
return iota_range<EnumT>(Begin, End, true);
}
/// Iterate over an enum type from Begin to End inclusive, even when `EnumT`
/// is not marked as safely iterable by `enum_iteration_traits`.
/// Note: `enum_seq_inclusive` will generate each consecutive value, even if no
/// enumerator with that value exists.
/// Note: Begin and End values have to be within [INTMAX_MIN, INTMAX_MAX - 1]
/// for forward iteration (resp. [INTMAX_MIN + 1, INTMAX_MAX - 1] for reverse
/// iteration).
template <typename EnumT,
typename = std::enable_if_t<std::is_enum<EnumT>::value>>
auto enum_seq_inclusive(EnumT Begin, EnumT End,
force_iteration_on_noniterable_enum_t) {
return iota_range<EnumT>(Begin, End, true);
}
} // end namespace llvm
#endif // LLVM_ADT_SEQUENCE_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif