/* zpptrf.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
static doublereal c_b16 = -1.;
/* Subroutine */ int zpptrf_(char *uplo, integer *n, doublecomplex *ap,
integer *info)
{
/* System generated locals */
integer i__1, i__2, i__3;
doublereal d__1;
doublecomplex z__1, z__2;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer j, jc, jj;
doublereal ajj;
extern /* Subroutine */ int zhpr_(char *, integer *, doublereal *,
doublecomplex *, integer *, doublecomplex *);
extern logical lsame_(char *, char *);
extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *,
doublecomplex *, integer *, doublecomplex *, integer *);
logical upper;
extern /* Subroutine */ int ztpsv_(char *, char *, char *, integer *,
doublecomplex *, doublecomplex *, integer *), xerbla_(char *, integer *), zdscal_(integer *,
doublereal *, doublecomplex *, integer *);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZPPTRF computes the Cholesky factorization of a complex Hermitian */
/* positive definite matrix A stored in packed format. */
/* The factorization has the form */
/* A = U**H * U, if UPLO = 'U', or */
/* A = L * L**H, if UPLO = 'L', */
/* where U is an upper triangular matrix and L is lower triangular. */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* = 'U': Upper triangle of A is stored; */
/* = 'L': Lower triangle of A is stored. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) */
/* On entry, the upper or lower triangle of the Hermitian matrix */
/* A, packed columnwise in a linear array. The j-th column of A */
/* is stored in the array AP as follows: */
/* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
/* See below for further details. */
/* On exit, if INFO = 0, the triangular factor U or L from the */
/* Cholesky factorization A = U**H*U or A = L*L**H, in the same */
/* storage format as A. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: if INFO = i, the leading minor of order i is not */
/* positive definite, and the factorization could not be */
/* completed. */
/* Further Details */
/* =============== */
/* The packed storage scheme is illustrated by the following example */
/* when N = 4, UPLO = 'U': */
/* Two-dimensional storage of the Hermitian matrix A: */
/* a11 a12 a13 a14 */
/* a22 a23 a24 */
/* a33 a34 (aij = conjg(aji)) */
/* a44 */
/* Packed storage of the upper triangle of A: */
/* AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--ap;
/* Function Body */
*info = 0;
upper = lsame_(uplo, "U");
if (! upper && ! lsame_(uplo, "L")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZPPTRF", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
if (upper) {
/* Compute the Cholesky factorization A = U'*U. */
jj = 0;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
jc = jj + 1;
jj += j;
/* Compute elements 1:J-1 of column J. */
if (j > 1) {
i__2 = j - 1;
ztpsv_("Upper", "Conjugate transpose", "Non-unit", &i__2, &ap[
1], &ap[jc], &c__1);
}
/* Compute U(J,J) and test for non-positive-definiteness. */
i__2 = jj;
d__1 = ap[i__2].r;
i__3 = j - 1;
zdotc_(&z__2, &i__3, &ap[jc], &c__1, &ap[jc], &c__1);
z__1.r = d__1 - z__2.r, z__1.i = -z__2.i;
ajj = z__1.r;
if (ajj <= 0.) {
i__2 = jj;
ap[i__2].r = ajj, ap[i__2].i = 0.;
goto L30;
}
i__2 = jj;
d__1 = sqrt(ajj);
ap[i__2].r = d__1, ap[i__2].i = 0.;
/* L10: */
}
} else {
/* Compute the Cholesky factorization A = L*L'. */
jj = 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Compute L(J,J) and test for non-positive-definiteness. */
i__2 = jj;
ajj = ap[i__2].r;
if (ajj <= 0.) {
i__2 = jj;
ap[i__2].r = ajj, ap[i__2].i = 0.;
goto L30;
}
ajj = sqrt(ajj);
i__2 = jj;
ap[i__2].r = ajj, ap[i__2].i = 0.;
/* Compute elements J+1:N of column J and update the trailing */
/* submatrix. */
if (j < *n) {
i__2 = *n - j;
d__1 = 1. / ajj;
zdscal_(&i__2, &d__1, &ap[jj + 1], &c__1);
i__2 = *n - j;
zhpr_("Lower", &i__2, &c_b16, &ap[jj + 1], &c__1, &ap[jj + *n
- j + 1]);
jj = jj + *n - j + 1;
}
/* L20: */
}
}
goto L40;
L30:
*info = j;
L40:
return 0;
/* End of ZPPTRF */
} /* zpptrf_ */