/* zsptrf.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static doublecomplex c_b1 = {1.,0.};
static integer c__1 = 1;
/* Subroutine */ int zsptrf_(char *uplo, integer *n, doublecomplex *ap,
integer *ipiv, integer *info)
{
/* System generated locals */
integer i__1, i__2, i__3, i__4, i__5, i__6;
doublereal d__1, d__2, d__3, d__4;
doublecomplex z__1, z__2, z__3, z__4;
/* Builtin functions */
double sqrt(doublereal), d_imag(doublecomplex *);
void z_div(doublecomplex *, doublecomplex *, doublecomplex *);
/* Local variables */
integer i__, j, k;
doublecomplex t, r1, d11, d12, d21, d22;
integer kc, kk, kp;
doublecomplex wk;
integer kx, knc, kpc, npp;
doublecomplex wkm1, wkp1;
integer imax, jmax;
extern /* Subroutine */ int zspr_(char *, integer *, doublecomplex *,
doublecomplex *, integer *, doublecomplex *);
doublereal alpha;
extern logical lsame_(char *, char *);
extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
doublecomplex *, integer *);
integer kstep;
logical upper;
extern /* Subroutine */ int zswap_(integer *, doublecomplex *, integer *,
doublecomplex *, integer *);
doublereal absakk;
extern /* Subroutine */ int xerbla_(char *, integer *);
doublereal colmax;
extern integer izamax_(integer *, doublecomplex *, integer *);
doublereal rowmax;
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZSPTRF computes the factorization of a complex symmetric matrix A */
/* stored in packed format using the Bunch-Kaufman diagonal pivoting */
/* method: */
/* A = U*D*U**T or A = L*D*L**T */
/* where U (or L) is a product of permutation and unit upper (lower) */
/* triangular matrices, and D is symmetric and block diagonal with */
/* 1-by-1 and 2-by-2 diagonal blocks. */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* = 'U': Upper triangle of A is stored; */
/* = 'L': Lower triangle of A is stored. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) */
/* On entry, the upper or lower triangle of the symmetric matrix */
/* A, packed columnwise in a linear array. The j-th column of A */
/* is stored in the array AP as follows: */
/* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
/* On exit, the block diagonal matrix D and the multipliers used */
/* to obtain the factor U or L, stored as a packed triangular */
/* matrix overwriting A (see below for further details). */
/* IPIV (output) INTEGER array, dimension (N) */
/* Details of the interchanges and the block structure of D. */
/* If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
/* interchanged and D(k,k) is a 1-by-1 diagonal block. */
/* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
/* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
/* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */
/* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
/* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: if INFO = i, D(i,i) is exactly zero. The factorization */
/* has been completed, but the block diagonal matrix D is */
