// Copyright 2010 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Defines GfUtil template class which implements
// 1. some useful operations in GF(2^n),
// 2. CRC helper function (e.g. concatenation of CRCs) which are
// not affected by specific implemenation of CRC computation per se.
//
// Please read crc.pdf to understand how it all works.
#ifndef CRCUTIL_GF_UTIL_H_
#define CRCUTIL_GF_UTIL_H_
#include "base_types.h" // uint8, uint64
#include "crc_casts.h" // TO_BYTE()
#include "platform.h" // GCC_ALIGN_ATTRIBUTE(16), SHIFT_*_SAFE
namespace crcutil {
#pragma pack(push, 16)
// "Crc" is the type used internally and to return values of N-bit CRC.
template<typename Crc> class GfUtil {
public:
// Initializes the tables given generating polynomial of degree (degree).
// If "canonical" is true, starting CRC value and computed CRC value will be
// XOR-ed with 111...111.
GfUtil() {}
GfUtil(const Crc &generating_polynomial, size_t degree, bool canonical) {
Init(generating_polynomial, degree, canonical);
}
void Init(const Crc &generating_polynomial, size_t degree, bool canonical) {
Crc one = 1;
one <<= degree - 1;
this->generating_polynomial_ = generating_polynomial;
this->crc_bytes_ = (degree + 7) >> 3;
this->degree_ = degree;
this->one_ = one;
if (canonical) {
this->canonize_ = one | (one - 1);
} else {
this->canonize_ = 0;
}
this->normalize_[0] = 0;
this->normalize_[1] = generating_polynomial;
Crc k = one >> 1;
for (size_t i = 0; i < sizeof(uint64) * 8; ++i) {
this->x_pow_2n_[i] = k;
k = Multiply(k, k);
}
this->crc_of_crc_ = Multiply(this->canonize_,
this->one_ ^ Xpow8N((degree + 7) >> 3));
FindLCD(Xpow8N(this->crc_bytes_), &this->x_pow_minus_W_);
}
// Returns generating polynomial.
Crc GeneratingPolynomial() const {
return this->generating_polynomial_;
}
// Returns number of bits in CRC (degree of generating polynomial).
size_t Degree() const {
return this->degree_;
}
// Returns start/finish adjustment constant.
Crc Canonize() const {
return this->canonize_;
}
// Returns normalized value of 1.
Crc One() const {
return this->one_;
}
// Returns value of CRC(A, |A|, start_new) given known
// crc=CRC(A, |A|, start_old) -- without touching the data.
Crc ChangeStartValue(const Crc &crc, uint64 bytes,
const Crc &start_old,
const Crc &start_new) const {
return (crc ^ Multiply(start_new ^ start_old, Xpow8N(bytes)));
}
// Returns CRC of concatenation of blocks A and B when CRCs
// of blocks A and B are known -- without touching the data.
//
// To be precise, given CRC(A, |A|, startA) and CRC(B, |B|, 0),
// returns CRC(AB, |AB|, startA).
Crc Concatenate(const Crc &crc_A, const Crc &crc_B, uint64 bytes_B) const {
return ChangeStartValue(crc_B, bytes_B, 0 /* start_B */, crc_A);
}
// Returns CRC of sequence of zeroes -- without touching the data.
Crc CrcOfZeroes(uint64 bytes, const Crc &start) const {
Crc tmp = Multiply(start ^ this->canonize_, Xpow8N(bytes));
return (tmp ^ this->canonize_);
}
// Given CRC of a message, stores extra (degree + 7)/8 bytes after
// the message so that CRC(message+extra, start) = result.
// Does not change CRC start value (use ChangeStartValue for that).
// Returns number of stored bytes.
size_t StoreComplementaryCrc(void *dst,
const Crc &message_crc,
const Crc &result) const {
Crc crc0 = Multiply(result ^ this->canonize_, this->x_pow_minus_W_);
crc0 ^= message_crc ^ this->canonize_;
uint8 *d = reinterpret_cast<uint8 *>(dst);
for (size_t i = 0; i < this->crc_bytes_; ++i) {
d[i] = TO_BYTE(crc0);
crc0 >>= 8;
}
return this->crc_bytes_;
}
// Stores given CRC of a message as (degree + 7)/8 bytes filled
// with 0s to the right. Returns number of stored bytes.
