/* ztrsna.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
/* Subroutine */ int ztrsna_(char *job, char *howmny, logical *select,
integer *n, doublecomplex *t, integer *ldt, doublecomplex *vl,
integer *ldvl, doublecomplex *vr, integer *ldvr, doublereal *s,
doublereal *sep, integer *mm, integer *m, doublecomplex *work,
integer *ldwork, doublereal *rwork, integer *info)
{
/* System generated locals */
integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset,
work_dim1, work_offset, i__1, i__2, i__3, i__4, i__5;
doublereal d__1, d__2;
doublecomplex z__1;
/* Builtin functions */
double z_abs(doublecomplex *), d_imag(doublecomplex *);
/* Local variables */
integer i__, j, k, ks, ix;
doublereal eps, est;
integer kase, ierr;
doublecomplex prod;
doublereal lnrm, rnrm, scale;
extern logical lsame_(char *, char *);
integer isave[3];
extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *,
doublecomplex *, integer *, doublecomplex *, integer *);
doublecomplex dummy[1];
logical wants;
doublereal xnorm;
extern /* Subroutine */ int zlacn2_(integer *, doublecomplex *,
doublecomplex *, doublereal *, integer *, integer *), dlabad_(
doublereal *, doublereal *);
extern doublereal dznrm2_(integer *, doublecomplex *, integer *), dlamch_(
char *);
extern /* Subroutine */ int xerbla_(char *, integer *);
doublereal bignum;
logical wantbh;
extern integer izamax_(integer *, doublecomplex *, integer *);
logical somcon;
extern /* Subroutine */ int zdrscl_(integer *, doublereal *,
doublecomplex *, integer *);
char normin[1];
extern /* Subroutine */ int zlacpy_(char *, integer *, integer *,
doublecomplex *, integer *, doublecomplex *, integer *);
doublereal smlnum;
logical wantsp;
extern /* Subroutine */ int zlatrs_(char *, char *, char *, char *,
integer *, doublecomplex *, integer *, doublecomplex *,
doublereal *, doublereal *, integer *), ztrexc_(char *, integer *, doublecomplex *, integer *,
doublecomplex *, integer *, integer *, integer *, integer *);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH. */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZTRSNA estimates reciprocal condition numbers for specified */
/* eigenvalues and/or right eigenvectors of a complex upper triangular */
/* matrix T (or of any matrix Q*T*Q**H with Q unitary). */
/* Arguments */
/* ========= */
/* JOB (input) CHARACTER*1 */
/* Specifies whether condition numbers are required for */
/* eigenvalues (S) or eigenvectors (SEP): */
/* = 'E': for eigenvalues only (S); */
/* = 'V': for eigenvectors only (SEP); */
/* = 'B': for both eigenvalues and eigenvectors (S and SEP). */
/* HOWMNY (input) CHARACTER*1 */
/* = 'A': compute condition numbers for all eigenpairs; */
/* = 'S': compute condition numbers for selected eigenpairs */
/* specified by the array SELECT. */
/* SELECT (input) LOGICAL array, dimension (N) */
/* If HOWMNY = 'S', SELECT specifies the eigenpairs for which */
/* condition numbers are required. To select condition numbers */
/* for the j-th eigenpair, SELECT(j) must be set to .TRUE.. */
/* If HOWMNY = 'A', SELECT is not referenced. */
/* N (input) INTEGER */
/* The order of the matrix T. N >= 0. */
/* T (input) COMPLEX*16 array, dimension (LDT,N) */
/* The upper triangular matrix T. */
/* LDT (input) INTEGER */
/* The leading dimension of the array T. LDT >= max(1,N). */
/* VL (input) COMPLEX*16 array, dimension (LDVL,M) */
/* If JOB = 'E' or 'B', VL must contain left eigenvectors of T */
/* (or of any Q*T*Q**H with Q unitary), corresponding to the */
/* eigenpairs specified by HOWMNY and SELECT. The eigenvectors */
/* must be stored in consecutive columns of VL, as returned by */
/* ZHSEIN or ZTREVC. */
/* If JOB = 'V', VL is not referenced. */
/* LDVL (input) INTEGER */
