/*
* Copyright (c) 2015-2017, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "accel_dfa_build_strat.h"
#include "accel.h"
#include "grey.h"
#include "nfagraph/ng_limex_accel.h"
#include "shufticompile.h"
#include "trufflecompile.h"
#include "util/accel_scheme.h"
#include "util/charreach.h"
#include "util/container.h"
#include "util/dump_charclass.h"
#include "util/small_vector.h"
#include "util/verify_types.h"
#include <sstream>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#define PATHS_LIMIT 500
using namespace std;
namespace ue2 {
namespace {
struct path {
small_vector<CharReach, MAX_ACCEL_DEPTH + 1> reach;
dstate_id_t dest = DEAD_STATE;
explicit path(dstate_id_t base) : dest(base) {}
};
};
template<typename Container>
void dump_paths(const Container &paths) {
for (UNUSED const path &p : paths) {
DEBUG_PRINTF("[%s] -> %u\n", describeClasses(p.reach).c_str(), p.dest);
}
DEBUG_PRINTF("%zu paths\n", paths.size());
}
static
vector<CharReach> reverse_alpha_remapping(const raw_dfa &rdfa) {
vector<CharReach> rv(rdfa.alpha_size - 1); /* TOP not required */
for (u32 i = 0; i < N_CHARS; i++) {
rv.at(rdfa.alpha_remap[i]).set(i);
}
return rv;
}
static
bool is_useful_path(const vector<path> &good, const path &p) {
for (const auto &g : good) {
assert(g.dest == p.dest);
assert(g.reach.size() <= p.reach.size());
auto git = g.reach.rbegin();
auto pit = p.reach.rbegin();
for (; git != g.reach.rend(); ++git, ++pit) {
if (!pit->isSubsetOf(*git)) {
goto next;
}
}
DEBUG_PRINTF("better: [%s] -> %u\n", describeClasses(g.reach).c_str(),
g.dest);
return false;
next:;
}
return true;
}
static
path append(const path &orig, const CharReach &cr, u32 new_dest) {
path p(new_dest);
p.reach = orig.reach;
p.reach.push_back(cr);
return p;
}
static
void extend(const raw_dfa &rdfa, const vector<CharReach> &rev_map,
const path &p, unordered_map<u32, vector<path>> &all,
vector<path> &out) {
const dstate &s = rdfa.states[p.dest];
if (!p.reach.empty() && p.reach.back().none()) {
out.push_back(p);
return;
}
if (!s.reports.empty()) {
if (generates_callbacks(rdfa.kind)) {
out.push_back(p);
return;
} else {
path pp = append(p, CharReach(), p.dest);
all[p.dest].push_back(pp);
out.push_back(move(pp));
}
}
if (!s.reports_eod.empty()) {
path pp = append(p, CharReach(), p.dest);
all[p.dest].push_back(pp);
out.push_back(move(pp));
}
flat_map<u32, CharReach> dest;
for (u32 i = 0; i < rev_map.size(); i++) {
u32 succ = s.next[i];
dest[succ] |= rev_map[i];
}
for (const auto &e : dest) {
path pp = append(p, e.second, e.first);
if (!is_useful_path(all[e.first], pp)) {
DEBUG_PRINTF("not useful: [%s] -> %u\n",
describeClasses(pp.reach).c_str(), pp.dest);
continue;
}
DEBUG_PRINTF("----good: [%s] -> %u\n",
describeClasses(pp.reach).c_str(), pp.dest);
all[e.first].push_back(pp);
out.push_back(move(pp));
}
}
static
vector<vector<CharReach>> generate_paths(const raw_dfa &rdfa,
dstate_id_t base, u32 len) {
const vector<CharReach> rev_map = reverse_alpha_remapping(rdfa);
vector<path> paths{path(base)};
unordered_map<u32, vector<path>> all;
all[base].push_back(path(base));
for (u32 i = 0; i < len && paths.size() < PATHS_LIMIT; i++) {
vector<path> next_gen;
for (const auto &p : paths) {
extend(rdfa, rev_map, p, all, next_gen);
}
paths = move(next_gen);
}
dump_paths(paths);
vector<vector<CharReach>> rv;
rv.reserve(paths.size());
for (auto &p : paths) {
rv.push_back(vector<CharReach>(std::make_move_iterator(p.reach.begin()),
std::make_move_iterator(p.reach.end())));
}
return rv;
}
static
