/* zlartv.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int zlartv_(integer *n, doublecomplex *x, integer *incx,
doublecomplex *y, integer *incy, doublereal *c__, doublecomplex *s,
integer *incc)
{
/* System generated locals */
integer i__1, i__2, i__3, i__4;
doublecomplex z__1, z__2, z__3, z__4;
/* Builtin functions */
void d_cnjg(doublecomplex *, doublecomplex *);
/* Local variables */
integer i__, ic, ix, iy;
doublecomplex xi, yi;
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZLARTV applies a vector of complex plane rotations with real cosines */
/* to elements of the complex vectors x and y. For i = 1,2,...,n */
/* ( x(i) ) := ( c(i) s(i) ) ( x(i) ) */
/* ( y(i) ) ( -conjg(s(i)) c(i) ) ( y(i) ) */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The number of plane rotations to be applied. */
/* X (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCX) */
/* The vector x. */
/* INCX (input) INTEGER */
/* The increment between elements of X. INCX > 0. */
/* Y (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCY) */
/* The vector y. */
/* INCY (input) INTEGER */
/* The increment between elements of Y. INCY > 0. */
/* C (input) DOUBLE PRECISION array, dimension (1+(N-1)*INCC) */
/* The cosines of the plane rotations. */
/* S (input) COMPLEX*16 array, dimension (1+(N-1)*INCC) */
/* The sines of the plane rotations. */
/* INCC (input) INTEGER */
/* The increment between elements of C and S. INCC > 0. */
/* ===================================================================== */
/* .. Local Scalars .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
--s;
--c__;
--y;
--x;
/* Function Body */
ix = 1;
iy = 1;
ic = 1;
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = ix;
xi.r = x[i__2].r, xi.i = x[i__2].i;
i__2 = iy;
yi.r = y[i__2].r, yi.i = y[i__2].i;
i__2 = ix;
i__3 = ic;
z__2.r = c__[i__3] * xi.r, z__2.i = c__[i__3] * xi.i;
i__4 = ic;
z__3.r = s[i__4].r * yi.r - s[i__4].i * yi.i, z__3.i = s[i__4].r *
yi.i + s[i__4].i * yi.r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
x[i__2].r = z__1.r, x[i__2].i = z__1.i;
i__2 = iy;
i__3 = ic;
z__2.r = c__[i__3] * yi.r, z__2.i = c__[i__3] * yi.i;
d_cnjg(&z__4, &s[ic]);
z__3.r = z__4.r * xi.r - z__4.i * xi.i, z__3.i = z__4.r * xi.i +
z__4.i * xi.r;
z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
ix += *incx;
iy += *incy;
ic += *incc;
/* L10: */
}
return 0;
/* End of ZLARTV */
} /* zlartv_ */