aboutsummaryrefslogblamecommitdiffstats
path: root/contrib/libs/clapack/zpotrs.c
blob: 908e25f1246967b68725b5c4bc34a98b22a98914 (plain) (tree)




































































































































































                                                                               
/* zpotrs.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static doublecomplex c_b1 = {1.,0.};

/* Subroutine */ int zpotrs_(char *uplo, integer *n, integer *nrhs, 
	doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb, 
	integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1;

    /* Local variables */
    extern logical lsame_(char *, char *);
    logical upper;
    extern /* Subroutine */ int ztrsm_(char *, char *, char *, char *, 
	    integer *, integer *, doublecomplex *, doublecomplex *, integer *, 
	     doublecomplex *, integer *), 
	    xerbla_(char *, integer *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZPOTRS solves a system of linear equations A*X = B with a Hermitian */
/*  positive definite matrix A using the Cholesky factorization */
/*  A = U**H*U or A = L*L**H computed by ZPOTRF. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrix B.  NRHS >= 0. */

/*  A       (input) COMPLEX*16 array, dimension (LDA,N) */
/*          The triangular factor U or L from the Cholesky factorization */
/*          A = U**H*U or A = L*L**H, as computed by ZPOTRF. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A.  LDA >= max(1,N). */

/*  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */
/*          On entry, the right hand side matrix B. */
/*          On exit, the solution matrix X. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*lda < max(1,*n)) {
	*info = -5;
    } else if (*ldb < max(1,*n)) {
	*info = -7;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZPOTRS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *nrhs == 0) {
	return 0;
    }

    if (upper) {

/*        Solve A*X = B where A = U'*U. */

/*        Solve U'*X = B, overwriting B with X. */

	ztrsm_("Left", "Upper", "Conjugate transpose", "Non-unit", n, nrhs, &
		c_b1, &a[a_offset], lda, &b[b_offset], ldb);

/*        Solve U*X = B, overwriting B with X. */

	ztrsm_("Left", "Upper", "No transpose", "Non-unit", n, nrhs, &c_b1, &
		a[a_offset], lda, &b[b_offset], ldb);
    } else {

/*        Solve A*X = B where A = L*L'. */

/*        Solve L*X = B, overwriting B with X. */

	ztrsm_("Left", "Lower", "No transpose", "Non-unit", n, nrhs, &c_b1, &
		a[a_offset], lda, &b[b_offset], ldb);

/*        Solve L'*X = B, overwriting B with X. */

	ztrsm_("Left", "Lower", "Conjugate transpose", "Non-unit", n, nrhs, &
		c_b1, &a[a_offset], lda, &b[b_offset], ldb);
    }

    return 0;

/*     End of ZPOTRS */

} /* zpotrs_ */