AccelScheme look_for_offset_accel(const raw_dfa &rdfa, dstate_id_t base,
u32 max_allowed_accel_offset) {
DEBUG_PRINTF("looking for accel for %hu\n", base);
vector<vector<CharReach>> paths =
generate_paths(rdfa, base, max_allowed_accel_offset + 1);
AccelScheme as = findBestAccelScheme(paths, CharReach(), true);
DEBUG_PRINTF("found %s + %u\n", describeClass(as.cr).c_str(), as.offset);
return as;
}
static UNUSED
bool better(const AccelScheme &a, const AccelScheme &b) {
if (!a.double_byte.empty() && b.double_byte.empty()) {
return true;
}
if (!b.double_byte.empty()) {
return false;
}
return a.cr.count() < b.cr.count();
}
static
bool double_byte_ok(const AccelScheme &info) {
return !info.double_byte.empty() &&
info.double_cr.count() < info.double_byte.size() &&
info.double_cr.count() <= 2;
}
static
bool has_self_loop(dstate_id_t s, const raw_dfa &raw) {
u16 top_remap = raw.alpha_remap[TOP];
for (u32 i = 0; i < raw.states[s].next.size(); i++) {
if (i != top_remap && raw.states[s].next[i] == s) {
return true;
}
}
return false;
}
static
flat_set<u16> find_nonexit_symbols(const raw_dfa &rdfa,
const CharReach &escape) {
flat_set<u16> rv;
CharReach nonexit = ~escape;
for (auto i = nonexit.find_first(); i != nonexit.npos;
i = nonexit.find_next(i)) {
rv.insert(rdfa.alpha_remap[i]);
}
return rv;
}
static
dstate_id_t get_sds_or_proxy(const raw_dfa &raw) {
if (raw.start_floating != DEAD_STATE) {
DEBUG_PRINTF("has floating start\n");
return raw.start_floating;
}
DEBUG_PRINTF("looking for SDS proxy\n");
dstate_id_t s = raw.start_anchored;
if (has_self_loop(s, raw)) {
return s;
}
u16 top_remap = raw.alpha_remap[TOP];
std::unordered_set<dstate_id_t> seen;
while (true) {
seen.insert(s);
DEBUG_PRINTF("basis %hu\n", s);
/* check if we are connected to a state with a self loop */
for (u32 i = 0; i < raw.states[s].next.size(); i++) {
dstate_id_t t = raw.states[s].next[i];
if (i != top_remap && t != DEAD_STATE && has_self_loop(t, raw)) {
return t;
}
}
/* find a neighbour to use as a basis for looking for the sds proxy */
dstate_id_t t = DEAD_STATE;
for (u32 i = 0; i < raw.states[s].next.size(); i++) {
dstate_id_t tt = raw.states[s].next[i];
if (i != top_remap && tt != DEAD_STATE && !contains(seen, tt)) {
t = tt;
break;
}
}
if (t == DEAD_STATE) {
/* we were unable to find a state to use as a SDS proxy */
return DEAD_STATE;
}
s = t;
}
}
static
set<dstate_id_t> find_region(const raw_dfa &rdfa, dstate_id_t base,
const AccelScheme &ei) {
DEBUG_PRINTF("looking for region around %hu\n", base);
set<dstate_id_t> region = {base};
if (!ei.double_byte.empty()) {
return region;
}
DEBUG_PRINTF("accel %s+%u\n", describeClass(ei.cr).c_str(), ei.offset);
const CharReach &escape = ei.cr;
auto nonexit_symbols = find_nonexit_symbols(rdfa, escape);
vector<dstate_id_t> pending = {base};
while (!pending.empty()) {
dstate_id_t curr = pending.back();
pending.pop_back();
for (auto s : nonexit_symbols) {
dstate_id_t t = rdfa.states[curr].next[s];
if (contains(region, t)) {
continue;
}
DEBUG_PRINTF(" %hu is in region\n", t);
region.insert(t);
pending.push_back(t);
}
}
return region;
}
AccelScheme
accel_dfa_build_strat::find_escape_strings(dstate_id_t this_idx) const {
AccelScheme rv;
const raw_dfa &rdfa = get_raw();
rv.cr.clear();
rv.offset = 0;
const dstate &raw = rdfa.states[this_idx];
const vector<CharReach> rev_map = reverse_alpha_remapping(rdfa);
bool outs2_broken = false;
flat_map<dstate_id_t, CharReach> succs;
for (u32 i = 0; i < rev_map.size(); i++) {
if (raw.next[i] == this_idx) {
