#pragma once
/**
@brief fast math library for float
@author herumi
@url https://github.com/herumi/fmath/
@note modified new BSD license
http://opensource.org/licenses/BSD-3-Clause
cl /Ox /Ob2 /arch:SSE2 /fp:fast bench.cpp -I../xbyak /EHsc /DNOMINMAX
g++ -O3 -fomit-frame-pointer -fno-operator-names -march=core2 -mssse3 -mfpmath=sse -ffast-math -fexcess-precision=fast
*/
/*
function prototype list
float fmath::exp(float);
double fmath::expd(double);
float fmath::log(float);
__m128 fmath::exp_ps(__m128);
__m256 fmath::exp_ps256(__m256);
__m128 fmath::log_ps(__m128);
double fmath::expd_v(double *, size_t n);
if FMATH_USE_XBYAK is defined then Xbyak version are used
*/
//#define FMATH_USE_XBYAK
#include <math.h>
#include <stddef.h>
#include <assert.h>
#include <limits>
#include <stdlib.h>
#include <float.h>
#include <string.h> // for memcpy
#if defined(_WIN32) && !defined(__GNUC__)
#include <intrin.h>
#ifndef MIE_ALIGN
#define MIE_ALIGN(x) __declspec(align(x))
#endif
#else
#ifndef __GNUC_PREREQ
#define __GNUC_PREREQ(major, minor) ((((__GNUC__) << 16) + (__GNUC_MINOR__)) >= (((major) << 16) + (minor)))
#endif
#if __GNUC_PREREQ(4, 4) || (__clang__ > 0 && __clang_major__ >= 3) || !defined(__GNUC__)
/* GCC >= 4.4 or clang or non-GCC compilers */
#include <x86intrin.h>
#elif __GNUC_PREREQ(4, 1)
/* GCC 4.1, 4.2, and 4.3 do not have x86intrin.h, directly include SSE2 header */
#include <emmintrin.h>
#endif
#ifndef MIE_ALIGN
#define MIE_ALIGN(x) __attribute__((aligned(x)))
#endif
#endif
#ifndef MIE_PACK
#define MIE_PACK(x, y, z, w) ((x) * 64 + (y) * 16 + (z) * 4 + (w))
#endif
//#ifdef FMATH_USE_XBYAK
// #define XBYAK_NO_OP_NAMES
// #include "xbyak/xbyak.h"
// #include "xbyak/xbyak_util.h"
//#endif
namespace {
namespace fmath {
namespace local {
const size_t EXP_TABLE_SIZE = 10;
const size_t EXPD_TABLE_SIZE = 11;
const size_t LOG_TABLE_SIZE = 12;
typedef unsigned long long uint64_t;
union fi {
float f;
unsigned int i;
};
union di {
double d;
uint64_t i;
};
inline unsigned int mask(int x)
{
return (1U << x) - 1;
}
inline uint64_t mask64(int x)
{
return (1ULL << x) - 1;
}
template<class T>
inline const T* cast_to(const void *p)
{
return reinterpret_cast<const T*>(p);
}
template<class T, size_t N>
size_t NumOfArray(const T (&)[N]) { return N; }
/*
exp(88.722839f) = inf ; 0x42b17218
exp(-87.33655f) = 1.175491e-038f(007fffe6) denormal ; 0xc2aeac50
exp(-103.972081f) = 0 ; 0xc2cff1b5
*/
template<size_t N = EXP_TABLE_SIZE>
struct ExpVar {
enum {
s = N,
n = 1 << s,
f88 = 0x42b00000 /* 88.0 */
};
float minX[8];
float maxX[8];
float a[8];
float b[8];
float f1[8];
unsigned int i127s[8];
unsigned int mask_s[8];
unsigned int i7fffffff[8];
unsigned int tbl[n];
ExpVar()
{
float log_2 = ::logf(2.0f);
for (int i = 0; i < 8; i++) {
maxX[i] = 88;
minX[i] = -88;
a[i] = n / log_2;
b[i] = log_2 / n;
f1[i] = 1.0f;
i127s[i] = 127 << s;
i7fffffff[i] = 0x7fffffff;
mask_s[i] = mask(s);
}
for (int i = 0; i < n; i++) {
float y = pow(2.0f, (float)i / n);
fi fi;
fi.f = y;
tbl[i] = fi.i & mask(23);
