aboutsummaryrefslogblamecommitdiffstats
path: root/contrib/libs/clapack/zgeqp3.c
blob: 9e95d757aca45effb0ae222dffa5f95b5dfb7446 (plain) (tree)







































































































































































































































































































































































                                                                               
/* zgeqp3.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__3 = 3;
static integer c__2 = 2;

/* Subroutine */ int zgeqp3_(integer *m, integer *n, doublecomplex *a, 
	integer *lda, integer *jpvt, doublecomplex *tau, doublecomplex *work, 
	integer *lwork, doublereal *rwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;

    /* Local variables */
    integer j, jb, na, nb, sm, sn, nx, fjb, iws, nfxd, nbmin, minmn, minws;
    extern /* Subroutine */ int zswap_(integer *, doublecomplex *, integer *, 
	    doublecomplex *, integer *), zlaqp2_(integer *, integer *, 
	    integer *, doublecomplex *, integer *, integer *, doublecomplex *, 
	     doublereal *, doublereal *, doublecomplex *);
    extern doublereal dznrm2_(integer *, doublecomplex *, integer *);
    extern /* Subroutine */ int xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *);
    extern /* Subroutine */ int zgeqrf_(integer *, integer *, doublecomplex *, 
	     integer *, doublecomplex *, doublecomplex *, integer *, integer *
);
    integer topbmn, sminmn;
    extern /* Subroutine */ int zlaqps_(integer *, integer *, integer *, 
	    integer *, integer *, doublecomplex *, integer *, integer *, 
	    doublecomplex *, doublereal *, doublereal *, doublecomplex *, 
	    doublecomplex *, integer *);
    integer lwkopt;
    logical lquery;
    extern /* Subroutine */ int zunmqr_(char *, char *, integer *, integer *, 
	    integer *, doublecomplex *, integer *, doublecomplex *, 
	    doublecomplex *, integer *, doublecomplex *, integer *, integer *);


/*  -- LAPACK routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  ZGEQP3 computes a QR factorization with column pivoting of a */
/*  matrix A:  A*P = Q*R  using Level 3 BLAS. */

/*  Arguments */
/*  ========= */

/*  M       (input) INTEGER */
/*          The number of rows of the matrix A. M >= 0. */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix A.  N >= 0. */

/*  A       (input/output) COMPLEX*16 array, dimension (LDA,N) */
/*          On entry, the M-by-N matrix A. */
/*          On exit, the upper triangle of the array contains the */
/*          min(M,N)-by-N upper trapezoidal matrix R; the elements below */
/*          the diagonal, together with the array TAU, represent the */
/*          unitary matrix Q as a product of min(M,N) elementary */
/*          reflectors. */

/*  LDA     (input) INTEGER */
/*          The leading dimension of the array A. LDA >= max(1,M). */

/*  JPVT    (input/output) INTEGER array, dimension (N) */
/*          On entry, if JPVT(J).ne.0, the J-th column of A is permuted */
/*          to the front of A*P (a leading column); if JPVT(J)=0, */
/*          the J-th column of A is a free column. */
/*          On exit, if JPVT(J)=K, then the J-th column of A*P was the */
/*          the K-th column of A. */

/*  TAU     (output) COMPLEX*16 array, dimension (min(M,N)) */
/*          The scalar factors of the elementary reflectors. */

/*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
/*          On exit, if INFO=0, WORK(1) returns the optimal LWORK. */

/*  LWORK   (input) INTEGER */
/*          The dimension of the array WORK. LWORK >= N+1. */
/*          For optimal performance LWORK >= ( N+1 )*NB, where NB */
/*          is the optimal blocksize. */

/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA. */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N) */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit. */
/*          < 0: if INFO = -i, the i-th argument had an illegal value. */

/*  Further Details */
/*  =============== */

/*  The matrix Q is represented as a product of elementary reflectors */

/*     Q = H(1) H(2) . . . H(k), where k = min(m,n). */

/*  Each H(i) has the form */

/*     H(i) = I - tau * v * v' */

/*  where tau is a real/complex scalar, and v is a real/complex vector */
/*  with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in */
/*  A(i+1:m,i), and tau in TAU(i). */

/*  Based on contributions by */
/*    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain */
/*    X. Sun, Computer Science Dept., Duke University, USA */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test input arguments */
/*     ==================== */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    --jpvt;
    --tau;
    --work;
    --rwork;