/* exactly singular, and division by zero will occur if it */
/* is used to solve a system of equations. */
/* Further Details */
/* =============== */
/* 5-96 - Based on modifications by J. Lewis, Boeing Computer Services */
/* Company */
/* If UPLO = 'U', then A = U*D*U', where */
/* U = P(n)*U(n)* ... *P(k)U(k)* ..., */
/* i.e., U is a product of terms P(k)*U(k), where k decreases from n to */
/* 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
/* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
/* defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */
/* that if the diagonal block D(k) is of order s (s = 1 or 2), then */
/* ( I v 0 ) k-s */
/* U(k) = ( 0 I 0 ) s */
/* ( 0 0 I ) n-k */
/* k-s s n-k */
/* If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */
/* If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */
/* and A(k,k), and v overwrites A(1:k-2,k-1:k). */
/* If UPLO = 'L', then A = L*D*L', where */
/* L = P(1)*L(1)* ... *P(k)*L(k)* ..., */
/* i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */
/* n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
/* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
/* defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */
/* that if the diagonal block D(k) is of order s (s = 1 or 2), then */
/* ( I 0 0 ) k-1 */
/* L(k) = ( 0 I 0 ) s */
/* ( 0 v I ) n-k-s+1 */
/* k-1 s n-k-s+1 */
/* If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */
/* If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */
/* and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Statement Functions .. */
/* .. */
/* .. Statement Function definitions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--ipiv;
--ap;
/* Function Body */
*info = 0;
upper = lsame_(uplo, "U");
if (! upper && ! lsame_(uplo, "L")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZSPTRF", &i__1);
return 0;
}
/* Initialize ALPHA for use in choosing pivot block size. */
alpha = (sqrt(17.) + 1.) / 8.;
if (upper) {
/* Factorize A as U*D*U' using the upper triangle of A */
/* K is the main loop index, decreasing from N to 1 in steps of */
/* 1 or 2 */
k = *n;
kc = (*n - 1) * *n / 2 + 1;
L10:
knc = kc;
/* If K < 1, exit from loop */
if (k < 1) {
goto L110;
}
kstep = 1;
/* Determine rows and columns to be interchanged and whether */
/* a 1-by-1 or 2-by-2 pivot block will be used */
i__1 = kc + k - 1;
absakk = (d__1 = ap[i__1].r, abs(d__1)) + (d__2 = d_imag(&ap[kc + k -
1]), abs(d__2));
/* IMAX is the row-index of the largest off-diagonal element in */
/* column K, and COLMAX is its absolute value */
if (k > 1) {
i__1 = k - 1;
imax = izamax_(&i__1, &ap[kc], &c__1);
i__1 = kc + imax - 1;
colmax = (d__1 = ap[i__1].r, abs(d__1)) + (d__2 = d_imag(&ap[kc +
imax - 1]), abs(d__2));
} else {
colmax = 0.;
}
if (max(absakk,colmax) == 0.) {
/* Column K is zero: set INFO and continue */
if (*info == 0) {
*info = k;
}
kp = k;
} else {
if (absakk >= alpha * colmax) {