/* The leading dimension of the array VL. */
/* LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N. */
/* VR (input) COMPLEX*16 array, dimension (LDVR,M) */
/* If JOB = 'E' or 'B', VR must contain right eigenvectors of T */
/* (or of any Q*T*Q**H with Q unitary), corresponding to the */
/* eigenpairs specified by HOWMNY and SELECT. The eigenvectors */
/* must be stored in consecutive columns of VR, as returned by */
/* ZHSEIN or ZTREVC. */
/* If JOB = 'V', VR is not referenced. */
/* LDVR (input) INTEGER */
/* The leading dimension of the array VR. */
/* LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N. */
/* S (output) DOUBLE PRECISION array, dimension (MM) */
/* If JOB = 'E' or 'B', the reciprocal condition numbers of the */
/* selected eigenvalues, stored in consecutive elements of the */
/* array. Thus S(j), SEP(j), and the j-th columns of VL and VR */
/* all correspond to the same eigenpair (but not in general the */
/* j-th eigenpair, unless all eigenpairs are selected). */
/* If JOB = 'V', S is not referenced. */
/* SEP (output) DOUBLE PRECISION array, dimension (MM) */
/* If JOB = 'V' or 'B', the estimated reciprocal condition */
/* numbers of the selected eigenvectors, stored in consecutive */
/* elements of the array. */
/* If JOB = 'E', SEP is not referenced. */
/* MM (input) INTEGER */
/* The number of elements in the arrays S (if JOB = 'E' or 'B') */
/* and/or SEP (if JOB = 'V' or 'B'). MM >= M. */
/* M (output) INTEGER */
/* The number of elements of the arrays S and/or SEP actually */
/* used to store the estimated condition numbers. */
/* If HOWMNY = 'A', M is set to N. */
/* WORK (workspace) COMPLEX*16 array, dimension (LDWORK,N+6) */
/* If JOB = 'E', WORK is not referenced. */
/* LDWORK (input) INTEGER */
/* The leading dimension of the array WORK. */
/* LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N. */
/* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */
/* If JOB = 'E', RWORK is not referenced. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* Further Details */
/* =============== */
/* The reciprocal of the condition number of an eigenvalue lambda is */
/* defined as */
/* S(lambda) = |v'*u| / (norm(u)*norm(v)) */
/* where u and v are the right and left eigenvectors of T corresponding */
/* to lambda; v' denotes the conjugate transpose of v, and norm(u) */
/* denotes the Euclidean norm. These reciprocal condition numbers always */
/* lie between zero (very badly conditioned) and one (very well */
/* conditioned). If n = 1, S(lambda) is defined to be 1. */
/* An approximate error bound for a computed eigenvalue W(i) is given by */
/* EPS * norm(T) / S(i) */
/* where EPS is the machine precision. */
/* The reciprocal of the condition number of the right eigenvector u */
/* corresponding to lambda is defined as follows. Suppose */
/* T = ( lambda c ) */
/* ( 0 T22 ) */
/* Then the reciprocal condition number is */
/* SEP( lambda, T22 ) = sigma-min( T22 - lambda*I ) */
/* where sigma-min denotes the smallest singular value. We approximate */
/* the smallest singular value by the reciprocal of an estimate of the */
/* one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is */
/* defined to be abs(T(1,1)). */
/* An approximate error bound for a computed right eigenvector VR(i) */
/* is given by */
/* EPS * norm(T) / SEP(i) */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Local Arrays .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Statement Functions .. */
/* .. */
/* .. Statement Function definitions .. */
/* .. */
/* .. Executable Statements .. */
/* Decode and test the input parameters */
/* Parameter adjustments */
--select;
t_dim1 = *ldt;
t_offset = 1 + t_dim1;
t -= t_offset;
vl_dim1 = *ldvl;
