/* zhpevx.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
/* Subroutine */ int zhpevx_(char *jobz, char *range, char *uplo, integer *n,
doublecomplex *ap, doublereal *vl, doublereal *vu, integer *il,
integer *iu, doublereal *abstol, integer *m, doublereal *w,
doublecomplex *z__, integer *ldz, doublecomplex *work, doublereal *
rwork, integer *iwork, integer *ifail, integer *info)
{
/* System generated locals */
integer z_dim1, z_offset, i__1, i__2;
doublereal d__1, d__2;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer i__, j, jj;
doublereal eps, vll, vuu, tmp1;
integer indd, inde;
doublereal anrm;
integer imax;
doublereal rmin, rmax;
logical test;
integer itmp1, indee;
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
integer *);
doublereal sigma;
extern logical lsame_(char *, char *);
integer iinfo;
char order[1];
extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
doublereal *, integer *);
logical wantz;
extern /* Subroutine */ int zswap_(integer *, doublecomplex *, integer *,
doublecomplex *, integer *);
extern doublereal dlamch_(char *);
logical alleig, indeig;
integer iscale, indibl;
logical valeig;
doublereal safmin;
extern /* Subroutine */ int xerbla_(char *, integer *), zdscal_(
integer *, doublereal *, doublecomplex *, integer *);
doublereal abstll, bignum;
integer indiwk, indisp, indtau;
extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *,
integer *), dstebz_(char *, char *, integer *, doublereal *,
doublereal *, integer *, integer *, doublereal *, doublereal *,
doublereal *, integer *, integer *, doublereal *, integer *,
integer *, doublereal *, integer *, integer *);
extern doublereal zlanhp_(char *, char *, integer *, doublecomplex *,
doublereal *);
integer indrwk, indwrk, nsplit;
doublereal smlnum;
extern /* Subroutine */ int zhptrd_(char *, integer *, doublecomplex *,
doublereal *, doublereal *, doublecomplex *, integer *),
zstein_(integer *, doublereal *, doublereal *, integer *,
doublereal *, integer *, integer *, doublecomplex *, integer *,
doublereal *, integer *, integer *, integer *), zsteqr_(char *,
integer *, doublereal *, doublereal *, doublecomplex *, integer *,
doublereal *, integer *), zupgtr_(char *, integer *,
doublecomplex *, doublecomplex *, doublecomplex *, integer *,
doublecomplex *, integer *), zupmtr_(char *, char *, char
*, integer *, integer *, doublecomplex *, doublecomplex *,
doublecomplex *, integer *, doublecomplex *, integer *);
/* -- LAPACK driver routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZHPEVX computes selected eigenvalues and, optionally, eigenvectors */
/* of a complex Hermitian matrix A in packed storage. */
/* Eigenvalues/vectors can be selected by specifying either a range of */
/* values or a range of indices for the desired eigenvalues. */
/* Arguments */
/* ========= */
/* JOBZ (input) CHARACTER*1 */
/* = 'N': Compute eigenvalues only; */
/* = 'V': Compute eigenvalues and eigenvectors. */
/* RANGE (input) CHARACTER*1 */
/* = 'A': all eigenvalues will be found; */
/* = 'V': all eigenvalues in the half-open interval (VL,VU] */
/* will be found; */
/* = 'I': the IL-th through IU-th eigenvalues will be found. */
/* UPLO (input) CHARACTER*1 */
/* = 'U': Upper triangle of A is stored; */
/* = 'L': Lower triangle of A is stored. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) */
/* On entry, the upper or lower triangle of the Hermitian matrix */
/* A, packed columnwise in a linear array. The j-th column of A */
/* is stored in the array AP as follows: */
/* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
/* On exit, AP is overwritten by values generated during the */
/* reduction to tridiagonal form. If UPLO = 'U', the diagonal */
/* and first superdiagonal of the tridiagonal matrix T overwrite */
/* the corresponding elements of A, and if UPLO = 'L', the */
/* diagonal and first subdiagonal of T overwrite the */
/* corresponding elements of A. */
