/* zsyrfsx.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static logical c_true = TRUE_;
static logical c_false = FALSE_;
/* Subroutine */ int zsyrfsx_(char *uplo, char *equed, integer *n, integer *
nrhs, doublecomplex *a, integer *lda, doublecomplex *af, integer *
ldaf, integer *ipiv, doublereal *s, doublecomplex *b, integer *ldb,
doublecomplex *x, integer *ldx, doublereal *rcond, doublereal *berr,
integer *n_err_bnds__, doublereal *err_bnds_norm__, doublereal *
err_bnds_comp__, integer *nparams, doublereal *params, doublecomplex *
work, doublereal *rwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1,
x_offset, err_bnds_norm_dim1, err_bnds_norm_offset,
err_bnds_comp_dim1, err_bnds_comp_offset, i__1;
doublereal d__1, d__2;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
doublereal illrcond_thresh__, unstable_thresh__, err_lbnd__;
integer ref_type__;
integer j;
doublereal rcond_tmp__;
integer prec_type__;
doublereal cwise_wrong__;
char norm[1];
extern /* Subroutine */ int zla_syrfsx_extended__(integer *, char *,
integer *, integer *, doublecomplex *, integer *, doublecomplex *,
integer *, integer *, logical *, doublereal *, doublecomplex *,
integer *, doublecomplex *, integer *, doublereal *, integer *,
doublereal *, doublereal *, doublecomplex *, doublereal *,
doublecomplex *, doublecomplex *, doublereal *, integer *,
doublereal *, doublereal *, logical *, integer *, ftnlen);
logical ignore_cwise__;
extern logical lsame_(char *, char *);
doublereal anorm;
logical rcequ;
extern doublereal zla_syrcond_c__(char *, integer *, doublecomplex *,
integer *, doublecomplex *, integer *, integer *, doublereal *,
logical *, integer *, doublecomplex *, doublereal *, ftnlen),
zla_syrcond_x__(char *, integer *, doublecomplex *, integer *,
doublecomplex *, integer *, integer *, doublecomplex *, integer *,
doublecomplex *, doublereal *, ftnlen), dlamch_(char *);
extern /* Subroutine */ int xerbla_(char *, integer *);
extern doublereal zlansy_(char *, char *, integer *, doublecomplex *,
integer *, doublereal *);
extern /* Subroutine */ int zsycon_(char *, integer *, doublecomplex *,
integer *, integer *, doublereal *, doublereal *, doublecomplex *,
integer *);
extern integer ilaprec_(char *);
integer ithresh, n_norms__;
doublereal rthresh;
/* -- LAPACK routine (version 3.2.1) -- */
/* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
/* -- Jason Riedy of Univ. of California Berkeley. -- */
/* -- April 2009 -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley and NAG Ltd. -- */
/* .. */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZSYRFSX improves the computed solution to a system of linear */
/* equations when the coefficient matrix is symmetric indefinite, and */
/* provides error bounds and backward error estimates for the */
/* solution. In addition to normwise error bound, the code provides */
/* maximum componentwise error bound if possible. See comments for */
/* ERR_BNDS_NORM and ERR_BNDS_COMP for details of the error bounds. */
/* The original system of linear equations may have been equilibrated */
/* before calling this routine, as described by arguments EQUED and S */
/* below. In this case, the solution and error bounds returned are */
/* for the original unequilibrated system. */
/* Arguments */
/* ========= */
/* Some optional parameters are bundled in the PARAMS array. These */
/* settings determine how refinement is performed, but often the */
/* defaults are acceptable. If the defaults are acceptable, users */
/* can pass NPARAMS = 0 which prevents the source code from accessing */
/* the PARAMS argument. */
/* UPLO (input) CHARACTER*1 */
/* = 'U': Upper triangle of A is stored; */
/* = 'L': Lower triangle of A is stored. */
/* EQUED (input) CHARACTER*1 */
/* Specifies the form of equilibration that was done to A */
/* before calling this routine. This is needed to compute */
/* the solution and error bounds correctly. */
/* = 'N': No equilibration */
/* = 'Y': Both row and column equilibration, i.e., A has been */
/* replaced by diag(S) * A * diag(S). */
/* The right hand side B has been changed accordingly. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* NRHS (input) INTEGER */
/* The number of right hand sides, i.e., the number of columns */