}
}
};
template<size_t sbit_ = EXPD_TABLE_SIZE>
struct ExpdVar {
enum {
sbit = sbit_,
s = 1UL << sbit,
adj = (1UL << (sbit + 10)) - (1UL << sbit)
};
// A = 1, B = 1, C = 1/2, D = 1/6
double C1[2]; // A
double C2[2]; // D
double C3[2]; // C/D
uint64_t tbl[s];
double a;
double ra;
ExpdVar()
: a(s / ::log(2.0))
, ra(1 / a)
{
for (int i = 0; i < 2; i++) {
#if 0
C1[i] = 1.0;
C2[i] = 0.16667794882310216;
C3[i] = 2.9997969303278795;
#else
C1[i] = 1.0;
C2[i] = 0.16666666685227835064;
C3[i] = 3.0000000027955394;
#endif
}
for (int i = 0; i < s; i++) {
di di;
di.d = ::pow(2.0, i * (1.0 / s));
tbl[i] = di.i & mask64(52);
}
}
};
template<size_t N = LOG_TABLE_SIZE>
struct LogVar {
enum {
LEN = N - 1
};
unsigned int m1[4]; // 0
unsigned int m2[4]; // 16
unsigned int m3[4]; // 32
float m4[4]; // 48
unsigned int m5[4]; // 64
struct {
float app;
float rev;
} tbl[1 << LEN];
float c_log2;
LogVar()
: c_log2(::logf(2.0f) / (1 << 23))
{
const double e = 1 / double(1 << 24);
const double h = 1 / double(1 << LEN);
const size_t n = 1U << LEN;
for (size_t i = 0; i < n; i++) {
double x = 1 + double(i) / n;
double a = ::log(x);
tbl[i].app = (float)a;
if (i < n - 1) {
double b = ::log(x + h - e);
tbl[i].rev = (float)((b - a) / ((h - e) * (1 << 23)));
} else {
tbl[i].rev = (float)(1 / (x * (1 << 23)));
}
}
for (int i = 0; i < 4; i++) {
m1[i] = mask(8) << 23;
m2[i] = mask(LEN) << (23 - LEN);
m3[i] = mask(23 - LEN);
m4[i] = c_log2;
m5[i] = 127U << 23;
}
}
};
#ifdef FMATH_USE_XBYAK
struct ExpCode : public Xbyak::CodeGenerator {
float (*exp_)(float);
__m128 (*exp_ps_)(__m128);
template<size_t N>
ExpCode(const ExpVar<N> *self)
{
Xbyak::util::Cpu cpu;
try {
makeExp(self, cpu);
exp_ = getCode<float (*)(float)>();
align(16);
exp_ps_ = getCurr<__m128(*)(__m128)>();
makeExpPs(self, cpu);
return;
} catch (std::exception& e) {
fprintf(stderr, "ExpCode ERR:%s\n", e.what());
} catch (...) {
fprintf(stderr, "ExpCode ERR:unknown error\n");
}
::exit(1);
}
template<size_t N>
void makeExp(const ExpVar<N> *self, const Xbyak::util::Cpu& /*cpu*/)
{
typedef ExpVar<N> Self;
using namespace local;
using namespace Xbyak;
inLocalLabel();
#ifdef XBYAK64
const Reg64& base = rcx;
const Reg64& a = rax;
#else
const Reg32& base = ecx;
const Reg32& a = eax;
#endif
mov(base, (size_t)self);
#ifdef XBYAK32
movss(xm0, ptr [esp + 4]);
#endif
L(".retry");
movaps(xm1, xm0);
movd(edx, xm0);
mulss(xm1, ptr [base + offsetof(Self, a)]); // t
and_(edx, 0x7fffffff);
cvtss2si(eax, xm1);
cmp(edx, ExpVar<N>::f88);
jg(".overflow");
lea(edx, ptr [eax + (127 << self->s)]);
cvtsi2ss(xm1, eax);
and_(eax, mask(self->s)); // v
mov(eax, ptr [base + a * 4 + offsetof(Self, tbl)]); // expVar.tbl[v]
shr(edx, self->s);
mulss(xm1, ptr [base + offsetof(Self, b)]);
shl(edx, 23); // u
subss(xm0, xm1); // t
or_(eax, edx); // fi.f
addss(xm0, ptr [base + offsetof(Self, f1)]);
movd(xm1, eax);
mulss(xm0, xm1);
#ifdef XBYAK32
movss(ptr[esp + 4], xm0);
fld(dword[esp + 4]);
#endif
ret();
L(".overflow");
minss(xm0, ptr [base + offsetof(Self, maxX)]);