/* no interchange, use 1-by-1 pivot block */
kp = k;
} else {
/* JMAX is the column-index of the largest off-diagonal */
/* element in row IMAX, and ROWMAX is its absolute value */
rowmax = 0.;
jmax = imax;
kx = imax * (imax + 1) / 2 + imax;
i__1 = k;
for (j = imax + 1; j <= i__1; ++j) {
i__2 = kx;
if ((d__1 = ap[i__2].r, abs(d__1)) + (d__2 = d_imag(&ap[
kx]), abs(d__2)) > rowmax) {
i__2 = kx;
rowmax = (d__1 = ap[i__2].r, abs(d__1)) + (d__2 =
d_imag(&ap[kx]), abs(d__2));
jmax = j;
}
kx += j;
/* L20: */
}
kpc = (imax - 1) * imax / 2 + 1;
if (imax > 1) {
i__1 = imax - 1;
jmax = izamax_(&i__1, &ap[kpc], &c__1);
/* Computing MAX */
i__1 = kpc + jmax - 1;
d__3 = rowmax, d__4 = (d__1 = ap[i__1].r, abs(d__1)) + (
d__2 = d_imag(&ap[kpc + jmax - 1]), abs(d__2));
rowmax = max(d__3,d__4);
}
if (absakk >= alpha * colmax * (colmax / rowmax)) {
/* no interchange, use 1-by-1 pivot block */
kp = k;
} else /* if(complicated condition) */ {
i__1 = kpc + imax - 1;
if ((d__1 = ap[i__1].r, abs(d__1)) + (d__2 = d_imag(&ap[
kpc + imax - 1]), abs(d__2)) >= alpha * rowmax) {
/* interchange rows and columns K and IMAX, use 1-by-1 */
/* pivot block */
kp = imax;
} else {
/* interchange rows and columns K-1 and IMAX, use 2-by-2 */
/* pivot block */
kp = imax;
kstep = 2;
}
}
}
kk = k - kstep + 1;
if (kstep == 2) {
knc = knc - k + 1;
}
if (kp != kk) {
/* Interchange rows and columns KK and KP in the leading */
/* submatrix A(1:k,1:k) */
i__1 = kp - 1;
zswap_(&i__1, &ap[knc], &c__1, &ap[kpc], &c__1);
kx = kpc + kp - 1;
i__1 = kk - 1;
for (j = kp + 1; j <= i__1; ++j) {
kx = kx + j - 1;
i__2 = knc + j - 1;
t.r = ap[i__2].r, t.i = ap[i__2].i;
i__2 = knc + j - 1;
i__3 = kx;
ap[i__2].r = ap[i__3].r, ap[i__2].i = ap[i__3].i;
i__2 = kx;
ap[i__2].r = t.r, ap[i__2].i = t.i;
/* L30: */
}
i__1 = knc + kk - 1;
t.r = ap[i__1].r, t.i = ap[i__1].i;
i__1 = knc + kk - 1;
i__2 = kpc + kp - 1;
ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
i__1 = kpc + kp - 1;
ap[i__1].r = t.r, ap[i__1].i = t.i;
if (kstep == 2) {
i__1 = kc + k - 2;
t.r = ap[i__1].r, t.i = ap[i__1].i;
i__1 = kc + k - 2;
i__2 = kc + kp - 1;
ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
i__1 = kc + kp - 1;
ap[i__1].r = t.r, ap[i__1].i = t.i;
}
}
/* Update the leading submatrix */
if (kstep == 1) {
/* 1-by-1 pivot block D(k): column k now holds */
/* W(k) = U(k)*D(k) */
/* where U(k) is the k-th column of U */
/* Perform a rank-1 update of A(1:k-1,1:k-1) as */
/* A := A - U(k)*D(k)*U(k)' = A - W(k)*1/D(k)*W(k)' */
z_div(&z__1, &c_b1, &ap[kc + k - 1]);
r1.r = z__1.r, r1.i = z__1.i;
i__1 = k - 1;
z__1.r = -r1.r, z__1.i = -r1.i;
zspr_(uplo, &i__1, &z__1, &ap[kc], &c__1, &ap[1]);
/* Store U(k) in column k */
i__1 = k - 1;
zscal_(&i__1, &r1, &ap[kc], &c__1);
} else {
/* 2-by-2 pivot block D(k): columns k and k-1 now hold */
/* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
/* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
/* of U */