/* of the matrices B and X. NRHS >= 0. */
/* A (input) COMPLEX*16 array, dimension (LDA,N) */
/* The symmetric matrix A. If UPLO = 'U', the leading N-by-N */
/* upper triangular part of A contains the upper triangular */
/* part of the matrix A, and the strictly lower triangular */
/* part of A is not referenced. If UPLO = 'L', the leading */
/* N-by-N lower triangular part of A contains the lower */
/* triangular part of the matrix A, and the strictly upper */
/* triangular part of A is not referenced. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* AF (input) COMPLEX*16 array, dimension (LDAF,N) */
/* The factored form of the matrix A. AF contains the block */
/* diagonal matrix D and the multipliers used to obtain the */
/* factor U or L from the factorization A = U*D*U**T or A = */
/* L*D*L**T as computed by DSYTRF. */
/* LDAF (input) INTEGER */
/* The leading dimension of the array AF. LDAF >= max(1,N). */
/* IPIV (input) INTEGER array, dimension (N) */
/* Details of the interchanges and the block structure of D */
/* as determined by DSYTRF. */
/* S (input or output) DOUBLE PRECISION array, dimension (N) */
/* The scale factors for A. If EQUED = 'Y', A is multiplied on */
/* the left and right by diag(S). S is an input argument if FACT = */
/* 'F'; otherwise, S is an output argument. If FACT = 'F' and EQUED */
/* = 'Y', each element of S must be positive. If S is output, each */
/* element of S is a power of the radix. If S is input, each element */
/* of S should be a power of the radix to ensure a reliable solution */
/* and error estimates. Scaling by powers of the radix does not cause */
/* rounding errors unless the result underflows or overflows. */
/* Rounding errors during scaling lead to refining with a matrix that */
/* is not equivalent to the input matrix, producing error estimates */
/* that may not be reliable. */
/* B (input) COMPLEX*16 array, dimension (LDB,NRHS) */
/* The right hand side matrix B. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,N). */
/* X (input/output) COMPLEX*16 array, dimension (LDX,NRHS) */
/* On entry, the solution matrix X, as computed by DGETRS. */
/* On exit, the improved solution matrix X. */
/* LDX (input) INTEGER */
/* The leading dimension of the array X. LDX >= max(1,N). */
/* RCOND (output) DOUBLE PRECISION */
/* Reciprocal scaled condition number. This is an estimate of the */
/* reciprocal Skeel condition number of the matrix A after */
/* equilibration (if done). If this is less than the machine */
/* precision (in particular, if it is zero), the matrix is singular */
/* to working precision. Note that the error may still be small even */
/* if this number is very small and the matrix appears ill- */
/* conditioned. */
/* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */
/* Componentwise relative backward error. This is the */
/* componentwise relative backward error of each solution vector X(j) */
/* (i.e., the smallest relative change in any element of A or B that */
/* makes X(j) an exact solution). */
/* N_ERR_BNDS (input) INTEGER */
/* Number of error bounds to return for each right hand side */
/* and each type (normwise or componentwise). See ERR_BNDS_NORM and */
/* ERR_BNDS_COMP below. */
/* ERR_BNDS_NORM (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */
/* For each right-hand side, this array contains information about */
/* various error bounds and condition numbers corresponding to the */
/* normwise relative error, which is defined as follows: */
/* Normwise relative error in the ith solution vector: */
/* max_j (abs(XTRUE(j,i) - X(j,i))) */
/* ------------------------------ */
/* max_j abs(X(j,i)) */
/* The array is indexed by the type of error information as described */
/* below. There currently are up to three pieces of information */
/* returned. */
/* The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */
/* right-hand side. */
/* The second index in ERR_BNDS_NORM(:,err) contains the following */
/* three fields: */
/* err = 1 "Trust/don't trust" boolean. Trust the answer if the */
/* reciprocal condition number is less than the threshold */
/* sqrt(n) * dlamch('Epsilon'). */
/* err = 2 "Guaranteed" error bound: The estimated forward error, */