maxss(xm0, ptr [base + offsetof(Self, minX)]);
jmp(".retry");
outLocalLabel();
}
template<size_t N>
void makeExpPs(const ExpVar<N> *self, const Xbyak::util::Cpu& cpu)
{
typedef ExpVar<N> Self;
using namespace local;
using namespace Xbyak;
inLocalLabel();
#ifdef XBYAK64
const Reg64& base = rcx;
const Reg64& a = rax;
const Reg64& d = rdx;
#else
const Reg32& base = ecx;
const Reg32& a = eax;
const Reg32& d = edx;
#endif
/*
if abs(x) >= maxX then x = max(min(x, maxX), -maxX) and try
minps, maxps are very slow then avoid them
*/
const bool useSSE41 = cpu.has(Xbyak::util::Cpu::tSSE41);
#if defined(XBYAK64_WIN) && !defined(__INTEL_COMPILER)
movaps(xm0, ptr [rcx]);
#endif
mov(base, (size_t)self);
L(".retry");
movaps(xm5, xm0);
andps(xm5, ptr [base + offsetof(Self, i7fffffff)]);
movaps(xm3, ptr [base + offsetof(Self, a)]);
movaps(xm4, ptr [base + offsetof(Self, b)]);
pcmpgtd(xm5, ptr [base + offsetof(Self, maxX)]);
mulps(xm3, xm0);
movaps(xm1, ptr [base + offsetof(Self, i127s)]);
pmovmskb(eax, xm5);
movaps(xm5, ptr [base + offsetof(Self, mask_s)]);
cvtps2dq(xm2, xm3);
pand(xm5, xm2);
cvtdq2ps(xm3, xm2);
test(eax, eax);
jnz(".overflow");
paddd(xm1, xm2);
movd(eax, xm5);
mulps(xm4, xm3);
pextrw(edx, xm5, 2);
subps(xm0, xm4);
movd(xm4, ptr [base + a * 4 + offsetof(Self, tbl)]);
addps(xm0, ptr [base + offsetof(Self, f1)]);
pextrw(eax, xm5, 4);
if (useSSE41) {
pinsrd(xm4, ptr [base + d * 4 + offsetof(Self, tbl)], 1);
} else {
movd(xm3, ptr [base + d * 4 + offsetof(Self, tbl)]);
movlhps(xm4, xm3);
}
pextrw(edx, xm5, 6);
psrld(xm1, self->s);
pslld(xm1, 23);
if (useSSE41) {
pinsrd(xm4, ptr [base + a * 4 + offsetof(Self, tbl)], 2);
pinsrd(xm4, ptr [base + d * 4 + offsetof(Self, tbl)], 3);
} else {
movd(xm2, ptr [base + a * 4 + offsetof(Self, tbl)]);
movd(xm3, ptr [base + d * 4 + offsetof(Self, tbl)]);
movlhps(xm2, xm3);
shufps(xm4, xm2, MIE_PACK(2, 0, 2, 0));
}
por(xm1, xm4);
mulps(xm0, xm1);
ret();
L(".overflow");
minps(xm0, ptr [base + offsetof(Self, maxX)]);
maxps(xm0, ptr [base + offsetof(Self, minX)]);
jmp(".retry");
outLocalLabel();
}
};
#endif
/* to define static variables in fmath.hpp */
template<size_t EXP_N = EXP_TABLE_SIZE, size_t LOG_N = LOG_TABLE_SIZE, size_t EXPD_N = EXPD_TABLE_SIZE>
struct C {
static const ExpVar<EXP_N>& expVar() {
static MIE_ALIGN(32) const ExpVar<EXP_N> var;
return var;
}
static const LogVar<LOG_N>& logVar() {
static MIE_ALIGN(32) const LogVar<LOG_N> var;
return var;
}
static const ExpdVar<EXPD_N>& expdVar() {
static MIE_ALIGN(32) const ExpdVar<EXPD_N> var;
return var;
}
#ifdef FMATH_USE_XBYAK
static const ExpCode& getInstance() {
static const MIE_ALIGN(32) ExpCode expCode(&expVar);
return expCode;
}
#endif
};
#if 0
/* to define static variables in fmath.hpp */
template<size_t EXP_N = EXP_TABLE_SIZE, size_t LOG_N = LOG_TABLE_SIZE, size_t EXPD_N = EXPD_TABLE_SIZE>
struct C {
static const ExpVar<EXP_N> expVar;
static const LogVar<LOG_N> logVar;
static const ExpdVar<EXPD_N> expdVar;
#ifdef FMATH_USE_XBYAK
static const ExpCode& getInstance() {
