/* strevc.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static logical c_false = FALSE_;
static integer c__1 = 1;
static real c_b22 = 1.f;
static real c_b25 = 0.f;
static integer c__2 = 2;
static logical c_true = TRUE_;
/* Subroutine */ int strevc_(char *side, char *howmny, logical *select,
integer *n, real *t, integer *ldt, real *vl, integer *ldvl, real *vr,
integer *ldvr, integer *mm, integer *m, real *work, integer *info)
{
/* System generated locals */
integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
i__2, i__3;
real r__1, r__2, r__3, r__4;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer i__, j, k;
real x[4] /* was [2][2] */;
integer j1, j2, n2, ii, ki, ip, is;
real wi, wr, rec, ulp, beta, emax;
logical pair, allv;
integer ierr;
real unfl, ovfl, smin;
extern doublereal sdot_(integer *, real *, integer *, real *, integer *);
logical over;
real vmax;
integer jnxt;
real scale;
extern logical lsame_(char *, char *);
extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
real remax;
logical leftv;
extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *,
real *, integer *, real *, integer *, real *, real *, integer *);
logical bothv;
real vcrit;
logical somev;
extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
integer *);
real xnorm;
extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *,
real *, integer *), slaln2_(logical *, integer *, integer *, real
*, real *, real *, integer *, real *, real *, real *, integer *,
real *, real *, real *, integer *, real *, real *, integer *),
slabad_(real *, real *);
extern doublereal slamch_(char *);
extern /* Subroutine */ int xerbla_(char *, integer *);
real bignum;
extern integer isamax_(integer *, real *, integer *);
logical rightv;
real smlnum;
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* STREVC computes some or all of the right and/or left eigenvectors of */
/* a real upper quasi-triangular matrix T. */
/* Matrices of this type are produced by the Schur factorization of */
/* a real general matrix: A = Q*T*Q**T, as computed by SHSEQR. */
/* The right eigenvector x and the left eigenvector y of T corresponding */
/* to an eigenvalue w are defined by: */
/* T*x = w*x, (y**H)*T = w*(y**H) */
/* where y**H denotes the conjugate transpose of y. */
/* The eigenvalues are not input to this routine, but are read directly */
/* from the diagonal blocks of T. */
/* This routine returns the matrices X and/or Y of right and left */
/* eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an */
/* input matrix. If Q is the orthogonal factor that reduces a matrix */
/* A to Schur form T, then Q*X and Q*Y are the matrices of right and */
/* left eigenvectors of A. */
/* Arguments */
/* ========= */
/* SIDE (input) CHARACTER*1 */
/* = 'R': compute right eigenvectors only; */
/* = 'L': compute left eigenvectors only; */
/* = 'B': compute both right and left eigenvectors. */
/* HOWMNY (input) CHARACTER*1 */
/* = 'A': compute all right and/or left eigenvectors; */
/* = 'B': compute all right and/or left eigenvectors, */
/* backtransformed by the matrices in VR and/or VL; */
/* = 'S': compute selected right and/or left eigenvectors, */
/* as indicated by the logical array SELECT. */
/* SELECT (input/output) LOGICAL array, dimension (N) */
/* If HOWMNY = 'S', SELECT specifies the eigenvectors to be */
