/* zhbevd.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static doublecomplex c_b1 = {0.,0.};
static doublecomplex c_b2 = {1.,0.};
static doublereal c_b13 = 1.;
static integer c__1 = 1;
/* Subroutine */ int zhbevd_(char *jobz, char *uplo, integer *n, integer *kd,
doublecomplex *ab, integer *ldab, doublereal *w, doublecomplex *z__,
integer *ldz, doublecomplex *work, integer *lwork, doublereal *rwork,
integer *lrwork, integer *iwork, integer *liwork, integer *info)
{
/* System generated locals */
integer ab_dim1, ab_offset, z_dim1, z_offset, i__1;
doublereal d__1;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
doublereal eps;
integer inde;
doublereal anrm;
integer imax;
doublereal rmin, rmax;
integer llwk2;
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
integer *);
doublereal sigma;
extern logical lsame_(char *, char *);
integer iinfo;
extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *,
integer *, doublecomplex *, doublecomplex *, integer *,
doublecomplex *, integer *, doublecomplex *, doublecomplex *,
integer *);
integer lwmin;
logical lower;
integer llrwk;
logical wantz;
integer indwk2;
extern doublereal dlamch_(char *);
integer iscale;
doublereal safmin;
extern doublereal zlanhb_(char *, char *, integer *, integer *,
doublecomplex *, integer *, doublereal *);
extern /* Subroutine */ int xerbla_(char *, integer *);
doublereal bignum;
extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *,
integer *), zlascl_(char *, integer *, integer *, doublereal *,
doublereal *, integer *, integer *, doublecomplex *, integer *,
integer *), zstedc_(char *, integer *, doublereal *,
doublereal *, doublecomplex *, integer *, doublecomplex *,
integer *, doublereal *, integer *, integer *, integer *, integer
*), zhbtrd_(char *, char *, integer *, integer *,
doublecomplex *, integer *, doublereal *, doublereal *,
doublecomplex *, integer *, doublecomplex *, integer *);
integer indwrk, liwmin;
extern /* Subroutine */ int zlacpy_(char *, integer *, integer *,
doublecomplex *, integer *, doublecomplex *, integer *);
integer lrwmin;
doublereal smlnum;
logical lquery;
/* -- LAPACK driver routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZHBEVD computes all the eigenvalues and, optionally, eigenvectors of */
/* a complex Hermitian band matrix A. If eigenvectors are desired, it */
/* uses a divide and conquer algorithm. */
/* The divide and conquer algorithm makes very mild assumptions about */
/* floating point arithmetic. It will work on machines with a guard */
/* digit in add/subtract, or on those binary machines without guard */
/* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
/* Cray-2. It could conceivably fail on hexadecimal or decimal machines */
/* without guard digits, but we know of none. */
/* Arguments */
/* ========= */
/* JOBZ (input) CHARACTER*1 */
/* = 'N': Compute eigenvalues only; */
/* = 'V': Compute eigenvalues and eigenvectors. */
/* UPLO (input) CHARACTER*1 */
/* = 'U': Upper triangle of A is stored; */
/* = 'L': Lower triangle of A is stored. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* KD (input) INTEGER */
/* The number of superdiagonals of the matrix A if UPLO = 'U', */
/* or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
/* AB (input/output) COMPLEX*16 array, dimension (LDAB, N) */
/* On entry, the upper or lower triangle of the Hermitian band */
/* matrix A, stored in the first KD+1 rows of the array. The */
/* j-th column of A is stored in the j-th column of the array AB */
/* as follows: */
/* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
/* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */
/* On exit, AB is overwritten by values generated during the */
/* reduction to tridiagonal form. If UPLO = 'U', the first */
/* superdiagonal and the diagonal of the tridiagonal matrix T */
/* are returned in rows KD and KD+1 of AB, and if UPLO = 'L', */
/* the diagonal and first subdiagonal of T are returned in the */
/* first two rows of AB. */
/* LDAB (input) INTEGER */
/* The leading dimension of the array AB. LDAB >= KD + 1. */
/* W (output) DOUBLE PRECISION array, dimension (N) */
/* If INFO = 0, the eigenvalues in ascending order. */
/* Z (output) COMPLEX*16 array, dimension (LDZ, N) */
/* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */
/* eigenvectors of the matrix A, with the i-th column of Z */
/* holding the eigenvector associated with W(i). */
/* If JOBZ = 'N', then Z is not referenced. */
/* LDZ (input) INTEGER */
/* The leading dimension of the array Z. LDZ >= 1, and if */
/* JOBZ = 'V', LDZ >= max(1,N). */
/* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. */
/* If N <= 1, LWORK must be at least 1. */
/* If JOBZ = 'N' and N > 1, LWORK must be at least N. */
/* If JOBZ = 'V' and N > 1, LWORK must be at least 2*N**2. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal sizes of the WORK, RWORK and */
