aboutsummaryrefslogblamecommitdiffstats
path: root/contrib/libs/clapack/zpftrs.c
blob: 9e5b151f8e651c869bae3bb88b4ea07d34752ea9 (plain) (tree)


































































































































































































































































                                                                                
/* zpftrs.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static doublecomplex c_b1 = {1.,0.};

/* Subroutine */ int zpftrs_(char *transr, char *uplo, integer *n, integer *
	nrhs, doublecomplex *a, doublecomplex *b, integer *ldb, integer *info)
{
    /* System generated locals */
    integer b_dim1, b_offset, i__1;

    /* Local variables */
    logical normaltransr;
    extern logical lsame_(char *, char *);
    logical lower;
    extern /* Subroutine */ int ztfsm_(char *, char *, char *, char *, char *, 
	     integer *, integer *, doublecomplex *, doublecomplex *, 
	    doublecomplex *, integer *), xerbla_(char *, integer *);


/*  -- LAPACK routine (version 3.2)                                    -- */

/*  -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */
/*  -- November 2008                                                   -- */

/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZPFTRS solves a system of linear equations A*X = B with a Hermitian */
/*  positive definite matrix A using the Cholesky factorization */
/*  A = U**H*U or A = L*L**H computed by ZPFTRF. */

/*  Arguments */
/*  ========= */

/*  TRANSR    (input) CHARACTER */
/*          = 'N':  The Normal TRANSR of RFP A is stored; */
/*          = 'C':  The Conjugate-transpose TRANSR of RFP A is stored. */

/*  UPLO    (input) CHARACTER */
/*          = 'U':  Upper triangle of RFP A is stored; */
/*          = 'L':  Lower triangle of RFP A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrix B.  NRHS >= 0. */

/*  A       (input) COMPLEX*16 array, dimension ( N*(N+1)/2 ); */
/*          The triangular factor U or L from the Cholesky factorization */
/*          of RFP A = U**H*U or RFP A = L*L**H, as computed by ZPFTRF. */
/*          See note below for more details about RFP A. */

/*  B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */
/*          On entry, the right hand side matrix B. */
/*          On exit, the solution matrix X. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  Note: */
/*  ===== */

/*  We first consider Standard Packed Format when N is even. */
/*  We give an example where N = 6. */

/*      AP is Upper             AP is Lower */

/*   00 01 02 03 04 05       00 */
/*      11 12 13 14 15       10 11 */
/*         22 23 24 25       20 21 22 */
/*            33 34 35       30 31 32 33 */
/*               44 45       40 41 42 43 44 */
/*                  55       50 51 52 53 54 55 */


/*  Let TRANSR = 'N'. RFP holds AP as follows: */
/*  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
/*  three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
/*  conjugate-transpose of the first three columns of AP upper. */
/*  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
/*  three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
/*  conjugate-transpose of the last three columns of AP lower. */
/*  To denote conjugate we place -- above the element. This covers the */
/*  case N even and TRANSR = 'N'. */

/*         RFP A                   RFP A */

/*                                -- -- -- */
/*        03 04 05                33 43 53 */
/*                                   -- -- */
/*        13 14 15                00 44 54 */
/*                                      -- */
/*        23 24 25                10 11 55 */

/*        33 34 35                20 21 22 */
/*        -- */
/*        00 44 45                30 31 32 */
/*        -- -- */
/*        01 11 55                40 41 42 */
/*        -- -- -- */
/*        02 12 22                50 51 52 */

/*  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
/*  transpose of RFP A above. One therefore gets: */


/*           RFP A                   RFP A */

/*     -- -- -- --                -- -- -- -- -- -- */
/*     03 13 23 33 00 01 02    33 00 10 20 30 40 50 */
/*     -- -- -- -- --                -- -- -- -- -- */
/*     04 14 24 34 44 11 12    43 44 11 21 31 41 51 */
/*     -- -- -- -- -- --                -- -- -- -- */
/*     05 15 25 35 45 55 22    53 54 55 22 32 42 52 */


/*  We next  consider Standard Packed Format when N is odd. */
/*  We give an example where N = 5. */

/*     AP is Upper                 AP is Lower */

/*   00 01 02 03 04              00 */
/*      11 12 13 14              10 11 */
/*         22 23 24              20 21 22 */
/*            33 34              30 31 32 33 */
/*               44              40 41 42 43 44 */


/*  Let TRANSR = 'N'. RFP holds AP as follows: */
/*  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
/*  three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
/*  conjugate-transpose of the first two   columns of AP upper. */
/*  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
/*  three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
/*  conjugate-transpose of the last two   columns of AP lower. */
/*  To denote conjugate we place -- above the element. This covers the */
/*  case N odd  and TRANSR = 'N'. */

/*         RFP A                   RFP A */

/*                                   -- -- */
/*        02 03 04                00 33 43 */
/*                                      -- */
/*        12 13 14                10 11 44 */

/*        22 23 24                20 21 22 */
/*        -- */
/*        00 33 34                30 31 32 */
/*        -- -- */
/*        01 11 44                40 41 42 */

/*  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
/*  transpose of RFP A above. One therefore gets: */


/*           RFP A                   RFP A */

/*     -- -- --                   -- -- -- -- -- -- */
/*     02 12 22 00 01             00 10 20 30 40 50 */
/*     -- -- -- --                   -- -- -- -- -- */
/*     03 13 23 33 11             33 11 21 31 41 51 */
/*     -- -- -- -- --                   -- -- -- -- */
/*     04 14 24 34 44             43 44 22 32 42 52 */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    normaltransr = lsame_(transr, "N");
    lower = lsame_(uplo, "L");
    if (! normaltransr && ! lsame_(transr, "C")) {
	*info = -1;
    } else if (! lower && ! lsame_(uplo, "U")) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*nrhs < 0) {
	*info = -4;
    } else if (*ldb < max(1,*n)) {
	*info = -7;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZPFTRS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *nrhs == 0) {
	return 0;
    }

/*     start execution: there are two triangular solves */

    if (lower) {
	ztfsm_(transr, "L", uplo, "N", "N", n, nrhs, &c_b1, a, &b[b_offset], 
		ldb);
	ztfsm_(transr, "L", uplo, "C", "N", n, nrhs, &c_b1, a, &b[b_offset], 
		ldb);
    } else {
	ztfsm_(transr, "L", uplo, "C", "N", n, nrhs, &c_b1, a, &b[b_offset], 
		ldb);
	ztfsm_(transr, "L", uplo, "N", "N", n, nrhs, &c_b1, a, &b[b_offset], 
		ldb);
    }

    return 0;

/*     End of ZPFTRS */

} /* zpftrs_ */