/* computed. */
/* If w(j) is a real eigenvalue, the corresponding real */
/* eigenvector is computed if SELECT(j) is .TRUE.. */
/* If w(j) and w(j+1) are the real and imaginary parts of a */
/* complex eigenvalue, the corresponding complex eigenvector is */
/* computed if either SELECT(j) or SELECT(j+1) is .TRUE., and */
/* on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is set to */
/* .FALSE.. */
/* Not referenced if HOWMNY = 'A' or 'B'. */
/* N (input) INTEGER */
/* The order of the matrix T. N >= 0. */
/* T (input) REAL array, dimension (LDT,N) */
/* The upper quasi-triangular matrix T in Schur canonical form. */
/* LDT (input) INTEGER */
/* The leading dimension of the array T. LDT >= max(1,N). */
/* VL (input/output) REAL array, dimension (LDVL,MM) */
/* On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must */
/* contain an N-by-N matrix Q (usually the orthogonal matrix Q */
/* of Schur vectors returned by SHSEQR). */
/* On exit, if SIDE = 'L' or 'B', VL contains: */
/* if HOWMNY = 'A', the matrix Y of left eigenvectors of T; */
/* if HOWMNY = 'B', the matrix Q*Y; */
/* if HOWMNY = 'S', the left eigenvectors of T specified by */
/* SELECT, stored consecutively in the columns */
/* of VL, in the same order as their */
/* eigenvalues. */
/* A complex eigenvector corresponding to a complex eigenvalue */
/* is stored in two consecutive columns, the first holding the */
/* real part, and the second the imaginary part. */
/* Not referenced if SIDE = 'R'. */
/* LDVL (input) INTEGER */
/* The leading dimension of the array VL. LDVL >= 1, and if */
/* SIDE = 'L' or 'B', LDVL >= N. */
/* VR (input/output) REAL array, dimension (LDVR,MM) */
/* On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must */
/* contain an N-by-N matrix Q (usually the orthogonal matrix Q */
/* of Schur vectors returned by SHSEQR). */
/* On exit, if SIDE = 'R' or 'B', VR contains: */
/* if HOWMNY = 'A', the matrix X of right eigenvectors of T; */
/* if HOWMNY = 'B', the matrix Q*X; */
/* if HOWMNY = 'S', the right eigenvectors of T specified by */
/* SELECT, stored consecutively in the columns */
/* of VR, in the same order as their */
/* eigenvalues. */
/* A complex eigenvector corresponding to a complex eigenvalue */
/* is stored in two consecutive columns, the first holding the */
/* real part and the second the imaginary part. */
/* Not referenced if SIDE = 'L'. */
/* LDVR (input) INTEGER */
/* The leading dimension of the array VR. LDVR >= 1, and if */
/* SIDE = 'R' or 'B', LDVR >= N. */
/* MM (input) INTEGER */
/* The number of columns in the arrays VL and/or VR. MM >= M. */
/* M (output) INTEGER */
/* The number of columns in the arrays VL and/or VR actually */
/* used to store the eigenvectors. */
/* If HOWMNY = 'A' or 'B', M is set to N. */
/* Each selected real eigenvector occupies one column and each */
/* selected complex eigenvector occupies two columns. */
/* WORK (workspace) REAL array, dimension (3*N) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* Further Details */
/* =============== */
/* The algorithm used in this program is basically backward (forward) */
/* substitution, with scaling to make the the code robust against */
/* possible overflow. */
/* Each eigenvector is normalized so that the element of largest */