    /* Function Body */
    *info = 0;
    lquery = *lwork == -1;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < max(1,*m)) {
	*info = -4;
    }

    if (*info == 0) {
	minmn = min(*m,*n);
	if (minmn == 0) {
	    iws = 1;
	    lwkopt = 1;
	} else {
	    iws = *n + 1;
	    nb = ilaenv_(&c__1, "ZGEQRF", " ", m, n, &c_n1, &c_n1);
	    lwkopt = (*n + 1) * nb;
	}
	work[1].r = (doublereal) lwkopt, work[1].i = 0.;

	if (*lwork < iws && ! lquery) {
	    *info = -8;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("ZGEQP3", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible. */

    if (minmn == 0) {
	return 0;
    }

/*     Move initial columns up front. */

    nfxd = 1;
    i__1 = *n;
    for (j = 1; j <= i__1; ++j) {
	if (jpvt[j] != 0) {
	    if (j != nfxd) {
		zswap_(m, &a[j * a_dim1 + 1], &c__1, &a[nfxd * a_dim1 + 1], &
			c__1);
		jpvt[j] = jpvt[nfxd];
		jpvt[nfxd] = j;
	    } else {
		jpvt[j] = j;
	    }
	    ++nfxd;
	} else {
	    jpvt[j] = j;
	}
/* L10: */
    }
    --nfxd;

/*     Factorize fixed columns */
/*     ======================= */

/*     Compute the QR factorization of fixed columns and update */
/*     remaining columns. */

    if (nfxd > 0) {
	na = min(*m,nfxd);
/* CC      CALL ZGEQR2( M, NA, A, LDA, TAU, WORK, INFO ) */
	zgeqrf_(m, &na, &a[a_offset], lda, &tau[1], &work[1], lwork, info);
/* Computing MAX */
	i__1 = iws, i__2 = (integer) work[1].r;
	iws = max(i__1,i__2);
	if (na < *n) {
/* CC         CALL ZUNM2R( 'Left', 'Conjugate Transpose', M, N-NA, */
/* CC  $                   NA, A, LDA, TAU, A( 1, NA+1 ), LDA, WORK, */
/* CC  $                   INFO ) */
	    i__1 = *n - na;
	    zunmqr_("Left", "Conjugate Transpose", m, &i__1, &na, &a[a_offset]
, lda, &tau[1], &a[(na + 1) * a_dim1 + 1], lda, &work[1], 
		    lwork, info);
/* Computing MAX */
	    i__1 = iws, i__2 = (integer) work[1].r;
	    iws = max(i__1,i__2);
	}
    }

/*     Factorize free columns */
/*     ====================== */

    if (nfxd < minmn) {

	sm = *m - nfxd;
	sn = *n - nfxd;
	sminmn = minmn - nfxd;

/*        Determine the block size. */

	nb = ilaenv_(&c__1, "ZGEQRF", " ", &sm, &sn, &c_n1, &c_n1);
	nbmin = 2;
	nx = 0;

	if (nb > 1 && nb < sminmn) {

/*           Determine when to cross over from blocked to unblocked code. */

/* Computing MAX */
	    i__1 = 0, i__2 = ilaenv_(&c__3, "ZGEQRF", " ", &sm, &sn, &c_n1, &
		    c_n1);
	    nx = max(i__1,i__2);


	    if (nx < sminmn) {

/*              Determine if workspace is large enough for blocked code. */

		minws = (sn + 1) * nb;
		iws = max(iws,minws);
		if (*lwork < minws) {

/*                 Not enough workspace to use optimal NB: Reduce NB and */
/*                 determine the minimum value of NB. */

		    nb = *lwork / (sn + 1);
/* Computing MAX */
		    i__1 = 2, i__2 = ilaenv_(&c__2, "ZGEQRF", " ", &sm, &sn, &
			    c_n1, &c_n1);
		    nbmin = max(i__1,i__2);


		}
	    }
	}

/*        Initialize partial column norms. The first N elements of work */
/*        store the exact column norms. */

	i__1 = *n;
	for (j = nfxd + 1; j <= i__1; ++j) {
	    rwork[j] = dznrm2_(&sm, &a[nfxd + 1 + j * a_dim1], &c__1);
	    rwork[*n + j] = rwork[j];
/* L20: */
	}

	if (nb >= nbmin && nb < sminmn && nx < sminmn) {

/*           Use blocked code initially. */

	    j = nfxd + 1;

/*           Compute factorization: while loop. */


	    topbmn = minmn - nx;
L30:
	    if (j <= topbmn) {
/* Computing MIN */
		i__1 = nb, i__2 = topbmn - j + 1;
		jb = min(i__1,i__2);

/*              Factorize JB columns among columns J:N. */

		i__1 = *n - j + 1;
		i__2 = j - 1;
		i__3 = *n - j + 1;
		zlaqps_(m, &i__1, &i__2, &jb, &fjb, &a[j * a_dim1 + 1], lda, &
			jpvt[j], &tau[j], &rwork[j], &rwork[*n + j], &work[1], 
			 &work[jb + 1], &i__3);

		j += fjb;
		goto L30;
	    }
	} else {
	    j = nfxd + 1;
	}

/*        Use unblocked code to factor the last or only block. */


	if (j <= minmn) {
	    i__1 = *n - j + 1;
	    i__2 = j - 1;
	    zlaqp2_(m, &i__1, &i__2, &a[j * a_dim1 + 1], lda, &jpvt[j], &tau[
		    j], &rwork[j], &rwork[*n + j], &work[1]);
	}

    }

    work[1].r = (doublereal) iws, work[1].i = 0.;
    return 0;

/*     End of ZGEQP3 */

} /* zgeqp3_ */