static const ExpCode expCode(&expVar);
return expCode;
}
#endif
};
template<size_t EXP_N, size_t LOG_N, size_t EXPD_N>
MIE_ALIGN(32) const ExpVar<EXP_N> C<EXP_N, LOG_N, EXPD_N>::expVar;
template<size_t EXP_N, size_t LOG_N, size_t EXPD_N>
MIE_ALIGN(32) const LogVar<LOG_N> C<EXP_N, LOG_N, EXPD_N>::logVar;
template<size_t EXP_N, size_t LOG_N, size_t EXPD_N>
MIE_ALIGN(32) const ExpdVar<EXPD_N> C<EXP_N, LOG_N, EXPD_N>::expdVar;
#endif
} // fmath::local
#ifdef FMATH_USE_XBYAK
inline float expC(float x)
#else
inline float exp(float x)
#endif
{
using namespace local;
const ExpVar<>& expVar = C<>::expVar();
#if 1
__m128 x1 = _mm_set_ss(x);
int limit = _mm_cvtss_si32(x1) & 0x7fffffff;
if (limit > ExpVar<>::f88) {
x1 = _mm_min_ss(x1, _mm_load_ss(expVar.maxX));
x1 = _mm_max_ss(x1, _mm_load_ss(expVar.minX));
}
int r = _mm_cvtss_si32(_mm_mul_ss(x1, _mm_load_ss(expVar.a)));
unsigned int v = r & mask(expVar.s);
float t = _mm_cvtss_f32(x1) - r * expVar.b[0];
int u = r >> expVar.s;
fi fi;
fi.i = ((u + 127) << 23) | expVar.tbl[v];
return (1 + t) * fi.f;
#else
x = std::min(x, expVar.maxX[0]);
x = std::max(x, expVar.minX[0]);
float t = x * expVar.a[0];
const float magic = (1 << 23) + (1 << 22); // to round
t += magic;
fi fi;
fi.f = t;
t = x - (t - magic) * expVar.b[0];
int u = ((fi.i + (127 << expVar.s)) >> expVar.s) << 23;
unsigned int v = fi.i & mask(expVar.s);
fi.i = u | expVar.tbl[v];
return (1 + t) * fi.f;
// return (1 + t) * pow(2, (float)u) * pow(2, (float)v / n);
#endif
}
inline double expd(double x)
{
if (x <= -708.39641853226408) return 0;
if (x >= 709.78271289338397) return std::numeric_limits<double>::infinity();
using namespace local;
const ExpdVar<>& c = C<>::expdVar();
#if 1
const double _b = double(uint64_t(3) << 51);
__m128d b = _mm_load_sd(&_b);
__m128d xx = _mm_load_sd(&x);
__m128d d = _mm_add_sd(_mm_mul_sd(xx, _mm_load_sd(&c.a)), b);
uint64_t di = _mm_cvtsi128_si32(_mm_castpd_si128(d));
uint64_t iax = c.tbl[di & mask(c.sbit)];
__m128d _t = _mm_sub_sd(_mm_mul_sd(_mm_sub_sd(d, b), _mm_load_sd(&c.ra)), xx);
uint64_t u = ((di + c.adj) >> c.sbit) << 52;
double t;
_mm_store_sd(&t, _t);
double y = (c.C3[0] - t) * (t * t) * c.C2[0] - t + c.C1[0];
double did;
u |= iax;
memcpy(&did, &u, sizeof(did));
return y * did;
#else
/*
remark : -ffast-math option of gcc may generate bad code for fmath::expd
*/
const uint64_t b = 3ULL << 51;
di di;
di.d = x * c.a + b;
uint64_t iax = c.tbl[di.i & mask(c.sbit)];
double t = (di.d - b) * c.ra - x;
uint64_t u = ((di.i + c.adj) >> c.sbit) << 52;
double y = (c.C3[0] - t) * (t * t) * c.C2[0] - t + c.C1[0];
di.i = u | iax;
return y * di.d;
#endif
}
inline __m128d exp_pd(__m128d x)
{
#if 0 // faster on Haswell
MIE_ALIGN(16) double buf[2];
memcpy(buf, &x, sizeof(buf));
buf[0] = expd(buf[0]);
buf[1] = expd(buf[1]);
__m128d y;
memcpy(&y, buf, sizeof(buf));
return y;
#else // faster on Skeylake
using namespace local;
const ExpdVar<>& c = C<>::expdVar();
const double b = double(3ULL << 51);
const __m128d mC1 = *cast_to<__m128d>(c.C1);