/* magnitude has magnitude 1; here the magnitude of a complex number */
/* (x,y) is taken to be |x| + |y|. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Local Arrays .. */
/* .. */
/* .. Executable Statements .. */
/* Decode and test the input parameters */
/* Parameter adjustments */
--select;
t_dim1 = *ldt;
t_offset = 1 + t_dim1;
t -= t_offset;
vl_dim1 = *ldvl;
vl_offset = 1 + vl_dim1;
vl -= vl_offset;
vr_dim1 = *ldvr;
vr_offset = 1 + vr_dim1;
vr -= vr_offset;
--work;
/* Function Body */
bothv = lsame_(side, "B");
rightv = lsame_(side, "R") || bothv;
leftv = lsame_(side, "L") || bothv;
allv = lsame_(howmny, "A");
over = lsame_(howmny, "B");
somev = lsame_(howmny, "S");
*info = 0;
if (! rightv && ! leftv) {
*info = -1;
} else if (! allv && ! over && ! somev) {
*info = -2;
} else if (*n < 0) {
*info = -4;
} else if (*ldt < max(1,*n)) {
*info = -6;
} else if (*ldvl < 1 || leftv && *ldvl < *n) {
*info = -8;
} else if (*ldvr < 1 || rightv && *ldvr < *n) {
*info = -10;
} else {
/* Set M to the number of columns required to store the selected */
/* eigenvectors, standardize the array SELECT if necessary, and */
/* test MM. */
if (somev) {
*m = 0;
pair = FALSE_;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (pair) {
pair = FALSE_;
select[j] = FALSE_;
} else {
if (j < *n) {
if (t[j + 1 + j * t_dim1] == 0.f) {
if (select[j]) {
++(*m);
}
} else {
pair = TRUE_;
if (select[j] || select[j + 1]) {
select[j] = TRUE_;
*m += 2;
}
}
} else {
if (select[*n]) {
++(*m);
}
}
}
/* L10: */
}
} else {
*m = *n;
}
if (*mm < *m) {
*info = -11;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("STREVC", &i__1);
return 0;
}
/* Quick return if possible. */
if (*n == 0) {
return 0;
}
/* Set the constants to control overflow. */
unfl = slamch_("Safe minimum");
ovfl = 1.f / unfl;
slabad_(&unfl, &ovfl);
ulp = slamch_("Precision");
smlnum = unfl * (*n / ulp);
bignum = (1.f - ulp) / smlnum;
/* Compute 1-norm of each column of strictly upper triangular */
/* part of T to control overflow in triangular solver. */
work[1] = 0.f;
i__1 = *n;
for (j = 2; j <= i__1; ++j) {
work[j] = 0.f;
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
work[j] += (r__1 = t[i__ + j * t_dim1], dabs(r__1));
/* L20: */
}
/* L30: */
}
/* Index IP is used to specify the real or complex eigenvalue: */
/* IP = 0, real eigenvalue, */
/* 1, first of conjugate complex pair: (wr,wi) */
/* -1, second of conjugate complex pair: (wr,wi) */
n2 = *n << 1;
if (rightv) {
/* Compute right eigenvectors. */
ip = 0;
is = *m;
for (ki = *n; ki >= 1; --ki) {
if (ip == 1) {
goto L130;
}
if (ki == 1) {
goto L40;
}
if (t[ki + (ki - 1) * t_dim1] == 0.f) {
goto L40;
}
ip = -1;
L40:
if (somev) {
if (ip == 0) {
if (! select[ki]) {
goto L130;
}
} else {
if (! select[ki - 1]) {
goto L130;
}
}
}
/* Compute the KI-th eigenvalue (WR,WI). */
wr = t[ki + ki * t_dim1];
wi = 0.f;
if (ip != 0) {
wi = sqrt((r__1 = t[ki + (ki - 1) * t_dim1], dabs(r__1))) *
sqrt((r__2 = t[ki - 1 + ki * t_dim1], dabs(r__2)));
}
/* Computing MAX */
r__1 = ulp * (dabs(wr) + dabs(wi));
smin = dmax(r__1,smlnum);
if (ip == 0) {
/* Real right eigenvector */
work[ki + *n] = 1.f;
/* Form right-hand side */
i__1 = ki - 1;
for (k = 1; k <= i__1; ++k) {
work[k + *n] = -t[k + ki * t_dim1];
/* L50: */
}
/* Solve the upper quasi-triangular system: */
/* (T(1:KI-1,1:KI-1) - WR)*X = SCALE*WORK. */