/* IWORK arrays, returns these values as the first entries of */
/* the WORK, RWORK and IWORK arrays, and no error message */
/* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
/* RWORK (workspace/output) DOUBLE PRECISION array, */
/* dimension (LRWORK) */
/* On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. */
/* LRWORK (input) INTEGER */
/* The dimension of array RWORK. */
/* If N <= 1, LRWORK must be at least 1. */
/* If JOBZ = 'N' and N > 1, LRWORK must be at least N. */
/* If JOBZ = 'V' and N > 1, LRWORK must be at least */
/* 1 + 5*N + 2*N**2. */
/* If LRWORK = -1, then a workspace query is assumed; the */
/* routine only calculates the optimal sizes of the WORK, RWORK */
/* and IWORK arrays, returns these values as the first entries */
/* of the WORK, RWORK and IWORK arrays, and no error message */
/* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
/* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
/* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
/* LIWORK (input) INTEGER */
/* The dimension of array IWORK. */
/* If JOBZ = 'N' or N <= 1, LIWORK must be at least 1. */
/* If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N . */
/* If LIWORK = -1, then a workspace query is assumed; the */
/* routine only calculates the optimal sizes of the WORK, RWORK */
/* and IWORK arrays, returns these values as the first entries */
/* of the WORK, RWORK and IWORK arrays, and no error message */
/* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
/* INFO (output) INTEGER */
/* = 0: successful exit. */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > 0: if INFO = i, the algorithm failed to converge; i */
/* off-diagonal elements of an intermediate tridiagonal */
/* form did not converge to zero. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
ab_dim1 = *ldab;
ab_offset = 1 + ab_dim1;
ab -= ab_offset;
--w;
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
--work;
--rwork;
--iwork;
/* Function Body */
wantz = lsame_(jobz, "V");
lower = lsame_(uplo, "L");
lquery = *lwork == -1 || *liwork == -1 || *lrwork == -1;
*info = 0;
if (*n <= 1) {
lwmin = 1;
lrwmin = 1;
liwmin = 1;
} else {
if (wantz) {
/* Computing 2nd power */
i__1 = *n;
lwmin = i__1 * i__1 << 1;
/* Computing 2nd power */
i__1 = *n;
lrwmin = *n * 5 + 1 + (i__1 * i__1 << 1);
liwmin = *n * 5 + 3;
} else {
lwmin = *n;
lrwmin = *n;
liwmin = 1;
}
}
if (! (wantz || lsame_(jobz, "N"))) {
*info = -1;
} else if (! (lower || lsame_(uplo, "U"))) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*kd < 0) {
*info = -4;
} else if (*ldab < *kd + 1) {
*info = -6;
} else if (*ldz < 1 || wantz && *ldz < *n) {
*info = -9;
}
if (*info == 0) {
work[1].r = (doublereal) lwmin, work[1].i = 0.;
rwork[1] = (doublereal) lrwmin;
iwork[1] = liwmin;
if (*lwork < lwmin && ! lquery) {
*info = -11;
} else if (*lrwork < lrwmin && ! lquery) {
*info = -13;
} else if (*liwork < liwmin && ! lquery) {
*info = -15;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZHBEVD", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
if (*n == 1) {
i__1 = ab_dim1 + 1;
w[1] = ab[i__1].r;
if (wantz) {
i__1 = z_dim1 + 1;
z__[i__1].r = 1., z__[i__1].i = 0.;
}
return 0;
}
/* Get machine constants. */
safmin = dlamch_("Safe minimum");
eps = dlamch_("Precision");
smlnum = safmin / eps;
bignum = 1. / smlnum;
rmin = sqrt(smlnum);
rmax = sqrt(bignum);
/* Scale matrix to allowable range, if necessary. */
anrm = zlanhb_("M", uplo, n, kd, &ab[ab_offset], ldab, &rwork[1]);
iscale = 0;
if (anrm > 0. && anrm < rmin) {
iscale = 1;
sigma = rmin / anrm;
} else if (anrm > rmax) {
iscale = 1;
sigma = rmax / anrm;
}
if (iscale == 1) {
if (lower) {
zlascl_("B", kd, kd, &c_b13, &sigma, n, n, &ab[ab_offset], ldab,
info);
} else {
zlascl_("Q", kd, kd, &c_b13, &sigma, n, n, &ab[ab_offset], ldab,
info);
}
}
/* Call ZHBTRD to reduce Hermitian band matrix to tridiagonal form. */
inde = 1;
indwrk = inde + *n;
indwk2 = *n * *n + 1;
llwk2 = *lwork - indwk2 + 1;
llrwk = *lrwork - indwrk + 1;
zhbtrd_(jobz, uplo, n, kd, &ab[ab_offset], ldab, &w[1], &rwork[inde], &
z__[z_offset], ldz, &work[1], &iinfo);
/* For eigenvalues only, call DSTERF. For eigenvectors, call ZSTEDC. */
if (! wantz) {
dsterf_(n, &w[1], &rwork[inde], info);
} else {
zstedc_("I", n, &w[1], &rwork[inde], &work[1], n, &work[indwk2], &
llwk2, &rwork[indwrk], &llrwk, &iwork[1], liwork, info);
zgemm_("N", "N", n, n, n, &c_b2, &z__[z_offset], ldz, &work[1], n, &
c_b1, &work[indwk2], n);
zlacpy_("A", n, n, &work[indwk2], n, &z__[z_offset], ldz);
}
/* If matrix was scaled, then rescale eigenvalues appropriately. */
if (iscale == 1) {
if (*info == 0) {
imax = *n;
} else {
imax = *info - 1;
}
d__1 = 1. / sigma;
dscal_(&imax, &d__1, &w[1], &c__1);
}
work[1].r = (doublereal) lwmin, work[1].i = 0.;
rwork[1] = (doublereal) lrwmin;
iwork[1] = liwmin;
return 0;
/* End of ZHBEVD */
} /* zhbevd_ */