continue;
}
const CharReach &cr_i = rev_map.at(i);
rv.cr |= cr_i;
dstate_id_t next_id = raw.next[i];
DEBUG_PRINTF("next is %hu\n", next_id);
const dstate &raw_next = rdfa.states[next_id];
if (outs2_broken) {
continue;
}
if (!raw_next.reports.empty() && generates_callbacks(rdfa.kind)) {
DEBUG_PRINTF("leads to report\n");
outs2_broken = true; /* cannot accelerate over reports */
continue;
}
succs[next_id] |= cr_i;
}
if (!outs2_broken) {
for (const auto &e : succs) {
const CharReach &cr_i = e.second;
const dstate &raw_next = rdfa.states[e.first];
CharReach cr_all_j;
for (u32 j = 0; j < rev_map.size(); j++) {
if (raw_next.next[j] == raw.next[j]) {
continue;
}
DEBUG_PRINTF("state %hu: adding sym %u -> %hu to 2 \n", e.first,
j, raw_next.next[j]);
cr_all_j |= rev_map.at(j);
}
if (cr_i.count() * cr_all_j.count() > 8) {
DEBUG_PRINTF("adding %zu to double_cr\n", cr_i.count());
rv.double_cr |= cr_i;
} else {
for (auto ii = cr_i.find_first(); ii != CharReach::npos;
ii = cr_i.find_next(ii)) {
for (auto jj = cr_all_j.find_first(); jj != CharReach::npos;
jj = cr_all_j.find_next(jj)) {
rv.double_byte.emplace((u8)ii, (u8)jj);
if (rv.double_byte.size() > 8) {
DEBUG_PRINTF("outs2 too big\n");
outs2_broken = true;
goto done;
}
}
}
}
}
done:
assert(outs2_broken || rv.double_byte.size() <= 8);
if (outs2_broken) {
rv.double_byte.clear();
}
}
DEBUG_PRINTF("this %u, sds proxy %hu\n", this_idx, get_sds_or_proxy(rdfa));
DEBUG_PRINTF("broken %d\n", outs2_broken);
if (!double_byte_ok(rv) && !is_triggered(rdfa.kind) &&
this_idx == rdfa.start_floating && this_idx != DEAD_STATE) {
DEBUG_PRINTF("looking for offset accel at %u\n", this_idx);
auto offset =
look_for_offset_accel(rdfa, this_idx, max_allowed_offset_accel());
DEBUG_PRINTF("width %zu vs %zu\n", offset.cr.count(), rv.cr.count());
if (double_byte_ok(offset) || offset.cr.count() < rv.cr.count()) {
DEBUG_PRINTF("using offset accel\n");
rv = offset;
}
}
return rv;
}
void
accel_dfa_build_strat::buildAccel(UNUSED dstate_id_t this_idx,
const AccelScheme &info,
void *accel_out) {
AccelAux *accel = (AccelAux *)accel_out;
DEBUG_PRINTF("accelerations scheme has offset s%u/d%u\n", info.offset,
info.double_offset);
accel->generic.offset = verify_u8(info.offset);
if (double_byte_ok(info) && info.double_cr.none() &&
info.double_byte.size() == 1) {
accel->accel_type = ACCEL_DVERM;
accel->dverm.c1 = info.double_byte.begin()->first;
accel->dverm.c2 = info.double_byte.begin()->second;
accel->dverm.offset = verify_u8(info.double_offset);
DEBUG_PRINTF("state %hu is double vermicelli\n", this_idx);
return;
}
if (double_byte_ok(info) && info.double_cr.none() &&
(info.double_byte.size() == 2 || info.double_byte.size() == 4)) {
bool ok = true;
assert(!info.double_byte.empty());
u8 firstC = info.double_byte.begin()->first & CASE_CLEAR;
u8 secondC = info.double_byte.begin()->second & CASE_CLEAR;
for (const pair<u8, u8> &p : info.double_byte) {
if ((p.first & CASE_CLEAR) != firstC ||
(p.second & CASE_CLEAR) != secondC) {
ok = false;
break;
}
}
if (ok) {
accel->accel_type = ACCEL_DVERM_NOCASE;
accel->dverm.c1 = firstC;
accel->dverm.c2 = secondC;
accel->dverm.offset = verify_u8(info.double_offset);
DEBUG_PRINTF("state %hu is nc double vermicelli\n", this_idx);
return;
}
u8 m1;
u8 m2;
if (buildDvermMask(info.double_byte, &m1, &m2)) {
accel->accel_type = ACCEL_DVERM_MASKED;
accel->dverm.offset = verify_u8(info.double_offset);
accel->dverm.c1 = info.double_byte.begin()->first & m1;
accel->dverm.c2 = info.double_byte.begin()->second & m2;