jnxt = ki - 1;
for (j = ki - 1; j >= 1; --j) {
if (j > jnxt) {
goto L60;
}
j1 = j;
j2 = j;
jnxt = j - 1;
if (j > 1) {
if (t[j + (j - 1) * t_dim1] != 0.f) {
j1 = j - 1;
jnxt = j - 2;
}
}
if (j1 == j2) {
/* 1-by-1 diagonal block */
slaln2_(&c_false, &c__1, &c__1, &smin, &c_b22, &t[j +
j * t_dim1], ldt, &c_b22, &c_b22, &work[j + *
n], n, &wr, &c_b25, x, &c__2, &scale, &xnorm,
&ierr);
/* Scale X(1,1) to avoid overflow when updating */
/* the right-hand side. */
if (xnorm > 1.f) {
if (work[j] > bignum / xnorm) {
x[0] /= xnorm;
scale /= xnorm;
}
}
/* Scale if necessary */
if (scale != 1.f) {
sscal_(&ki, &scale, &work[*n + 1], &c__1);
}
work[j + *n] = x[0];
/* Update right-hand side */
i__1 = j - 1;
r__1 = -x[0];
saxpy_(&i__1, &r__1, &t[j * t_dim1 + 1], &c__1, &work[
*n + 1], &c__1);
} else {
/* 2-by-2 diagonal block */
slaln2_(&c_false, &c__2, &c__1, &smin, &c_b22, &t[j -
1 + (j - 1) * t_dim1], ldt, &c_b22, &c_b22, &
work[j - 1 + *n], n, &wr, &c_b25, x, &c__2, &
scale, &xnorm, &ierr);
/* Scale X(1,1) and X(2,1) to avoid overflow when */
/* updating the right-hand side. */
if (xnorm > 1.f) {
/* Computing MAX */
r__1 = work[j - 1], r__2 = work[j];
beta = dmax(r__1,r__2);
if (beta > bignum / xnorm) {
x[0] /= xnorm;
x[1] /= xnorm;
scale /= xnorm;
}
}
/* Scale if necessary */
if (scale != 1.f) {
sscal_(&ki, &scale, &work[*n + 1], &c__1);
}
work[j - 1 + *n] = x[0];
work[j + *n] = x[1];
/* Update right-hand side */
i__1 = j - 2;
r__1 = -x[0];
saxpy_(&i__1, &r__1, &t[(j - 1) * t_dim1 + 1], &c__1,
&work[*n + 1], &c__1);
i__1 = j - 2;
r__1 = -x[1];
saxpy_(&i__1, &r__1, &t[j * t_dim1 + 1], &c__1, &work[
*n + 1], &c__1);
}
L60:
;
}
/* Copy the vector x or Q*x to VR and normalize. */
if (! over) {
scopy_(&ki, &work[*n + 1], &c__1, &vr[is * vr_dim1 + 1], &
c__1);
ii = isamax_(&ki, &vr[is * vr_dim1 + 1], &c__1);
remax = 1.f / (r__1 = vr[ii + is * vr_dim1], dabs(r__1));
sscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1);
i__1 = *n;
for (k = ki + 1; k <= i__1; ++k) {
vr[k + is * vr_dim1] = 0.f;
/* L70: */
}
} else {
if (ki > 1) {
i__1 = ki - 1;
sgemv_("N", n, &i__1, &c_b22, &vr[vr_offset], ldvr, &
work[*n + 1], &c__1, &work[ki + *n], &vr[ki *
vr_dim1 + 1], &c__1);
}
ii = isamax_(n, &vr[ki * vr_dim1 + 1], &c__1);
remax = 1.f / (r__1 = vr[ii + ki * vr_dim1], dabs(r__1));
sscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1);
}
} else {
/* Complex right eigenvector. */
/* Initial solve */
/* [ (T(KI-1,KI-1) T(KI-1,KI) ) - (WR + I* WI)]*X = 0. */
/* [ (T(KI,KI-1) T(KI,KI) ) ] */
if ((r__1 = t[ki - 1 + ki * t_dim1], dabs(r__1)) >= (r__2 = t[
ki + (ki - 1) * t_dim1], dabs(r__2))) {
work[ki - 1 + *n] = 1.f;
work[ki + n2] = wi / t[ki - 1 + ki * t_dim1];
} else {
work[ki - 1 + *n] = -wi / t[ki + (ki - 1) * t_dim1];
work[ki + n2] = 1.f;
}
work[ki + *n] = 0.f;
work[ki - 1 + n2] = 0.f;
/* Form right-hand side */
i__1 = ki - 2;
for (k = 1; k <= i__1; ++k) {
work[k + *n] = -work[ki - 1 + *n] * t[k + (ki - 1) *
t_dim1];
work[k + n2] = -work[ki + n2] * t[k + ki * t_dim1];
/* L80: */
}
/* Solve upper quasi-triangular system: */
/* (T(1:KI-2,1:KI-2) - (WR+i*WI))*X = SCALE*(WORK+i*WORK2) */
jnxt = ki - 2;
for (j = ki - 2; j >= 1; --j) {
if (j > jnxt) {
goto L90;
}
j1 = j;
j2 = j;
jnxt = j - 1;
if (j > 1) {
if (t[j + (j - 1) * t_dim1] != 0.f) {
j1 = j - 1;
jnxt = j - 2;
}
}
if (j1 == j2) {