/* almost certainly within a factor of 10 of the true error */
/* so long as the next entry is greater than the threshold */
/* sqrt(n) * dlamch('Epsilon'). This error bound should only */
/* be trusted if the previous boolean is true. */
/* err = 3 Reciprocal condition number: Estimated normwise */
/* reciprocal condition number. Compared with the threshold */
/* sqrt(n) * dlamch('Epsilon') to determine if the error */
/* estimate is "guaranteed". These reciprocal condition */
/* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
/* appropriately scaled matrix Z. */
/* Let Z = S*A, where S scales each row by a power of the */
/* radix so all absolute row sums of Z are approximately 1. */
/* See Lapack Working Note 165 for further details and extra */
/* cautions. */
/* ERR_BNDS_COMP (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */
/* For each right-hand side, this array contains information about */
/* various error bounds and condition numbers corresponding to the */
/* componentwise relative error, which is defined as follows: */
/* Componentwise relative error in the ith solution vector: */
/* abs(XTRUE(j,i) - X(j,i)) */
/* max_j ---------------------- */
/* abs(X(j,i)) */
/* The array is indexed by the right-hand side i (on which the */
/* componentwise relative error depends), and the type of error */
/* information as described below. There currently are up to three */
/* pieces of information returned for each right-hand side. If */
/* componentwise accuracy is not requested (PARAMS(3) = 0.0), then */
/* ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most */
/* the first (:,N_ERR_BNDS) entries are returned. */
/* The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */
/* right-hand side. */
/* The second index in ERR_BNDS_COMP(:,err) contains the following */
/* three fields: */
/* err = 1 "Trust/don't trust" boolean. Trust the answer if the */
/* reciprocal condition number is less than the threshold */
/* sqrt(n) * dlamch('Epsilon'). */
/* err = 2 "Guaranteed" error bound: The estimated forward error, */
/* almost certainly within a factor of 10 of the true error */
/* so long as the next entry is greater than the threshold */
/* sqrt(n) * dlamch('Epsilon'). This error bound should only */
/* be trusted if the previous boolean is true. */
/* err = 3 Reciprocal condition number: Estimated componentwise */
/* reciprocal condition number. Compared with the threshold */
/* sqrt(n) * dlamch('Epsilon') to determine if the error */
/* estimate is "guaranteed". These reciprocal condition */
/* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
/* appropriately scaled matrix Z. */
/* Let Z = S*(A*diag(x)), where x is the solution for the */
/* current right-hand side and S scales each row of */
/* A*diag(x) by a power of the radix so all absolute row */
/* sums of Z are approximately 1. */
/* See Lapack Working Note 165 for further details and extra */
/* cautions. */
/* NPARAMS (input) INTEGER */
/* Specifies the number of parameters set in PARAMS. If .LE. 0, the */
/* PARAMS array is never referenced and default values are used. */
/* PARAMS (input / output) DOUBLE PRECISION array, dimension NPARAMS */
/* Specifies algorithm parameters. If an entry is .LT. 0.0, then */
/* that entry will be filled with default value used for that */
/* parameter. Only positions up to NPARAMS are accessed; defaults */
/* are used for higher-numbered parameters. */
/* PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative */
/* refinement or not. */
/* Default: 1.0D+0 */
/* = 0.0 : No refinement is performed, and no error bounds are */
/* computed. */
/* = 1.0 : Use the double-precision refinement algorithm, */
/* possibly with doubled-single computations if the */
/* compilation environment does not support DOUBLE */
/* PRECISION. */
/* (other values are reserved for future use) */
/* PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual */
/* computations allowed for refinement. */
/* Default: 10 */
/* Aggressive: Set to 100 to permit convergence using approximate */
/* factorizations or factorizations other than LU. If */
/* the factorization uses a technique other than */
/* Gaussian elimination, the guarantees in */
/* err_bnds_norm and err_bnds_comp may no longer be */
