/* zposv.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int zposv_(char *uplo, integer *n, integer *nrhs,
doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb,
integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, i__1;
/* Local variables */
extern logical lsame_(char *, char *);
extern /* Subroutine */ int xerbla_(char *, integer *), zpotrf_(
char *, integer *, doublecomplex *, integer *, integer *),
zpotrs_(char *, integer *, integer *, doublecomplex *, integer *,
doublecomplex *, integer *, integer *);
/* -- LAPACK driver routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZPOSV computes the solution to a complex system of linear equations */
/* A * X = B, */
/* where A is an N-by-N Hermitian positive definite matrix and X and B */
/* are N-by-NRHS matrices. */
/* The Cholesky decomposition is used to factor A as */
/* A = U**H* U, if UPLO = 'U', or */
/* A = L * L**H, if UPLO = 'L', */
/* where U is an upper triangular matrix and L is a lower triangular */
/* matrix. The factored form of A is then used to solve the system of */
/* equations A * X = B. */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* = 'U': Upper triangle of A is stored; */
/* = 'L': Lower triangle of A is stored. */
/* N (input) INTEGER */
/* The number of linear equations, i.e., the order of the */
/* matrix A. N >= 0. */
/* NRHS (input) INTEGER */
/* The number of right hand sides, i.e., the number of columns */
/* of the matrix B. NRHS >= 0. */
/* A (input/output) COMPLEX*16 array, dimension (LDA,N) */
/* On entry, the Hermitian matrix A. If UPLO = 'U', the leading */
/* N-by-N upper triangular part of A contains the upper */
/* triangular part of the matrix A, and the strictly lower */
/* triangular part of A is not referenced. If UPLO = 'L', the */
/* leading N-by-N lower triangular part of A contains the lower */
/* triangular part of the matrix A, and the strictly upper */
/* triangular part of A is not referenced. */
/* On exit, if INFO = 0, the factor U or L from the Cholesky */
/* factorization A = U**H*U or A = L*L**H. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */
/* On entry, the N-by-NRHS right hand side matrix B. */
/* On exit, if INFO = 0, the N-by-NRHS solution matrix X. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,N). */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: if INFO = i, the leading minor of order i of A is not */
/* positive definite, so the factorization could not be */
/* completed, and the solution has not been computed. */
/* ===================================================================== */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
/* Function Body */
*info = 0;
if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*nrhs < 0) {
*info = -3;
} else if (*lda < max(1,*n)) {
*info = -5;
} else if (*ldb < max(1,*n)) {
*info = -7;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZPOSV ", &i__1);
return 0;
}
/* Compute the Cholesky factorization A = U'*U or A = L*L'. */
zpotrf_(uplo, n, &a[a_offset], lda, info);
if (*info == 0) {
/* Solve the system A*X = B, overwriting B with X. */
zpotrs_(uplo, n, nrhs, &a[a_offset], lda, &b[b_offset], ldb, info);
}
return 0;
/* End of ZPOSV */
} /* zposv_ */