/* zrot.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int zrot_(integer *n, doublecomplex *cx, integer *incx,
doublecomplex *cy, integer *incy, doublereal *c__, doublecomplex *s)
{
/* System generated locals */
integer i__1, i__2, i__3, i__4;
doublecomplex z__1, z__2, z__3, z__4;
/* Builtin functions */
void d_cnjg(doublecomplex *, doublecomplex *);
/* Local variables */
integer i__, ix, iy;
doublecomplex stemp;
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZROT applies a plane rotation, where the cos (C) is real and the */
/* sin (S) is complex, and the vectors CX and CY are complex. */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The number of elements in the vectors CX and CY. */
/* CX (input/output) COMPLEX*16 array, dimension (N) */
/* On input, the vector X. */
/* On output, CX is overwritten with C*X + S*Y. */
/* INCX (input) INTEGER */
/* The increment between successive values of CY. INCX <> 0. */
/* CY (input/output) COMPLEX*16 array, dimension (N) */
/* On input, the vector Y. */
/* On output, CY is overwritten with -CONJG(S)*X + C*Y. */
/* INCY (input) INTEGER */
/* The increment between successive values of CY. INCX <> 0. */
/* C (input) DOUBLE PRECISION */
/* S (input) COMPLEX*16 */
/* C and S define a rotation */
/* [ C S ] */
/* [ -conjg(S) C ] */
/* where C*C + S*CONJG(S) = 1.0. */
/* ===================================================================== */
/* .. Local Scalars .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
--cy;
--cx;
/* Function Body */
if (*n <= 0) {
return 0;
}
if (*incx == 1 && *incy == 1) {
goto L20;
}
/* Code for unequal increments or equal increments not equal to 1 */
ix = 1;
iy = 1;
if (*incx < 0) {
ix = (-(*n) + 1) * *incx + 1;
}
if (*incy < 0) {
iy = (-(*n) + 1) * *incy + 1;
}
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = ix;
z__2.r = *c__ * cx[i__2].r, z__2.i = *c__ * cx[i__2].i;
i__3 = iy;
z__3.r = s->r * cy[i__3].r - s->i * cy[i__3].i, z__3.i = s->r * cy[
i__3].i + s->i * cy[i__3].r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
stemp.r = z__1.r, stemp.i = z__1.i;
i__2 = iy;
i__3 = iy;
z__2.r = *c__ * cy[i__3].r, z__2.i = *c__ * cy[i__3].i;
d_cnjg(&z__4, s);
i__4 = ix;
z__3.r = z__4.r * cx[i__4].r - z__4.i * cx[i__4].i, z__3.i = z__4.r *
cx[i__4].i + z__4.i * cx[i__4].r;
z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
cy[i__2].r = z__1.r, cy[i__2].i = z__1.i;
i__2 = ix;
cx[i__2].r = stemp.r, cx[i__2].i = stemp.i;
ix += *incx;
iy += *incy;
/* L10: */
}
return 0;
/* Code for both increments equal to 1 */
L20:
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = i__;
z__2.r = *c__ * cx[i__2].r, z__2.i = *c__ * cx[i__2].i;
i__3 = i__;
z__3.r = s->r * cy[i__3].r - s->i * cy[i__3].i, z__3.i = s->r * cy[
i__3].i + s->i * cy[i__3].r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
stemp.r = z__1.r, stemp.i = z__1.i;
i__2 = i__;
i__3 = i__;
z__2.r = *c__ * cy[i__3].r, z__2.i = *c__ * cy[i__3].i;
d_cnjg(&z__4, s);
i__4 = i__;
z__3.r = z__4.r * cx[i__4].r - z__4.i * cx[i__4].i, z__3.i = z__4.r *
cx[i__4].i + z__4.i * cx[i__4].r;
z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
cy[i__2].r = z__1.r, cy[i__2].i = z__1.i;
i__2 = i__;
cx[i__2].r = stemp.r, cx[i__2].i = stemp.i;
/* L30: */
}
return 0;
} /* zrot_ */