/* trustworthy. */
/* PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code */
/* will attempt to find a solution with small componentwise */
/* relative error in the double-precision algorithm. Positive */
/* is true, 0.0 is false. */
/* Default: 1.0 (attempt componentwise convergence) */
/* WORK (workspace) COMPLEX*16 array, dimension (2*N) */
/* RWORK (workspace) DOUBLE PRECISION array, dimension (2*N) */
/* INFO (output) INTEGER */
/* = 0: Successful exit. The solution to every right-hand side is */
/* guaranteed. */
/* < 0: If INFO = -i, the i-th argument had an illegal value */
/* > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization */
/* has been completed, but the factor U is exactly singular, so */
/* the solution and error bounds could not be computed. RCOND = 0 */
/* is returned. */
/* = N+J: The solution corresponding to the Jth right-hand side is */
/* not guaranteed. The solutions corresponding to other right- */
/* hand sides K with K > J may not be guaranteed as well, but */
/* only the first such right-hand side is reported. If a small */
/* componentwise error is not requested (PARAMS(3) = 0.0) then */
/* the Jth right-hand side is the first with a normwise error */
/* bound that is not guaranteed (the smallest J such */
/* that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) */
/* the Jth right-hand side is the first with either a normwise or */
/* componentwise error bound that is not guaranteed (the smallest */
/* J such that either ERR_BNDS_NORM(J,1) = 0.0 or */
/* ERR_BNDS_COMP(J,1) = 0.0). See the definition of */
/* ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information */
/* about all of the right-hand sides check ERR_BNDS_NORM or */
/* ERR_BNDS_COMP. */
/* ================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Check the input parameters. */
/* Parameter adjustments */
err_bnds_comp_dim1 = *nrhs;
err_bnds_comp_offset = 1 + err_bnds_comp_dim1;
err_bnds_comp__ -= err_bnds_comp_offset;
err_bnds_norm_dim1 = *nrhs;
err_bnds_norm_offset = 1 + err_bnds_norm_dim1;
err_bnds_norm__ -= err_bnds_norm_offset;
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
af_dim1 = *ldaf;
af_offset = 1 + af_dim1;
af -= af_offset;
--ipiv;
--s;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
x_dim1 = *ldx;
x_offset = 1 + x_dim1;
x -= x_offset;
--berr;
--params;
--work;
--rwork;
/* Function Body */
*info = 0;
ref_type__ = 1;
if (*nparams >= 1) {
if (params[1] < 0.) {
params[1] = 1.;
} else {
ref_type__ = (integer) params[1];
}
}
/* Set default parameters. */
illrcond_thresh__ = (doublereal) (*n) * dlamch_("Epsilon");
ithresh = 10;
rthresh = .5;
unstable_thresh__ = .25;
ignore_cwise__ = FALSE_;
if (*nparams >= 2) {
if (params[2] < 0.) {
params[2] = (doublereal) ithresh;
} else {
ithresh = (integer) params[2];
}
}
if (*nparams >= 3) {
if (params[3] < 0.) {
if (ignore_cwise__) {
params[3] = 0.;
} else {
params[3] = 1.;
}
} else {
ignore_cwise__ = params[3] == 0.;
}
}
if (ref_type__ == 0 || *n_err_bnds__ == 0) {
n_norms__ = 0;
} else if (ignore_cwise__) {
n_norms__ = 1;
} else {
n_norms__ = 2;
}
rcequ = lsame_(equed, "Y");
/* Test input parameters. */
if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
*info = -1;
} else if (! rcequ && ! lsame_(equed, "N")) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*nrhs < 0) {
*info = -4;
} else if (*lda < max(1,*n)) {
*info = -6;
} else if (*ldaf < max(1,*n)) {
*info = -8;
} else if (*ldb < max(1,*n)) {
*info = -11;
} else if (*ldx < max(1,*n)) {
*info = -13;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZSYRFSX", &i__1);
return 0;
}
/* Quick return if possible. */
if (*n == 0 || *nrhs == 0) {
*rcond = 1.;
i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
berr[j] = 0.;
if (*n_err_bnds__ >= 1) {
err_bnds_norm__[j + err_bnds_norm_dim1] = 1.;
err_bnds_comp__[j + err_bnds_comp_dim1] = 1.;
} else if (*n_err_bnds__ >= 2) {
err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 0.;
err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 0.;
} else if (*n_err_bnds__ >= 3) {
err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = 1.;
err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = 1.;
}
}
return 0;
}
/* Default to failure. */
*rcond = 0.;