// CRC of the message and stored CRC is a constant value returned
// by CrcOfCrc() -- it does not depend on contents of the message.
size_t StoreCrc(void *dst, const Crc &crc) const {
uint8 *d = reinterpret_cast<uint8 *>(dst);
Crc crc0 = crc;
for (size_t i = 0; i < this->crc_bytes_; ++i) {
d[i] = TO_BYTE(crc0);
crc0 >>= 8;
}
return this->crc_bytes_;
}
// Returns expected CRC value of CRC(Message,CRC(Message))
// when CRC is stored after the message. This value is fixed
// and does not depend on the message or CRC start value.
Crc CrcOfCrc() const {
return this->crc_of_crc_;
}
// Returns ((a * b) mod P) where "a" and "b" are of degree <= (D-1).
Crc Multiply(const Crc &aa, const Crc &bb) const {
Crc a = aa;
Crc b = bb;
if ((a ^ (a - 1)) < (b ^ (b - 1))) {
Crc temp = a;
a = b;
b = temp;
}
if (a == 0) {
return a;
}
Crc product = 0;
Crc one = this->one_;
for (; a != 0; a <<= 1) {
if ((a & one) != 0) {
product ^= b;
a ^= one;
}
b = (b >> 1) ^ this->normalize_[Downcast<Crc, size_t>(b & 1)];
}
return product;
}
// Returns ((unnorm * m) mod P) where degree of m is <= (D-1)
// and degree of value "unnorm" is provided explicitly.
Crc MultiplyUnnormalized(const Crc &unnorm, size_t degree,
const Crc &m) const {
Crc v = unnorm;
Crc result = 0;
while (degree > this->degree_) {
degree -= this->degree_;
Crc value = v & (this->one_ | (this->one_ - 1));
result ^= Multiply(value, Multiply(m, XpowN(degree)));
v >>= this->degree_;
}
result ^= Multiply(v << (this->degree_ - degree), m);
return result;
}
// returns ((x ** n) mod P).
Crc XpowN(uint64 n) const {
Crc one = this->one_;
Crc result = one;
for (size_t i = 0; n != 0; ++i, n >>= 1) {
if (n & 1) {
result = Multiply(result, this->x_pow_2n_[i]);
}
}
return result;
}
// Returns (x ** (8 * n) mod P).
Crc Xpow8N(uint64 n) const {
return XpowN(n << 3);
}
// Returns remainder (A mod B) and sets *q = (A/B) of division
// of two polynomials:
// A = dividend + dividend_x_pow_D_coef * x**degree,
// B = divisor.
Crc Divide(const Crc ÷nd0, int dividend_x_pow_D_coef,
const Crc &divisor0, Crc *q) const {
Crc divisor = divisor0;
Crc dividend = dividend0;
Crc quotient = 0;
Crc coef = this->one_;
while ((divisor & 1) == 0) {
divisor >>= 1;
coef >>= 1;
}
if (dividend_x_pow_D_coef) {
quotient = coef >> 1;
dividend ^= divisor >> 1;
}
Crc x_pow_degree_b = 1;
for (;;) {
if ((dividend & x_pow_degree_b) != 0) {
dividend ^= divisor;
quotient ^= coef;
}
if (coef == this->one_) {
break;
}
coef <<= 1;
x_pow_degree_b <<= 1;
divisor <<= 1;
}
*q = quotient;
return dividend;
}
// Extended Euclid's algorith -- for given A finds LCD(A, P) and
// value B such that (A * B) mod P = LCD(A, P).
Crc FindLCD(const Crc &A, Crc *B) const {
if (A == 0 || A == this->one_) {
*B = A;
return A;
}
// Actually, generating polynomial is
// (generating_polynomial_ + x**degree).
int r0_x_pow_D_coef = 1;
Crc r0 = this->generating_polynomial_;
Crc b0 = 0;
Crc r1 = A;
Crc b1 = this->one_;
for (;;) {
Crc q;
Crc r = Divide(r0, r0_x_pow_D_coef, r1, &q);
if (r == 0) {
break;
}
r0_x_pow_D_coef = 0;
r0 = r1;
r1 = r;
Crc b = b0 ^ Multiply(q, b1);
b0 = b1;
b1 = b;
}
*B = b1;
return r1;
}
protected:
Crc canonize_;
Crc x_pow_2n_[sizeof(uint64) * 8];
Crc generating_polynomial_;
Crc one_;
Crc x_pow_minus_W_;
Crc crc_of_crc_;
Crc normalize_[2];
size_t crc_bytes_;
size_t degree_;
} GCC_ALIGN_ATTRIBUTE(16);
#pragma pack(pop)
} // namespace crcutil
#endif // CRCUTIL_GF_UTIL_H_