/* Perform a rank-2 update of A(1:k-2,1:k-2) as */
/* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )' */
/* = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )' */
if (k > 2) {
i__1 = k - 1 + (k - 1) * k / 2;
d12.r = ap[i__1].r, d12.i = ap[i__1].i;
z_div(&z__1, &ap[k - 1 + (k - 2) * (k - 1) / 2], &d12);
d22.r = z__1.r, d22.i = z__1.i;
z_div(&z__1, &ap[k + (k - 1) * k / 2], &d12);
d11.r = z__1.r, d11.i = z__1.i;
z__3.r = d11.r * d22.r - d11.i * d22.i, z__3.i = d11.r *
d22.i + d11.i * d22.r;
z__2.r = z__3.r - 1., z__2.i = z__3.i - 0.;
z_div(&z__1, &c_b1, &z__2);
t.r = z__1.r, t.i = z__1.i;
z_div(&z__1, &t, &d12);
d12.r = z__1.r, d12.i = z__1.i;
for (j = k - 2; j >= 1; --j) {
i__1 = j + (k - 2) * (k - 1) / 2;
z__3.r = d11.r * ap[i__1].r - d11.i * ap[i__1].i,
z__3.i = d11.r * ap[i__1].i + d11.i * ap[i__1]
.r;
i__2 = j + (k - 1) * k / 2;
z__2.r = z__3.r - ap[i__2].r, z__2.i = z__3.i - ap[
i__2].i;
z__1.r = d12.r * z__2.r - d12.i * z__2.i, z__1.i =
d12.r * z__2.i + d12.i * z__2.r;
wkm1.r = z__1.r, wkm1.i = z__1.i;
i__1 = j + (k - 1) * k / 2;
z__3.r = d22.r * ap[i__1].r - d22.i * ap[i__1].i,
z__3.i = d22.r * ap[i__1].i + d22.i * ap[i__1]
.r;
i__2 = j + (k - 2) * (k - 1) / 2;
z__2.r = z__3.r - ap[i__2].r, z__2.i = z__3.i - ap[
i__2].i;
z__1.r = d12.r * z__2.r - d12.i * z__2.i, z__1.i =
d12.r * z__2.i + d12.i * z__2.r;
wk.r = z__1.r, wk.i = z__1.i;
for (i__ = j; i__ >= 1; --i__) {
i__1 = i__ + (j - 1) * j / 2;
i__2 = i__ + (j - 1) * j / 2;
i__3 = i__ + (k - 1) * k / 2;
z__3.r = ap[i__3].r * wk.r - ap[i__3].i * wk.i,
z__3.i = ap[i__3].r * wk.i + ap[i__3].i *
wk.r;
z__2.r = ap[i__2].r - z__3.r, z__2.i = ap[i__2].i
- z__3.i;
i__4 = i__ + (k - 2) * (k - 1) / 2;
z__4.r = ap[i__4].r * wkm1.r - ap[i__4].i *
wkm1.i, z__4.i = ap[i__4].r * wkm1.i + ap[
i__4].i * wkm1.r;
z__1.r = z__2.r - z__4.r, z__1.i = z__2.i -
z__4.i;
ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
/* L40: */
}
i__1 = j + (k - 1) * k / 2;
ap[i__1].r = wk.r, ap[i__1].i = wk.i;
i__1 = j + (k - 2) * (k - 1) / 2;
ap[i__1].r = wkm1.r, ap[i__1].i = wkm1.i;
/* L50: */
}
}
}
}
/* Store details of the interchanges in IPIV */
if (kstep == 1) {
ipiv[k] = kp;
} else {
ipiv[k] = -kp;
ipiv[k - 1] = -kp;
}
/* Decrease K and return to the start of the main loop */
k -= kstep;
kc = knc - k;
goto L10;
} else {
/* Factorize A as L*D*L' using the lower triangle of A */
/* K is the main loop index, increasing from 1 to N in steps of */
/* 1 or 2 */
k = 1;
kc = 1;
npp = *n * (*n + 1) / 2;
L60:
knc = kc;
/* If K > N, exit from loop */
if (k > *n) {
goto L110;
}
kstep = 1;
/* Determine rows and columns to be interchanged and whether */
/* a 1-by-1 or 2-by-2 pivot block will be used */
i__1 = kc;
absakk = (d__1 = ap[i__1].r, abs(d__1)) + (d__2 = d_imag(&ap[kc]),
abs(d__2));
/* IMAX is the row-index of the largest off-diagonal element in */
/* column K, and COLMAX is its absolute value */
if (k < *n) {
i__1 = *n - k;
imax = k + izamax_(&i__1, &ap[kc + 1], &c__1);