i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
berr[j] = 1.;
if (*n_err_bnds__ >= 1) {
err_bnds_norm__[j + err_bnds_norm_dim1] = 1.;
err_bnds_comp__[j + err_bnds_comp_dim1] = 1.;
} else if (*n_err_bnds__ >= 2) {
err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.;
err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.;
} else if (*n_err_bnds__ >= 3) {
err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = 0.;
err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = 0.;
}
}
/* Compute the norm of A and the reciprocal of the condition */
/* number of A. */
*(unsigned char *)norm = 'I';
anorm = zlansy_(norm, uplo, n, &a[a_offset], lda, &rwork[1]);
zsycon_(uplo, n, &af[af_offset], ldaf, &ipiv[1], &anorm, rcond, &work[1],
info);
/* Perform refinement on each right-hand side */
if (ref_type__ != 0) {
prec_type__ = ilaprec_("E");
zla_syrfsx_extended__(&prec_type__, uplo, n, nrhs, &a[a_offset], lda,
&af[af_offset], ldaf, &ipiv[1], &rcequ, &s[1], &b[b_offset],
ldb, &x[x_offset], ldx, &berr[1], &n_norms__, &
err_bnds_norm__[err_bnds_norm_offset], &err_bnds_comp__[
err_bnds_comp_offset], &work[1], &rwork[1], &work[*n + 1],
(doublecomplex *)(&rwork[1]), rcond, &ithresh, &rthresh, &unstable_thresh__, &
ignore_cwise__, info, (ftnlen)1);
}
/* Computing MAX */
d__1 = 10., d__2 = sqrt((doublereal) (*n));
err_lbnd__ = max(d__1,d__2) * dlamch_("Epsilon");
if (*n_err_bnds__ >= 1 && n_norms__ >= 1) {
/* Compute scaled normwise condition number cond(A*C). */
if (rcequ) {
rcond_tmp__ = zla_syrcond_c__(uplo, n, &a[a_offset], lda, &af[
af_offset], ldaf, &ipiv[1], &s[1], &c_true, info, &work[1]
, &rwork[1], (ftnlen)1);
} else {
rcond_tmp__ = zla_syrcond_c__(uplo, n, &a[a_offset], lda, &af[
af_offset], ldaf, &ipiv[1], &s[1], &c_false, info, &work[
1], &rwork[1], (ftnlen)1);
}
i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
/* Cap the error at 1.0. */
if (*n_err_bnds__ >= 2 && err_bnds_norm__[j + (err_bnds_norm_dim1
<< 1)] > 1.) {
err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.;
}
/* Threshold the error (see LAWN). */
if (rcond_tmp__ < illrcond_thresh__) {
err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.;
err_bnds_norm__[j + err_bnds_norm_dim1] = 0.;
if (*info <= *n) {
*info = *n + j;
}
} else if (err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] <
err_lbnd__) {
err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = err_lbnd__;
err_bnds_norm__[j + err_bnds_norm_dim1] = 1.;
}
/* Save the condition number. */
if (*n_err_bnds__ >= 3) {
err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = rcond_tmp__;
}
}
}
if (*n_err_bnds__ >= 1 && n_norms__ >= 2) {
/* Compute componentwise condition number cond(A*diag(Y(:,J))) for */
/* each right-hand side using the current solution as an estimate of */
/* the true solution. If the componentwise error estimate is too */
/* large, then the solution is a lousy estimate of truth and the */
/* estimated RCOND may be too optimistic. To avoid misleading users, */
/* the inverse condition number is set to 0.0 when the estimated */
/* cwise error is at least CWISE_WRONG. */
cwise_wrong__ = sqrt(dlamch_("Epsilon"));
i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
if (err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] <
cwise_wrong__) {
rcond_tmp__ = zla_syrcond_x__(uplo, n, &a[a_offset], lda, &af[
af_offset], ldaf, &ipiv[1], &x[j * x_dim1 + 1], info,
&work[1], &rwork[1], (ftnlen)1);
} else {
rcond_tmp__ = 0.;
}
/* Cap the error at 1.0. */
if (*n_err_bnds__ >= 2 && err_bnds_comp__[j + (err_bnds_comp_dim1
<< 1)] > 1.) {
err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.;
}
/* Threshold the error (see LAWN). */
if (rcond_tmp__ < illrcond_thresh__) {
err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.;
err_bnds_comp__[j + err_bnds_comp_dim1] = 0.;
if (params[3] == 1. && *info < *n + j) {
*info = *n + j;
}
} else if (err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] <
err_lbnd__) {
err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = err_lbnd__;
err_bnds_comp__[j + err_bnds_comp_dim1] = 1.;
}
/* Save the condition number. */
if (*n_err_bnds__ >= 3) {
err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = rcond_tmp__;
}
}
}
return 0;
/* End of ZSYRFSX */
} /* zsyrfsx_ */