accel->dverm.m1 = m1;
accel->dverm.m2 = m2;
DEBUG_PRINTF(
"building maskeddouble-vermicelli for 0x%02hhx%02hhx\n",
accel->dverm.c1, accel->dverm.c2);
return;
}
}
if (double_byte_ok(info) &&
shuftiBuildDoubleMasks(
info.double_cr, info.double_byte, (u8 *)&accel->dshufti.lo1,
(u8 *)&accel->dshufti.hi1, (u8 *)&accel->dshufti.lo2,
(u8 *)&accel->dshufti.hi2)) {
accel->accel_type = ACCEL_DSHUFTI;
accel->dshufti.offset = verify_u8(info.double_offset);
DEBUG_PRINTF("state %hu is double shufti\n", this_idx);
return;
}
if (info.cr.none()) {
accel->accel_type = ACCEL_RED_TAPE;
DEBUG_PRINTF("state %hu is a dead end full of bureaucratic red tape"
" from which there is no escape\n",
this_idx);
return;
}
if (info.cr.count() == 1) {
accel->accel_type = ACCEL_VERM;
accel->verm.c = info.cr.find_first();
DEBUG_PRINTF("state %hu is vermicelli\n", this_idx);
return;
}
if (info.cr.count() == 2 && info.cr.isCaselessChar()) {
accel->accel_type = ACCEL_VERM_NOCASE;
accel->verm.c = info.cr.find_first() & CASE_CLEAR;
DEBUG_PRINTF("state %hu is caseless vermicelli\n", this_idx);
return;
}
if (info.cr.count() > max_floating_stop_char()) {
accel->accel_type = ACCEL_NONE;
DEBUG_PRINTF("state %hu is too broad\n", this_idx);
return;
}
accel->accel_type = ACCEL_SHUFTI;
if (-1 != shuftiBuildMasks(info.cr, (u8 *)&accel->shufti.lo,
(u8 *)&accel->shufti.hi)) {
DEBUG_PRINTF("state %hu is shufti\n", this_idx);
return;
}
assert(!info.cr.none());
accel->accel_type = ACCEL_TRUFFLE;
truffleBuildMasks(info.cr, (u8 *)&accel->truffle.mask1,
(u8 *)&accel->truffle.mask2);
DEBUG_PRINTF("state %hu is truffle\n", this_idx);
}
map<dstate_id_t, AccelScheme>
accel_dfa_build_strat::getAccelInfo(const Grey &grey) {
map<dstate_id_t, AccelScheme> rv;
raw_dfa &rdfa = get_raw();
if (!grey.accelerateDFA) {
return rv;
}
dstate_id_t sds_proxy = get_sds_or_proxy(rdfa);
DEBUG_PRINTF("sds %hu\n", sds_proxy);
/* Find accel info for a single state. */
auto do_state = [&](size_t i) {
if (i == DEAD_STATE) {
return;
}
/* Note on report acceleration states: While we can't accelerate while
* we are spamming out callbacks, the QR code paths don't raise reports
* during scanning so they can accelerate report states. */
if (generates_callbacks(rdfa.kind) && !rdfa.states[i].reports.empty()) {
return;
}
size_t single_limit =
i == sds_proxy ? max_floating_stop_char() : max_stop_char();
DEBUG_PRINTF("inspecting %zu/%hu: %zu\n", i, sds_proxy, single_limit);
AccelScheme ei = find_escape_strings(i);
if (ei.cr.count() > single_limit) {
DEBUG_PRINTF("state %zu is not accelerable has %zu\n", i,
ei.cr.count());
return;
}
DEBUG_PRINTF("state %zu should be accelerable %zu\n", i, ei.cr.count());
rv[i] = ei;
};
if (only_accel_init) {
DEBUG_PRINTF("only computing accel for init states\n");
do_state(rdfa.start_anchored);
if (rdfa.start_floating != rdfa.start_anchored) {
do_state(rdfa.start_floating);
}
} else {
DEBUG_PRINTF("computing accel for all states\n");
for (size_t i = 0; i < rdfa.states.size(); i++) {
do_state(i);
}
}
/* provide acceleration states to states in the region of sds */
if (contains(rv, sds_proxy)) {
AccelScheme sds_ei = rv[sds_proxy];
sds_ei.double_byte.clear(); /* region based on single byte scheme
* may differ from double byte */
DEBUG_PRINTF("looking to expand offset accel to nearby states, %zu\n",
sds_ei.cr.count());
auto sds_region = find_region(rdfa, sds_proxy, sds_ei);
for (auto s : sds_region) {
if (!contains(rv, s) || better(sds_ei, rv[s])) {
rv[s] = sds_ei;
}
}
}
return rv;
}
};