i__1 = kc + imax - k;
colmax = (d__1 = ap[i__1].r, abs(d__1)) + (d__2 = d_imag(&ap[kc +
imax - k]), abs(d__2));
} else {
colmax = 0.;
}
if (max(absakk,colmax) == 0.) {
/* Column K is zero: set INFO and continue */
if (*info == 0) {
*info = k;
}
kp = k;
} else {
if (absakk >= alpha * colmax) {
/* no interchange, use 1-by-1 pivot block */
kp = k;
} else {
/* JMAX is the column-index of the largest off-diagonal */
/* element in row IMAX, and ROWMAX is its absolute value */
rowmax = 0.;
kx = kc + imax - k;
i__1 = imax - 1;
for (j = k; j <= i__1; ++j) {
i__2 = kx;
if ((d__1 = ap[i__2].r, abs(d__1)) + (d__2 = d_imag(&ap[
kx]), abs(d__2)) > rowmax) {
i__2 = kx;
rowmax = (d__1 = ap[i__2].r, abs(d__1)) + (d__2 =
d_imag(&ap[kx]), abs(d__2));
jmax = j;
}
kx = kx + *n - j;
/* L70: */
}
kpc = npp - (*n - imax + 1) * (*n - imax + 2) / 2 + 1;
if (imax < *n) {
i__1 = *n - imax;
jmax = imax + izamax_(&i__1, &ap[kpc + 1], &c__1);
/* Computing MAX */
i__1 = kpc + jmax - imax;
d__3 = rowmax, d__4 = (d__1 = ap[i__1].r, abs(d__1)) + (
d__2 = d_imag(&ap[kpc + jmax - imax]), abs(d__2));
rowmax = max(d__3,d__4);
}
if (absakk >= alpha * colmax * (colmax / rowmax)) {
/* no interchange, use 1-by-1 pivot block */
kp = k;
} else /* if(complicated condition) */ {
i__1 = kpc;
if ((d__1 = ap[i__1].r, abs(d__1)) + (d__2 = d_imag(&ap[
kpc]), abs(d__2)) >= alpha * rowmax) {
/* interchange rows and columns K and IMAX, use 1-by-1 */
/* pivot block */
kp = imax;
} else {
/* interchange rows and columns K+1 and IMAX, use 2-by-2 */
/* pivot block */
kp = imax;
kstep = 2;
}
}
}
kk = k + kstep - 1;
if (kstep == 2) {
knc = knc + *n - k + 1;
}
if (kp != kk) {
/* Interchange rows and columns KK and KP in the trailing */
/* submatrix A(k:n,k:n) */
if (kp < *n) {
i__1 = *n - kp;
zswap_(&i__1, &ap[knc + kp - kk + 1], &c__1, &ap[kpc + 1],
&c__1);
}
kx = knc + kp - kk;
i__1 = kp - 1;
for (j = kk + 1; j <= i__1; ++j) {
kx = kx + *n - j + 1;
i__2 = knc + j - kk;
t.r = ap[i__2].r, t.i = ap[i__2].i;
i__2 = knc + j - kk;
i__3 = kx;
ap[i__2].r = ap[i__3].r, ap[i__2].i = ap[i__3].i;
i__2 = kx;
ap[i__2].r = t.r, ap[i__2].i = t.i;
/* L80: */
}
i__1 = knc;
t.r = ap[i__1].r, t.i = ap[i__1].i;
i__1 = knc;
i__2 = kpc;
ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
i__1 = kpc;
ap[i__1].r = t.r, ap[i__1].i = t.i;
if (kstep == 2) {
i__1 = kc + 1;
t.r = ap[i__1].r, t.i = ap[i__1].i;
i__1 = kc + 1;
i__2 = kc + kp - k;
ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
i__1 = kc + kp - k;
ap[i__1].r = t.r, ap[i__1].i = t.i;
}
}
/* Update the trailing submatrix */
if (kstep == 1) {
/* 1-by-1 pivot block D(k): column k now holds */
/* W(k) = L(k)*D(k) */
/* where L(k) is the k-th column of L */
if (k < *n) {
/* Perform a rank-1 update of A(k+1:n,k+1:n) as */
/* A := A - L(k)*D(k)*L(k)' = A - W(k)*(1/D(k))*W(k)' */
z_div(&z__1, &c_b1, &ap[kc]);
r1.r = z__1.r, r1.i = z__1.i;
i__1 = *n - k;
z__1.r = -r1.r, z__1.i = -r1.i;
