/* zhecon.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
/* Subroutine */ int zhecon_(char *uplo, integer *n, doublecomplex *a,
integer *lda, integer *ipiv, doublereal *anorm, doublereal *rcond,
doublecomplex *work, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
/* Local variables */
integer i__, kase;
extern logical lsame_(char *, char *);
integer isave[3];
logical upper;
extern /* Subroutine */ int zlacn2_(integer *, doublecomplex *,
doublecomplex *, doublereal *, integer *, integer *), xerbla_(
char *, integer *);
doublereal ainvnm;
extern /* Subroutine */ int zhetrs_(char *, integer *, integer *,
doublecomplex *, integer *, integer *, doublecomplex *, integer *,
integer *);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH. */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZHECON estimates the reciprocal of the condition number of a complex */
/* Hermitian matrix A using the factorization A = U*D*U**H or */
/* A = L*D*L**H computed by ZHETRF. */
/* An estimate is obtained for norm(inv(A)), and the reciprocal of the */
/* condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* Specifies whether the details of the factorization are stored */
/* as an upper or lower triangular matrix. */
/* = 'U': Upper triangular, form is A = U*D*U**H; */
/* = 'L': Lower triangular, form is A = L*D*L**H. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* A (input) COMPLEX*16 array, dimension (LDA,N) */
/* The block diagonal matrix D and the multipliers used to */
/* obtain the factor U or L as computed by ZHETRF. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* IPIV (input) INTEGER array, dimension (N) */
/* Details of the interchanges and the block structure of D */
/* as determined by ZHETRF. */
/* ANORM (input) DOUBLE PRECISION */
/* The 1-norm of the original matrix A. */
/* RCOND (output) DOUBLE PRECISION */
/* The reciprocal of the condition number of the matrix A, */
/* computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an */
/* estimate of the 1-norm of inv(A) computed in this routine. */
/* WORK (workspace) COMPLEX*16 array, dimension (2*N) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Local Arrays .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--ipiv;
--work;
/* Function Body */
*info = 0;
upper = lsame_(uplo, "U");
if (! upper && ! lsame_(uplo, "L")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < max(1,*n)) {
*info = -4;
} else if (*anorm < 0.) {
*info = -6;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZHECON", &i__1);
return 0;
}
/* Quick return if possible */
*rcond = 0.;
if (*n == 0) {
*rcond = 1.;
return 0;
} else if (*anorm <= 0.) {
return 0;
}
/* Check that the diagonal matrix D is nonsingular. */
if (upper) {
/* Upper triangular storage: examine D from bottom to top */
for (i__ = *n; i__ >= 1; --i__) {
i__1 = i__ + i__ * a_dim1;
if (ipiv[i__] > 0 && (a[i__1].r == 0. && a[i__1].i == 0.)) {
return 0;
}
/* L10: */
}
} else {
/* Lower triangular storage: examine D from top to bottom. */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = i__ + i__ * a_dim1;
if (ipiv[i__] > 0 && (a[i__2].r == 0. && a[i__2].i == 0.)) {
return 0;
}
/* L20: */
}
}
/* Estimate the 1-norm of the inverse. */
kase = 0;
L30:
zlacn2_(n, &work[*n + 1], &work[1], &ainvnm, &kase, isave);
if (kase != 0) {
/* Multiply by inv(L*D*L') or inv(U*D*U'). */
zhetrs_(uplo, n, &c__1, &a[a_offset], lda, &ipiv[1], &work[1], n,
info);
goto L30;
}
/* Compute the estimate of the reciprocal condition number. */
if (ainvnm != 0.) {
*rcond = 1. / ainvnm / *anorm;
}
return 0;
/* End of ZHECON */
} /* zhecon_ */