/* zunmr2.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int zunmr2_(char *side, char *trans, integer *m, integer *n,
integer *k, doublecomplex *a, integer *lda, doublecomplex *tau,
doublecomplex *c__, integer *ldc, doublecomplex *work, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3;
doublecomplex z__1;
/* Builtin functions */
void d_cnjg(doublecomplex *, doublecomplex *);
/* Local variables */
integer i__, i1, i2, i3, mi, ni, nq;
doublecomplex aii;
logical left;
doublecomplex taui;
extern logical lsame_(char *, char *);
extern /* Subroutine */ int zlarf_(char *, integer *, integer *,
doublecomplex *, integer *, doublecomplex *, doublecomplex *,
integer *, doublecomplex *), xerbla_(char *, integer *), zlacgv_(integer *, doublecomplex *, integer *);
logical notran;
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZUNMR2 overwrites the general complex m-by-n matrix C with */
/* Q * C if SIDE = 'L' and TRANS = 'N', or */
/* Q'* C if SIDE = 'L' and TRANS = 'C', or */
/* C * Q if SIDE = 'R' and TRANS = 'N', or */
/* C * Q' if SIDE = 'R' and TRANS = 'C', */
/* where Q is a complex unitary matrix defined as the product of k */
/* elementary reflectors */
/* Q = H(1)' H(2)' . . . H(k)' */
/* as returned by ZGERQF. Q is of order m if SIDE = 'L' and of order n */
/* if SIDE = 'R'. */
/* Arguments */
/* ========= */
/* SIDE (input) CHARACTER*1 */
/* = 'L': apply Q or Q' from the Left */
/* = 'R': apply Q or Q' from the Right */
/* TRANS (input) CHARACTER*1 */
/* = 'N': apply Q (No transpose) */
/* = 'C': apply Q' (Conjugate transpose) */
/* M (input) INTEGER */
/* The number of rows of the matrix C. M >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrix C. N >= 0. */
/* K (input) INTEGER */
/* The number of elementary reflectors whose product defines */
/* the matrix Q. */
/* If SIDE = 'L', M >= K >= 0; */
/* if SIDE = 'R', N >= K >= 0. */
/* A (input) COMPLEX*16 array, dimension */
/* (LDA,M) if SIDE = 'L', */
/* (LDA,N) if SIDE = 'R' */
/* The i-th row must contain the vector which defines the */
/* elementary reflector H(i), for i = 1,2,...,k, as returned by */
/* ZGERQF in the last k rows of its array argument A. */
/* A is modified by the routine but restored on exit. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,K). */
/* TAU (input) COMPLEX*16 array, dimension (K) */
/* TAU(i) must contain the scalar factor of the elementary */
/* reflector H(i), as returned by ZGERQF. */
/* C (input/output) COMPLEX*16 array, dimension (LDC,N) */
/* On entry, the m-by-n matrix C. */
/* On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q. */
/* LDC (input) INTEGER */
/* The leading dimension of the array C. LDC >= max(1,M). */
/* WORK (workspace) COMPLEX*16 array, dimension */
/* (N) if SIDE = 'L', */
/* (M) if SIDE = 'R' */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
--work;
/* Function Body */
*info = 0;
left = lsame_(side, "L");
notran = lsame_(trans, "N");
/* NQ is the order of Q */
if (left) {
nq = *m;
} else {
nq = *n;
}
if (! left && ! lsame_(side, "R")) {
*info = -1;
} else if (! notran && ! lsame_(trans, "C")) {
*info = -2;
} else if (*m < 0) {
*info = -3;
} else if (*n < 0) {
*info = -4;
} else if (*k < 0 || *k > nq) {
*info = -5;
} else if (*lda < max(1,*k)) {
*info = -7;
} else if (*ldc < max(1,*m)) {
*info = -10;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZUNMR2", &i__1);
return 0;
}
/* Quick return if possible */
if (*m == 0 || *n == 0 || *k == 0) {
return 0;
}
if (left && ! notran || ! left && notran) {
i1 = 1;
i2 = *k;
i3 = 1;
} else {
i1 = *k;
i2 = 1;
i3 = -1;
}
if (left) {
ni = *n;
} else {
mi = *m;
}
i__1 = i2;
i__2 = i3;
for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
if (left) {
/* H(i) or H(i)' is applied to C(1:m-k+i,1:n) */
mi = *m - *k + i__;
} else {
/* H(i) or H(i)' is applied to C(1:m,1:n-k+i) */
ni = *n - *k + i__;
}
/* Apply H(i) or H(i)' */
if (notran) {
d_cnjg(&z__1, &tau[i__]);
taui.r = z__1.r, taui.i = z__1.i;
} else {
i__3 = i__;
taui.r = tau[i__3].r, taui.i = tau[i__3].i;
}
i__3 = nq - *k + i__ - 1;
zlacgv_(&i__3, &a[i__ + a_dim1], lda);
i__3 = i__ + (nq - *k + i__) * a_dim1;
aii.r = a[i__3].r, aii.i = a[i__3].i;
i__3 = i__ + (nq - *k + i__) * a_dim1;
a[i__3].r = 1., a[i__3].i = 0.;
zlarf_(side, &mi, &ni, &a[i__ + a_dim1], lda, &taui, &c__[c_offset],
ldc, &work[1]);
i__3 = i__ + (nq - *k + i__) * a_dim1;
a[i__3].r = aii.r, a[i__3].i = aii.i;
i__3 = nq - *k + i__ - 1;
zlacgv_(&i__3, &a[i__ + a_dim1], lda);
/* L10: */
}
return 0;
/* End of ZUNMR2 */
} /* zunmr2_ */