/* zpotrs.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static doublecomplex c_b1 = {1.,0.};
/* Subroutine */ int zpotrs_(char *uplo, integer *n, integer *nrhs,
doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb,
integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, i__1;
/* Local variables */
extern logical lsame_(char *, char *);
logical upper;
extern /* Subroutine */ int ztrsm_(char *, char *, char *, char *,
integer *, integer *, doublecomplex *, doublecomplex *, integer *,
doublecomplex *, integer *),
xerbla_(char *, integer *);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZPOTRS solves a system of linear equations A*X = B with a Hermitian */
/* positive definite matrix A using the Cholesky factorization */
/* A = U**H*U or A = L*L**H computed by ZPOTRF. */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* = 'U': Upper triangle of A is stored; */
/* = 'L': Lower triangle of A is stored. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* NRHS (input) INTEGER */
/* The number of right hand sides, i.e., the number of columns */
/* of the matrix B. NRHS >= 0. */
/* A (input) COMPLEX*16 array, dimension (LDA,N) */
/* The triangular factor U or L from the Cholesky factorization */
/* A = U**H*U or A = L*L**H, as computed by ZPOTRF. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */
/* On entry, the right hand side matrix B. */
/* On exit, the solution matrix X. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,N). */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
/* Function Body */
*info = 0;
upper = lsame_(uplo, "U");
if (! upper && ! lsame_(uplo, "L")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*nrhs < 0) {
*info = -3;
} else if (*lda < max(1,*n)) {
*info = -5;
} else if (*ldb < max(1,*n)) {
*info = -7;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZPOTRS", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0 || *nrhs == 0) {
return 0;
}
if (upper) {
/* Solve A*X = B where A = U'*U. */
/* Solve U'*X = B, overwriting B with X. */
ztrsm_("Left", "Upper", "Conjugate transpose", "Non-unit", n, nrhs, &
c_b1, &a[a_offset], lda, &b[b_offset], ldb);
/* Solve U*X = B, overwriting B with X. */
ztrsm_("Left", "Upper", "No transpose", "Non-unit", n, nrhs, &c_b1, &
a[a_offset], lda, &b[b_offset], ldb);
} else {
/* Solve A*X = B where A = L*L'. */
/* Solve L*X = B, overwriting B with X. */
ztrsm_("Left", "Lower", "No transpose", "Non-unit", n, nrhs, &c_b1, &
a[a_offset], lda, &b[b_offset], ldb);
/* Solve L'*X = B, overwriting B with X. */
ztrsm_("Left", "Lower", "Conjugate transpose", "Non-unit", n, nrhs, &
c_b1, &a[a_offset], lda, &b[b_offset], ldb);
}
return 0;
/* End of ZPOTRS */
} /* zpotrs_ */