vl_offset = 1 + vl_dim1;
vl -= vl_offset;
vr_dim1 = *ldvr;
vr_offset = 1 + vr_dim1;
vr -= vr_offset;
--s;
--sep;
work_dim1 = *ldwork;
work_offset = 1 + work_dim1;
work -= work_offset;
--rwork;
/* Function Body */
wantbh = lsame_(job, "B");
wants = lsame_(job, "E") || wantbh;
wantsp = lsame_(job, "V") || wantbh;
somcon = lsame_(howmny, "S");
/* Set M to the number of eigenpairs for which condition numbers are */
/* to be computed. */
if (somcon) {
*m = 0;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (select[j]) {
++(*m);
}
/* L10: */
}
} else {
*m = *n;
}
*info = 0;
if (! wants && ! wantsp) {
*info = -1;
} else if (! lsame_(howmny, "A") && ! somcon) {
*info = -2;
} else if (*n < 0) {
*info = -4;
} else if (*ldt < max(1,*n)) {
*info = -6;
} else if (*ldvl < 1 || wants && *ldvl < *n) {
*info = -8;
} else if (*ldvr < 1 || wants && *ldvr < *n) {
*info = -10;
} else if (*mm < *m) {
*info = -13;
} else if (*ldwork < 1 || wantsp && *ldwork < *n) {
*info = -16;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZTRSNA", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
if (*n == 1) {
if (somcon) {
if (! select[1]) {
return 0;
}
}
if (wants) {
s[1] = 1.;
}
if (wantsp) {
sep[1] = z_abs(&t[t_dim1 + 1]);
}
return 0;
}
/* Get machine constants */
eps = dlamch_("P");
smlnum = dlamch_("S") / eps;
bignum = 1. / smlnum;
dlabad_(&smlnum, &bignum);
ks = 1;
i__1 = *n;
for (k = 1; k <= i__1; ++k) {
if (somcon) {
if (! select[k]) {
goto L50;
}
}
if (wants) {
/* Compute the reciprocal condition number of the k-th */
/* eigenvalue. */
zdotc_(&z__1, n, &vr[ks * vr_dim1 + 1], &c__1, &vl[ks * vl_dim1 +
1], &c__1);
prod.r = z__1.r, prod.i = z__1.i;
rnrm = dznrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
lnrm = dznrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
s[ks] = z_abs(&prod) / (rnrm * lnrm);
}
if (wantsp) {
/* Estimate the reciprocal condition number of the k-th */
/* eigenvector. */
/* Copy the matrix T to the array WORK and swap the k-th */
/* diagonal element to the (1,1) position. */
zlacpy_("Full", n, n, &t[t_offset], ldt, &work[work_offset],
ldwork);
ztrexc_("No Q", n, &work[work_offset], ldwork, dummy, &c__1, &k, &
c__1, &ierr);
/* Form C = T22 - lambda*I in WORK(2:N,2:N). */
i__2 = *n;
for (i__ = 2; i__ <= i__2; ++i__) {
i__3 = i__ + i__ * work_dim1;
i__4 = i__ + i__ * work_dim1;
i__5 = work_dim1 + 1;
z__1.r = work[i__4].r - work[i__5].r, z__1.i = work[i__4].i -
work[i__5].i;
work[i__3].r = z__1.r, work[i__3].i = z__1.i;
/* L20: */
}
/* Estimate a lower bound for the 1-norm of inv(C'). The 1st */
/* and (N+1)th columns of WORK are used to store work vectors. */
sep[ks] = 0.;
est = 0.;
kase = 0;
*(unsigned char *)normin = 'N';
L30:
i__2 = *n - 1;
zlacn2_(&i__2, &work[(*n + 1) * work_dim1 + 1], &work[work_offset]
, &est, &kase, isave);
if (kase != 0) {
if (kase == 1) {
/* Solve C'*x = scale*b */
i__2 = *n - 1;
zlatrs_("Upper", "Conjugate transpose", "Nonunit", normin,
&i__2, &work[(work_dim1 << 1) + 2], ldwork, &
work[work_offset], &scale, &rwork[1], &ierr);
} else {
/* Solve C*x = scale*b */
i__2 = *n - 1;
zlatrs_("Upper", "No transpose", "Nonunit", normin, &i__2,
&work[(work_dim1 << 1) + 2], ldwork, &work[
work_offset], &scale, &rwork[1], &ierr);
}
*(unsigned char *)normin = 'Y';
if (scale != 1.) {
/* Multiply by 1/SCALE if doing so will not cause */
/* overflow. */
i__2 = *n - 1;
ix = izamax_(&i__2, &work[work_offset], &c__1);
i__2 = ix + work_dim1;
xnorm = (d__1 = work[i__2].r, abs(d__1)) + (d__2 = d_imag(
&work[ix + work_dim1]), abs(d__2));
if (scale < xnorm * smlnum || scale == 0.) {
goto L40;
}
zdrscl_(n, &scale, &work[work_offset], &c__1);
}
goto L30;
}
sep[ks] = 1. / max(est,smlnum);
}
L40:
++ks;
L50:
;
}
return 0;
/* End of ZTRSNA */
} /* ztrsna_ */