/* VL (input) DOUBLE PRECISION */
/* VU (input) DOUBLE PRECISION */
/* If RANGE='V', the lower and upper bounds of the interval to */
/* be searched for eigenvalues. VL < VU. */
/* Not referenced if RANGE = 'A' or 'I'. */
/* IL (input) INTEGER */
/* IU (input) INTEGER */
/* If RANGE='I', the indices (in ascending order) of the */
/* smallest and largest eigenvalues to be returned. */
/* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/* Not referenced if RANGE = 'A' or 'V'. */
/* ABSTOL (input) DOUBLE PRECISION */
/* The absolute error tolerance for the eigenvalues. */
/* An approximate eigenvalue is accepted as converged */
/* when it is determined to lie in an interval [a,b] */
/* of width less than or equal to */
/* ABSTOL + EPS * max( |a|,|b| ) , */
/* where EPS is the machine precision. If ABSTOL is less than */
/* or equal to zero, then EPS*|T| will be used in its place, */
/* where |T| is the 1-norm of the tridiagonal matrix obtained */
/* by reducing AP to tridiagonal form. */
/* Eigenvalues will be computed most accurately when ABSTOL is */
/* set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
/* If this routine returns with INFO>0, indicating that some */
/* eigenvectors did not converge, try setting ABSTOL to */
/* 2*DLAMCH('S'). */
/* See "Computing Small Singular Values of Bidiagonal Matrices */
/* with Guaranteed High Relative Accuracy," by Demmel and */
/* Kahan, LAPACK Working Note #3. */
/* M (output) INTEGER */
/* The total number of eigenvalues found. 0 <= M <= N. */
/* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
/* W (output) DOUBLE PRECISION array, dimension (N) */
/* If INFO = 0, the selected eigenvalues in ascending order. */
/* Z (output) COMPLEX*16 array, dimension (LDZ, max(1,M)) */
/* If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
/* contain the orthonormal eigenvectors of the matrix A */
/* corresponding to the selected eigenvalues, with the i-th */
/* column of Z holding the eigenvector associated with W(i). */
/* If an eigenvector fails to converge, then that column of Z */
/* contains the latest approximation to the eigenvector, and */
/* the index of the eigenvector is returned in IFAIL. */
/* If JOBZ = 'N', then Z is not referenced. */
/* Note: the user must ensure that at least max(1,M) columns are */
/* supplied in the array Z; if RANGE = 'V', the exact value of M */
/* is not known in advance and an upper bound must be used. */
/* LDZ (input) INTEGER */
/* The leading dimension of the array Z. LDZ >= 1, and if */
/* JOBZ = 'V', LDZ >= max(1,N). */
/* WORK (workspace) COMPLEX*16 array, dimension (2*N) */
/* RWORK (workspace) DOUBLE PRECISION array, dimension (7*N) */
/* IWORK (workspace) INTEGER array, dimension (5*N) */
/* IFAIL (output) INTEGER array, dimension (N) */
/* If JOBZ = 'V', then if INFO = 0, the first M elements of */
/* IFAIL are zero. If INFO > 0, then IFAIL contains the */
/* indices of the eigenvectors that failed to converge. */
/* If JOBZ = 'N', then IFAIL is not referenced. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: if INFO = i, then i eigenvectors failed to converge. */
/* Their indices are stored in array IFAIL. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--ap;
--w;
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
--work;
--rwork;
--iwork;
--ifail;
/* Function Body */
wantz = lsame_(jobz, "V");
alleig = lsame_(range, "A");
valeig = lsame_(range, "V");
indeig = lsame_(range, "I");
*info = 0;
if (! (wantz || lsame_(jobz, "N"))) {
*info = -1;
} else if (! (alleig || valeig || indeig)) {
*info = -2;
} else if (! (lsame_(uplo, "L") || lsame_(uplo,
"U"))) {
*info = -3;
} else if (*n < 0) {
*info = -4;
} else {
if (valeig) {
if (*n > 0 && *vu <= *vl) {
*info = -7;
}
} else if (indeig) {
if (*il < 1 || *il > max(1,*n)) {
*info = -8;
} else if (*iu < min(*n,*il) || *iu > *n) {
*info = -9;
}
}
}
if (*info == 0) {
if (*ldz < 1 || wantz && *ldz < *n) {
