aboutsummaryrefslogblamecommitdiffstats
path: root/contrib/libs/clapack/zunglq.c
blob: d871b621959d3288b625dc622df75f3b57d2e9a6 (plain) (tree)





























































































































































































































































































                                                                               
/* zunglq.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__3 = 3;
static integer c__2 = 2;

/* Subroutine */ int zunglq_(integer *m, integer *n, integer *k, 
	doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex *
	work, integer *lwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4;

    /* Local variables */
    integer i__, j, l, ib, nb, ki, kk, nx, iws, nbmin, iinfo;
    extern /* Subroutine */ int zungl2_(integer *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *), xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    extern /* Subroutine */ int zlarfb_(char *, char *, char *, char *, 
	    integer *, integer *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *);
    integer ldwork;
    extern /* Subroutine */ int zlarft_(char *, char *, integer *, integer *, 
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
	    integer *);
    logical lquery;
    integer lwkopt;


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZUNGLQ generates an M-by-N complex matrix Q with orthonormal rows, */
/*  which is defined as the first M rows of a product of K elementary */
/*  reflectors of order N */

/*        Q  =  H(k)' . . . H(2)' H(1)' */

/*  as returned by ZGELQF. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix Q. M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix Q. N >= M. */

/*  K       (input) INTEGER */
/*          The number of elementary reflectors whose product defines the */
/*          matrix Q. M >= K >= 0. */

/*  A       (input/output) COMPLEX*16 array, dimension (LDA,N) */
/*          On entry, the i-th row must contain the vector which defines */
/*          the elementary reflector H(i), for i = 1,2,...,k, as returned */
/*          by ZGELQF in the first k rows of its array argument A. */
/*          On exit, the M-by-N matrix Q. */

/*  LDA     (input) INTEGER */
/*          The first dimension of the array A. LDA >= max(1,M). */

/*  TAU     (input) COMPLEX*16 array, dimension (K) */
/*          TAU(i) must contain the scalar factor of the elementary */
/*          reflector H(i), as returned by ZGELQF. */

/*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. LWORK >= max(1,M). */
/*          For optimum performance LWORK >= M*NB, where NB is */
/*          the optimal blocksize. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit; */
/*          < 0:  if INFO = -i, the i-th argument has an illegal value */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input arguments */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --tau;
    --work;

    /* Function Body */
    *info = 0;
    nb = ilaenv_(&c__1, "ZUNGLQ", " ", m, n, k, &c_n1);
    lwkopt = max(1,*m) * nb;
    work[1].r = (doublereal) lwkopt, work[1].i = 0.;
    lquery = *lwork == -1;
    if (*m < 0) {
	*info = -1;
    } else if (*n < *m) {
	*info = -2;
    } else if (*k < 0 || *k > *m) {
	*info = -3;
    } else if (*lda < max(1,*m)) {
	*info = -5;
    } else if (*lwork < max(1,*m) && ! lquery) {
	*info = -8;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZUNGLQ", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*m <= 0) {
	work[1].r = 1., work[1].i = 0.;
	return 0;
    }

    nbmin = 2;
    nx = 0;
    iws = *m;
    if (nb > 1 && nb < *k) {

/*        Determine when to cross over from blocked to unblocked code. */

/* Computing MAX */
	i__1 = 0, i__2 = ilaenv_(&c__3, "ZUNGLQ", " ", m, n, k, &c_n1);
	nx = max(i__1,i__2);
	if (nx < *k) {

/*           Determine if workspace is large enough for blocked code. */

	    ldwork = *m;
	    iws = ldwork * nb;
	    if (*lwork < iws) {

/*              Not enough workspace to use optimal NB:  reduce NB and */
/*              determine the minimum value of NB. */

		nb = *lwork / ldwork;
/* Computing MAX */
		i__1 = 2, i__2 = ilaenv_(&c__2, "ZUNGLQ", " ", m, n, k, &c_n1);
		nbmin = max(i__1,i__2);
	    }
	}
    }

    if (nb >= nbmin && nb < *k && nx < *k) {

/*        Use blocked code after the last block. */
/*        The first kk rows are handled by the block method. */

	ki = (*k - nx - 1) / nb * nb;
/* Computing MIN */
	i__1 = *k, i__2 = ki + nb;
	kk = min(i__1,i__2);

/*        Set A(kk+1:m,1:kk) to zero. */

	i__1 = kk;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = *m;
	    for (i__ = kk + 1; i__ <= i__2; ++i__) {
		i__3 = i__ + j * a_dim1;
		a[i__3].r = 0., a[i__3].i = 0.;
/* L10: */
	    }
/* L20: */
	}
    } else {
	kk = 0;
    }

/*     Use unblocked code for the last or only block. */

    if (kk < *m) {
	i__1 = *m - kk;
	i__2 = *n - kk;
	i__3 = *k - kk;
	zungl2_(&i__1, &i__2, &i__3, &a[kk + 1 + (kk + 1) * a_dim1], lda, &
		tau[kk + 1], &work[1], &iinfo);
    }

    if (kk > 0) {

/*        Use blocked code */

	i__1 = -nb;
	for (i__ = ki + 1; i__1 < 0 ? i__ >= 1 : i__ <= 1; i__ += i__1) {
/* Computing MIN */
	    i__2 = nb, i__3 = *k - i__ + 1;
	    ib = min(i__2,i__3);
	    if (i__ + ib <= *m) {

/*              Form the triangular factor of the block reflector */
/*              H = H(i) H(i+1) . . . H(i+ib-1) */

		i__2 = *n - i__ + 1;
		zlarft_("Forward", "Rowwise", &i__2, &ib, &a[i__ + i__ * 
			a_dim1], lda, &tau[i__], &work[1], &ldwork);

/*              Apply H' to A(i+ib:m,i:n) from the right */

		i__2 = *m - i__ - ib + 1;
		i__3 = *n - i__ + 1;
		zlarfb_("Right", "Conjugate transpose", "Forward", "Rowwise", 
			&i__2, &i__3, &ib, &a[i__ + i__ * a_dim1], lda, &work[
			1], &ldwork, &a[i__ + ib + i__ * a_dim1], lda, &work[
			ib + 1], &ldwork);
	    }

/*           Apply H' to columns i:n of current block */

	    i__2 = *n - i__ + 1;
	    zungl2_(&ib, &i__2, &ib, &a[i__ + i__ * a_dim1], lda, &tau[i__], &
		    work[1], &iinfo);

/*           Set columns 1:i-1 of current block to zero */

	    i__2 = i__ - 1;
	    for (j = 1; j <= i__2; ++j) {
		i__3 = i__ + ib - 1;
		for (l = i__; l <= i__3; ++l) {
		    i__4 = l + j * a_dim1;
		    a[i__4].r = 0., a[i__4].i = 0.;
/* L30: */
		}
/* L40: */
	    }
/* L50: */
	}
    }

    work[1].r = (doublereal) iws, work[1].i = 0.;
    return 0;

/*     End of ZUNGLQ */

} /* zunglq_ */