const __m128d mC2 = *cast_to<__m128d>(c.C2);
const __m128d mC3 = *cast_to<__m128d>(c.C3);
const __m128d ma = _mm_set1_pd(c.a);
const __m128d mra = _mm_set1_pd(c.ra);
const __m128i madj = _mm_set1_epi32(c.adj);
MIE_ALIGN(16) const double expMax[2] = { 709.78271289338397, 709.78271289338397 };
MIE_ALIGN(16) const double expMin[2] = { -708.39641853226408, -708.39641853226408 };
x = _mm_min_pd(x, *(const __m128d*)expMax);
x = _mm_max_pd(x, *(const __m128d*)expMin);
__m128d d = _mm_mul_pd(x, ma);
d = _mm_add_pd(d, _mm_set1_pd(b));
int adr0 = _mm_cvtsi128_si32(_mm_castpd_si128(d)) & mask(c.sbit);
int adr1 = _mm_cvtsi128_si32(_mm_srli_si128(_mm_castpd_si128(d), 8)) & mask(c.sbit);
__m128i iaxL = _mm_castpd_si128(_mm_load_sd((const double*)&c.tbl[adr0]));
__m128i iax = _mm_castpd_si128(_mm_load_sd((const double*)&c.tbl[adr1]));
iax = _mm_unpacklo_epi64(iaxL, iax);
__m128d t = _mm_sub_pd(_mm_mul_pd(_mm_sub_pd(d, _mm_set1_pd(b)), mra), x);
__m128i u = _mm_castpd_si128(d);
u = _mm_add_epi64(u, madj);
u = _mm_srli_epi64(u, c.sbit);
u = _mm_slli_epi64(u, 52);
u = _mm_or_si128(u, iax);
__m128d y = _mm_mul_pd(_mm_sub_pd(mC3, t), _mm_mul_pd(t, t));
y = _mm_mul_pd(y, mC2);
y = _mm_add_pd(_mm_sub_pd(y, t), mC1);
y = _mm_mul_pd(y, _mm_castsi128_pd(u));
return y;
#endif
}
/*
px : pointer to array of double
n : size of array(assume multiple of 2 or 4)
*/
inline void expd_v(double *px, size_t n)
{
using namespace local;
const ExpdVar<>& c = C<>::expdVar();
const double b = double(3ULL << 51);
#ifdef __AVX2__
size_t r = n & 3;
n &= ~3;
const __m256d mC1 = _mm256_set1_pd(c.C1[0]);
const __m256d mC2 = _mm256_set1_pd(c.C2[0]);
const __m256d mC3 = _mm256_set1_pd(c.C3[0]);
const __m256d ma = _mm256_set1_pd(c.a);
const __m256d mra = _mm256_set1_pd(c.ra);
const __m256i madj = _mm256_set1_epi64x(c.adj);
const __m256i maskSbit = _mm256_set1_epi64x(mask(c.sbit));
const __m256d expMax = _mm256_set1_pd(709.78272569338397);
const __m256d expMin = _mm256_set1_pd(-708.39641853226408);
for (size_t i = 0; i < n; i += 4) {
__m256d x = _mm256_loadu_pd(px);
x = _mm256_min_pd(x, expMax);
x = _mm256_max_pd(x, expMin);
__m256d d = _mm256_mul_pd(x, ma);
d = _mm256_add_pd(d, _mm256_set1_pd(b));
__m256i adr = _mm256_and_si256(_mm256_castpd_si256(d), maskSbit);
__m256i iax = _mm256_i64gather_epi64((const long long*)c.tbl, adr, 8);
__m256d t = _mm256_sub_pd(_mm256_mul_pd(_mm256_sub_pd(d, _mm256_set1_pd(b)), mra), x);
__m256i u = _mm256_castpd_si256(d);
u = _mm256_add_epi64(u, madj);
u = _mm256_srli_epi64(u, c.sbit);
u = _mm256_slli_epi64(u, 52);
u = _mm256_or_si256(u, iax);
__m256d y = _mm256_mul_pd(_mm256_sub_pd(mC3, t), _mm256_mul_pd(t, t));
y = _mm256_mul_pd(y, mC2);
y = _mm256_add_pd(_mm256_sub_pd(y, t), mC1);
_mm256_storeu_pd(px, _mm256_mul_pd(y, _mm256_castsi256_pd(u)));
px += 4;
}
#else
size_t r = n & 1;
n &= ~1;
const __m128d mC1 = _mm_set1_pd(c.C1[0]);
const __m128d mC2 = _mm_set1_pd(c.C2[0]);
const __m128d mC3 = _mm_set1_pd(c.C3[0]);
const __m128d ma = _mm_set1_pd(c.a);
const __m128d mra = _mm_set1_pd(c.ra);