zspr_(uplo, &i__1, &z__1, &ap[kc + 1], &c__1, &ap[kc + *n
- k + 1]);
/* Store L(k) in column K */
i__1 = *n - k;
zscal_(&i__1, &r1, &ap[kc + 1], &c__1);
}
} else {
/* 2-by-2 pivot block D(k): columns K and K+1 now hold */
/* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
/* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
/* of L */
if (k < *n - 1) {
/* Perform a rank-2 update of A(k+2:n,k+2:n) as */
/* A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )' */
/* = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )' */
/* where L(k) and L(k+1) are the k-th and (k+1)-th */
/* columns of L */
i__1 = k + 1 + (k - 1) * ((*n << 1) - k) / 2;
d21.r = ap[i__1].r, d21.i = ap[i__1].i;
z_div(&z__1, &ap[k + 1 + k * ((*n << 1) - k - 1) / 2], &
d21);
d11.r = z__1.r, d11.i = z__1.i;
z_div(&z__1, &ap[k + (k - 1) * ((*n << 1) - k) / 2], &d21)
;
d22.r = z__1.r, d22.i = z__1.i;
z__3.r = d11.r * d22.r - d11.i * d22.i, z__3.i = d11.r *
d22.i + d11.i * d22.r;
z__2.r = z__3.r - 1., z__2.i = z__3.i - 0.;
z_div(&z__1, &c_b1, &z__2);
t.r = z__1.r, t.i = z__1.i;
z_div(&z__1, &t, &d21);
d21.r = z__1.r, d21.i = z__1.i;
i__1 = *n;
for (j = k + 2; j <= i__1; ++j) {
i__2 = j + (k - 1) * ((*n << 1) - k) / 2;
z__3.r = d11.r * ap[i__2].r - d11.i * ap[i__2].i,
z__3.i = d11.r * ap[i__2].i + d11.i * ap[i__2]
.r;
i__3 = j + k * ((*n << 1) - k - 1) / 2;
z__2.r = z__3.r - ap[i__3].r, z__2.i = z__3.i - ap[
i__3].i;
z__1.r = d21.r * z__2.r - d21.i * z__2.i, z__1.i =
d21.r * z__2.i + d21.i * z__2.r;
wk.r = z__1.r, wk.i = z__1.i;
i__2 = j + k * ((*n << 1) - k - 1) / 2;
z__3.r = d22.r * ap[i__2].r - d22.i * ap[i__2].i,
z__3.i = d22.r * ap[i__2].i + d22.i * ap[i__2]
.r;
i__3 = j + (k - 1) * ((*n << 1) - k) / 2;
z__2.r = z__3.r - ap[i__3].r, z__2.i = z__3.i - ap[
i__3].i;
z__1.r = d21.r * z__2.r - d21.i * z__2.i, z__1.i =
d21.r * z__2.i + d21.i * z__2.r;
wkp1.r = z__1.r, wkp1.i = z__1.i;
i__2 = *n;
for (i__ = j; i__ <= i__2; ++i__) {
i__3 = i__ + (j - 1) * ((*n << 1) - j) / 2;
i__4 = i__ + (j - 1) * ((*n << 1) - j) / 2;
i__5 = i__ + (k - 1) * ((*n << 1) - k) / 2;
z__3.r = ap[i__5].r * wk.r - ap[i__5].i * wk.i,
z__3.i = ap[i__5].r * wk.i + ap[i__5].i *
wk.r;
z__2.r = ap[i__4].r - z__3.r, z__2.i = ap[i__4].i
- z__3.i;
i__6 = i__ + k * ((*n << 1) - k - 1) / 2;
z__4.r = ap[i__6].r * wkp1.r - ap[i__6].i *
wkp1.i, z__4.i = ap[i__6].r * wkp1.i + ap[
i__6].i * wkp1.r;
z__1.r = z__2.r - z__4.r, z__1.i = z__2.i -
z__4.i;
ap[i__3].r = z__1.r, ap[i__3].i = z__1.i;
/* L90: */
}
i__2 = j + (k - 1) * ((*n << 1) - k) / 2;
ap[i__2].r = wk.r, ap[i__2].i = wk.i;
i__2 = j + k * ((*n << 1) - k - 1) / 2;
ap[i__2].r = wkp1.r, ap[i__2].i = wkp1.i;
/* L100: */
}
}
}
}
/* Store details of the interchanges in IPIV */
if (kstep == 1) {
ipiv[k] = kp;
} else {
ipiv[k] = -kp;
ipiv[k + 1] = -kp;
}
/* Increase K and return to the start of the main loop */
k += kstep;
kc = knc + *n - k + 2;
goto L60;
}
L110:
return 0;
/* End of ZSPTRF */
} /* zsptrf_ */