*info = -14;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZHPEVX", &i__1);
return 0;
}
/* Quick return if possible */
*m = 0;
if (*n == 0) {
return 0;
}
if (*n == 1) {
if (alleig || indeig) {
*m = 1;
w[1] = ap[1].r;
} else {
if (*vl < ap[1].r && *vu >= ap[1].r) {
*m = 1;
w[1] = ap[1].r;
}
}
if (wantz) {
i__1 = z_dim1 + 1;
z__[i__1].r = 1., z__[i__1].i = 0.;
}
return 0;
}
/* Get machine constants. */
safmin = dlamch_("Safe minimum");
eps = dlamch_("Precision");
smlnum = safmin / eps;
bignum = 1. / smlnum;
rmin = sqrt(smlnum);
/* Computing MIN */
d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
rmax = min(d__1,d__2);
/* Scale matrix to allowable range, if necessary. */
iscale = 0;
abstll = *abstol;
if (valeig) {
vll = *vl;
vuu = *vu;
} else {
vll = 0.;
vuu = 0.;
}
anrm = zlanhp_("M", uplo, n, &ap[1], &rwork[1]);
if (anrm > 0. && anrm < rmin) {
iscale = 1;
sigma = rmin / anrm;
} else if (anrm > rmax) {
iscale = 1;
sigma = rmax / anrm;
}
if (iscale == 1) {
i__1 = *n * (*n + 1) / 2;
zdscal_(&i__1, &sigma, &ap[1], &c__1);
if (*abstol > 0.) {
abstll = *abstol * sigma;
}
if (valeig) {
vll = *vl * sigma;
vuu = *vu * sigma;
}
}
/* Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form. */
indd = 1;
inde = indd + *n;
indrwk = inde + *n;
indtau = 1;
indwrk = indtau + *n;
zhptrd_(uplo, n, &ap[1], &rwork[indd], &rwork[inde], &work[indtau], &
iinfo);
/* If all eigenvalues are desired and ABSTOL is less than or equal */
/* to zero, then call DSTERF or ZUPGTR and ZSTEQR. If this fails */
/* for some eigenvalue, then try DSTEBZ. */
test = FALSE_;
if (indeig) {
if (*il == 1 && *iu == *n) {
test = TRUE_;
}
}
if ((alleig || test) && *abstol <= 0.) {
dcopy_(n, &rwork[indd], &c__1, &w[1], &c__1);
indee = indrwk + (*n << 1);
if (! wantz) {
i__1 = *n - 1;
dcopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
dsterf_(n, &w[1], &rwork[indee], info);
} else {
zupgtr_(uplo, n, &ap[1], &work[indtau], &z__[z_offset], ldz, &
work[indwrk], &iinfo);
i__1 = *n - 1;
dcopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
zsteqr_(jobz, n, &w[1], &rwork[indee], &z__[z_offset], ldz, &
rwork[indrwk], info);
if (*info == 0) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
ifail[i__] = 0;
/* L10: */
}
}
}
if (*info == 0) {
*m = *n;
goto L20;
}
*info = 0;
}
/* Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN. */
if (wantz) {
*(unsigned char *)order = 'B';
} else {
*(unsigned char *)order = 'E';
}
indibl = 1;
indisp = indibl + *n;
indiwk = indisp + *n;
dstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &rwork[indd], &
rwork[inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &
rwork[indrwk], &iwork[indiwk], info);
if (wantz) {
zstein_(n, &rwork[indd], &rwork[inde], m, &w[1], &iwork[indibl], &
iwork[indisp], &z__[z_offset], ldz, &rwork[indrwk], &iwork[
indiwk], &ifail[1], info);
/* Apply unitary matrix used in reduction to tridiagonal */
/* form to eigenvectors returned by ZSTEIN. */
indwrk = indtau + *n;
zupmtr_("L", uplo, "N", n, m, &ap[1], &work[indtau], &z__[z_offset],
ldz, &work[indwrk], &iinfo);
}
/* If matrix was scaled, then rescale eigenvalues appropriately. */
L20:
if (iscale == 1) {
if (*info == 0) {
imax = *m;
} else {
imax = *info - 1;
}
d__1 = 1. / sigma;
dscal_(&imax, &d__1, &w[1], &c__1);
}
/* If eigenvalues are not in order, then sort them, along with */
/* eigenvectors. */
if (wantz) {
i__1 = *m - 1;
for (j = 1; j <= i__1; ++j) {
i__ = 0;
tmp1 = w[j];
i__2 = *m;
for (jj = j + 1; jj <= i__2; ++jj) {
if (w[jj] < tmp1) {
i__ = jj;
tmp1 = w[jj];
}
/* L30: */
}
if (i__ != 0) {
itmp1 = iwork[indibl + i__ - 1];
w[i__] = w[j];
iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
w[j] = tmp1;
iwork[indibl + j - 1] = itmp1;
zswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1],
&c__1);
if (*info != 0) {
itmp1 = ifail[i__];
ifail[i__] = ifail[j];
ifail[j] = itmp1;
}
}
/* L40: */
}
}
return 0;
/* End of ZHPEVX */
} /* zhpevx_ */