#if defined(__x86_64__) || defined(_WIN64)
const __m128i madj = _mm_set1_epi64x(c.adj);
#else
const __m128i madj = _mm_set_epi32(0, c.adj, 0, c.adj);
#endif
const __m128d expMax = _mm_set1_pd(709.78272569338397);
const __m128d expMin = _mm_set1_pd(-708.39641853226408);
for (size_t i = 0; i < n; i += 2) {
__m128d x = _mm_loadu_pd(px);
x = _mm_min_pd(x, expMax);
x = _mm_max_pd(x, expMin);
__m128d d = _mm_mul_pd(x, ma);
d = _mm_add_pd(d, _mm_set1_pd(b));
int adr0 = _mm_cvtsi128_si32(_mm_castpd_si128(d)) & mask(c.sbit);
int adr1 = _mm_cvtsi128_si32(_mm_srli_si128(_mm_castpd_si128(d), 8)) & mask(c.sbit);
__m128i iaxL = _mm_castpd_si128(_mm_load_sd((const double*)&c.tbl[adr0]));
__m128i iax = _mm_castpd_si128(_mm_load_sd((const double*)&c.tbl[adr1]));
iax = _mm_unpacklo_epi64(iaxL, iax);
__m128d t = _mm_sub_pd(_mm_mul_pd(_mm_sub_pd(d, _mm_set1_pd(b)), mra), x);
__m128i u = _mm_castpd_si128(d);
u = _mm_add_epi64(u, madj);
u = _mm_srli_epi64(u, c.sbit);
u = _mm_slli_epi64(u, 52);
u = _mm_or_si128(u, iax);
__m128d y = _mm_mul_pd(_mm_sub_pd(mC3, t), _mm_mul_pd(t, t));
y = _mm_mul_pd(y, mC2);
y = _mm_add_pd(_mm_sub_pd(y, t), mC1);
_mm_storeu_pd(px, _mm_mul_pd(y, _mm_castsi128_pd(u)));
px += 2;
}
#endif
for (size_t i = 0; i < r; i++) {
px[i] = expd(px[i]);
}
}
#ifdef FMATH_USE_XBYAK
inline __m128 exp_psC(__m128 x)
#else
inline __m128 exp_ps(__m128 x)
#endif
{
using namespace local;
const ExpVar<>& expVar = C<>::expVar();
__m128i limit = _mm_castps_si128(_mm_and_ps(x, *cast_to<__m128>(expVar.i7fffffff)));
int over = _mm_movemask_epi8(_mm_cmpgt_epi32(limit, *cast_to<__m128i>(expVar.maxX)));
if (over) {
x = _mm_min_ps(x, _mm_load_ps(expVar.maxX));
x = _mm_max_ps(x, _mm_load_ps(expVar.minX));
}
__m128i r = _mm_cvtps_epi32(_mm_mul_ps(x, *cast_to<__m128>(expVar.a)));
__m128 t = _mm_sub_ps(x, _mm_mul_ps(_mm_cvtepi32_ps(r), *cast_to<__m128>(expVar.b)));
t = _mm_add_ps(t, *cast_to<__m128>(expVar.f1));
__m128i v4 = _mm_and_si128(r, *cast_to<__m128i>(expVar.mask_s));
__m128i u4 = _mm_add_epi32(r, *cast_to<__m128i>(expVar.i127s));
u4 = _mm_srli_epi32(u4, expVar.s);
u4 = _mm_slli_epi32(u4, 23);
#ifdef __AVX2__ // fast?
__m128i ti = _mm_i32gather_epi32((const int*)expVar.tbl, v4, 4);
__m128 t0 = _mm_castsi128_ps(ti);
#else
unsigned int v0, v1, v2, v3;
v0 = _mm_cvtsi128_si32(v4);
v1 = _mm_extract_epi16(v4, 2);
v2 = _mm_extract_epi16(v4, 4);
v3 = _mm_extract_epi16(v4, 6);
#if 1
__m128 t0, t1, t2, t3;
t0 = _mm_castsi128_ps(_mm_set1_epi32(expVar.tbl[v0]));
t1 = _mm_castsi128_ps(_mm_set1_epi32(expVar.tbl[v1]));
t2 = _mm_castsi128_ps(_mm_set1_epi32(expVar.tbl[v2]));
t3 = _mm_castsi128_ps(_mm_set1_epi32(expVar.tbl[v3]));
t1 = _mm_movelh_ps(t1, t3);
t1 = _mm_castsi128_ps(_mm_slli_epi64(_mm_castps_si128(t1), 32));
t0 = _mm_movelh_ps(t0, t2);
t0 = _mm_castsi128_ps(_mm_srli_epi64(_mm_castps_si128(t0), 32));
t0 = _mm_or_ps(t0, t1);
#else
__m128i ti = _mm_castps_si128(_mm_load_ss((const float*)&expVar.tbl[v0]));
ti = _mm_insert_epi32(ti, expVar.tbl[v1], 1);
ti = _mm_insert_epi32(ti, expVar.tbl[v2], 2);
ti = _mm_insert_epi32(ti, expVar.tbl[v3], 3);
__m128 t0 = _mm_castsi128_ps(ti);
#endif
#endif
t0 = _mm_or_ps(t0, _mm_castsi128_ps(u4));
t = _mm_mul_ps(t, t0);
return t;
}
#ifdef __AVX2__
inline __m256 exp_ps256(__m256 x)
{
using namespace local;
const ExpVar<>& expVar = C<>::expVar();
__m256i limit = _mm256_castps_si256(_mm256_and_ps(x, *reinterpret_cast<const __m256*>(expVar.i7fffffff)));
int over = _mm256_movemask_epi8(_mm256_cmpgt_epi32(limit, *reinterpret_cast<const __m256i*>(expVar.maxX)));
if (over) {
x = _mm256_min_ps(x, _mm256_load_ps(expVar.maxX));
x = _mm256_max_ps(x, _mm256_load_ps(expVar.minX));
}
__m256i r = _mm256_cvtps_epi32(_mm256_mul_ps(x, *reinterpret_cast<const __m256*>(expVar.a)));
__m256 t = _mm256_sub_ps(x, _mm256_mul_ps(_mm256_cvtepi32_ps(r), *reinterpret_cast<const __m256*>(expVar.b)));
t = _mm256_add_ps(t, *reinterpret_cast<const __m256*>(expVar.f1));
__m256i v8 = _mm256_and_si256(r, *reinterpret_cast<const __m256i*>(expVar.mask_s));
__m256i u8 = _mm256_add_epi32(r, *reinterpret_cast<const __m256i*>(expVar.i127s));
u8 = _mm256_srli_epi32(u8, expVar.s);
u8 = _mm256_slli_epi32(u8, 23);
#if 1
__m256i ti = _mm256_i32gather_epi32((const int*)expVar.tbl, v8, 4);
#else
unsigned int v0, v1, v2, v3, v4, v5, v6, v7;
v0 = _mm256_extract_epi16(v8, 0);
v1 = _mm256_extract_epi16(v8, 2);
v2 = _mm256_extract_epi16(v8, 4);
v3 = _mm256_extract_epi16(v8, 6);
v4 = _mm256_extract_epi16(v8, 8);
v5 = _mm256_extract_epi16(v8, 10);
v6 = _mm256_extract_epi16(v8, 12);
v7 = _mm256_extract_epi16(v8, 14);
__m256i ti = _mm256_setzero_si256();
ti = _mm256_insert_epi32(ti, expVar.tbl[v0], 0);
ti = _mm256_insert_epi32(ti, expVar.tbl[v1], 1);
ti = _mm256_insert_epi32(ti, expVar.tbl[v2], 2);
ti = _mm256_insert_epi32(ti, expVar.tbl[v3], 3);
ti = _mm256_insert_epi32(ti, expVar.tbl[v4], 4);
ti = _mm256_insert_epi32(ti, expVar.tbl[v5], 5);
ti = _mm256_insert_epi32(ti, expVar.tbl[v6], 6);
ti = _mm256_insert_epi32(ti, expVar.tbl[v7], 7);
#endif
__m256 t0 = _mm256_castsi256_ps(ti);
t0 = _mm256_or_ps(t0, _mm256_castsi256_ps(u8));
t = _mm256_mul_ps(t, t0);
return t;
}
#endif
inline float log(float x)
{
using namespace local;
const LogVar<>& logVar = C<>::logVar();
const size_t logLen = logVar.LEN;
fi fi;
fi.f = x;
int a = fi.i & (mask(8) << 23);
unsigned int b1 = fi.i & (mask(logLen) << (23 - logLen));
unsigned int b2 = fi.i & mask(23 - logLen);
int idx = b1 >> (23 - logLen);
float f = float(a - (127 << 23)) * logVar.c_log2 + logVar.tbl[idx].app + float(b2) * logVar.tbl[idx].rev;
return f;
}
inline __m128 log_ps(__m128 x)
{
using namespace local;
const LogVar<>& logVar = C<>::logVar();
__m128i xi = _mm_castps_si128(x);
__m128i idx = _mm_srli_epi32(_mm_and_si128(xi, *cast_to<__m128i>(logVar.m2)), (23 - logVar.LEN));
__m128 a = _mm_cvtepi32_ps(_mm_sub_epi32(_mm_and_si128(xi, *cast_to<__m128i>(logVar.m1)), *cast_to<__m128i>(logVar.m5)));
__m128 b2 = _mm_cvtepi32_ps(_mm_and_si128(xi, *cast_to<__m128i>(logVar.m3)));
a = _mm_mul_ps(a, *cast_to<__m128>(logVar.m4)); // c_log2
unsigned int i0 = _mm_cvtsi128_si32(idx);
#if 1
unsigned int i1 = _mm_extract_epi16(idx, 2);
unsigned int i2 = _mm_extract_epi16(idx, 4);
unsigned int i3 = _mm_extract_epi16(idx, 6);
#else
idx = _mm_srli_si128(idx, 4);
unsigned int i1 = _mm_cvtsi128_si32(idx);
idx = _mm_srli_si128(idx, 4);
unsigned int i2 = _mm_cvtsi128_si32(idx);
idx = _mm_srli_si128(idx, 4);
unsigned int i3 = _mm_cvtsi128_si32(idx);
#endif
__m128 app, rev;
__m128i L = _mm_loadl_epi64(cast_to<__m128i>(&logVar.tbl[i0].app));
__m128i H = _mm_loadl_epi64(cast_to<__m128i>(&logVar.tbl[i1].app));
__m128 t = _mm_castsi128_ps(_mm_unpacklo_epi64(L, H));
L = _mm_loadl_epi64(cast_to<__m128i>(&logVar.tbl[i2].app));
H = _mm_loadl_epi64(cast_to<__m128i>(&logVar.tbl[i3].app));
rev = _mm_castsi128_ps(_mm_unpacklo_epi64(L, H));
app = _mm_shuffle_ps(t, rev, MIE_PACK(2, 0, 2, 0));
rev = _mm_shuffle_ps(t, rev, MIE_PACK(3, 1, 3, 1));
a = _mm_add_ps(a, app);
rev = _mm_mul_ps(b2, rev);
return _mm_add_ps(a, rev);
}
#ifndef __CYGWIN__
// cygwin defines log2() in global namespace!
// log2(x) = log(x) / log(2)
inline float log2(float x) { return fmath::log(x) * 1.442695f; }
#endif
/*
for given y > 0
get f_y(x) := pow(x, y) for x >= 0
*/
class PowGenerator {
enum {
N = 11
};
float tbl0_[256];
struct {
float app;
float rev;
} tbl1_[1 << N];
public:
PowGenerator(float y)
{
for (int i = 0; i < 256; i++) {
tbl0_[i] = ::powf(2, (i - 127) * y);
}
const double e = 1 / double(1 << 24);
const double h = 1 / double(1 << N);
const size_t n = 1U << N;
for (size_t i = 0; i < n; i++) {
double x = 1 + double(i) / n;
double a = ::pow(x, (double)y);
tbl1_[i].app = (float)a;
double b = ::pow(x + h - e, (double)y);
tbl1_[i].rev = (float)((b - a) / (h - e) / (1 << 23));
}
}
float get(float x) const
{
using namespace local;
fi fi;
fi.f = x;
int a = (fi.i >> 23) & mask(8);
unsigned int b = fi.i & mask(23);
unsigned int b1 = b & (mask(N) << (23 - N));
unsigned int b2 = b & mask(23 - N);
float f;
int idx = b1 >> (23 - N);
f = tbl0_[a] * (tbl1_[idx].app + float(b2) * tbl1_[idx].rev);
return f;
}
};
// for Xbyak version
#ifdef FMATH_USE_XBYAK
float exp(float x) {
static float (*const jitExp)(float) = local::C<>::getInstance().exp_;
return jitExp(x);
}
__m128 exp(__m128 x) {
static __m128 (*const jitExp)(__m128) = local::C<>::getInstance().exp_ps_;
return jitExp(x);
}
#if 0
float (*const exp)(float) = local::C<>::getInstance().exp_;
__m128 (*const exp_ps)(__m128) = local::C<>::getInstance().exp_ps_;
#endif
#endif
// exp2(x) = pow(2, x)
inline float exp2(float x) { return fmath::exp(x * 0.6931472f); }
/*
this function may be optimized in the future
*/
inline __m128d log_pd(__m128d x)
{
double d[2];
memcpy(d, &x, sizeof(d));
d[0] = ::log(d[0]);
d[1] = ::log(d[1]);
__m128d m;
memcpy(&m, d, sizeof(m));
return m;
}
inline __m128 pow_ps(__m128 x, __m128 y)
{
return exp_ps(_mm_mul_ps(y, log_ps(x)));
}
inline __m128d pow_pd(__m128d x, __m128d y)
{
return exp_pd(_mm_mul_pd(y, log_pd(x)));
}
} // fmath
} // anonymous