/* 1-by-1 diagonal block */
slaln2_(&c_false, &c__1, &c__2, &smin, &c_b22, &t[j +
j * t_dim1], ldt, &c_b22, &c_b22, &work[j + *
n], n, &wr, &wi, x, &c__2, &scale, &xnorm, &
ierr);
/* Scale X(1,1) and X(1,2) to avoid overflow when */
/* updating the right-hand side. */
if (xnorm > 1.f) {
if (work[j] > bignum / xnorm) {
x[0] /= xnorm;
x[2] /= xnorm;
scale /= xnorm;
}
}
/* Scale if necessary */
if (scale != 1.f) {
sscal_(&ki, &scale, &work[*n + 1], &c__1);
sscal_(&ki, &scale, &work[n2 + 1], &c__1);
}
work[j + *n] = x[0];
work[j + n2] = x[2];
/* Update the right-hand side */
i__1 = j - 1;
r__1 = -x[0];
saxpy_(&i__1, &r__1, &t[j * t_dim1 + 1], &c__1, &work[
*n + 1], &c__1);
i__1 = j - 1;
r__1 = -x[2];
saxpy_(&i__1, &r__1, &t[j * t_dim1 + 1], &c__1, &work[
n2 + 1], &c__1);
} else {
/* 2-by-2 diagonal block */
slaln2_(&c_false, &c__2, &c__2, &smin, &c_b22, &t[j -
1 + (j - 1) * t_dim1], ldt, &c_b22, &c_b22, &
work[j - 1 + *n], n, &wr, &wi, x, &c__2, &
scale, &xnorm, &ierr);
/* Scale X to avoid overflow when updating */
/* the right-hand side. */
if (xnorm > 1.f) {
/* Computing MAX */
r__1 = work[j - 1], r__2 = work[j];
beta = dmax(r__1,r__2);
if (beta > bignum / xnorm) {
rec = 1.f / xnorm;
x[0] *= rec;
x[2] *= rec;
x[1] *= rec;
x[3] *= rec;
scale *= rec;
}
}
/* Scale if necessary */
if (scale != 1.f) {
sscal_(&ki, &scale, &work[*n + 1], &c__1);
sscal_(&ki, &scale, &work[n2 + 1], &c__1);
}
work[j - 1 + *n] = x[0];
work[j + *n] = x[1];
work[j - 1 + n2] = x[2];
work[j + n2] = x[3];
/* Update the right-hand side */
i__1 = j - 2;
r__1 = -x[0];
saxpy_(&i__1, &r__1, &t[(j - 1) * t_dim1 + 1], &c__1,
&work[*n + 1], &c__1);
i__1 = j - 2;
r__1 = -x[1];
saxpy_(&i__1, &r__1, &t[j * t_dim1 + 1], &c__1, &work[
*n + 1], &c__1);
i__1 = j - 2;
r__1 = -x[2];
saxpy_(&i__1, &r__1, &t[(j - 1) * t_dim1 + 1], &c__1,
&work[n2 + 1], &c__1);
i__1 = j - 2;
r__1 = -x[3];
saxpy_(&i__1, &r__1, &t[j * t_dim1 + 1], &c__1, &work[
n2 + 1], &c__1);
}
L90:
;
}
/* Copy the vector x or Q*x to VR and normalize. */
if (! over) {
scopy_(&ki, &work[*n + 1], &c__1, &vr[(is - 1) * vr_dim1
+ 1], &c__1);
scopy_(&ki, &work[n2 + 1], &c__1, &vr[is * vr_dim1 + 1], &
c__1);
emax = 0.f;
i__1 = ki;
for (k = 1; k <= i__1; ++k) {
/* Computing MAX */
r__3 = emax, r__4 = (r__1 = vr[k + (is - 1) * vr_dim1]
, dabs(r__1)) + (r__2 = vr[k + is * vr_dim1],
dabs(r__2));
emax = dmax(r__3,r__4);
/* L100: */
}
remax = 1.f / emax;
sscal_(&ki, &remax, &vr[(is - 1) * vr_dim1 + 1], &c__1);
sscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1);
i__1 = *n;
for (k = ki + 1; k <= i__1; ++k) {
vr[k + (is - 1) * vr_dim1] = 0.f;
vr[k + is * vr_dim1] = 0.f;
/* L110: */
}
} else {
if (ki > 2) {
i__1 = ki - 2;
sgemv_("N", n, &i__1, &c_b22, &vr[vr_offset], ldvr, &
work[*n + 1], &c__1, &work[ki - 1 + *n], &vr[(
ki - 1) * vr_dim1 + 1], &c__1);
i__1 = ki - 2;
sgemv_("N", n, &i__1, &c_b22, &vr[vr_offset], ldvr, &
work[n2 + 1], &c__1, &work[ki + n2], &vr[ki *
vr_dim1 + 1], &c__1);
} else {
sscal_(n, &work[ki - 1 + *n], &vr[(ki - 1) * vr_dim1
+ 1], &c__1);
sscal_(n, &work[ki + n2], &vr[ki * vr_dim1 + 1], &
c__1);
}
emax = 0.f;
i__1 = *n;
for (k = 1; k <= i__1; ++k) {
/* Computing MAX */
r__3 = emax, r__4 = (r__1 = vr[k + (ki - 1) * vr_dim1]
, dabs(r__1)) + (r__2 = vr[k + ki * vr_dim1],
dabs(r__2));
emax = dmax(r__3,r__4);
/* L120: */
}
remax = 1.f / emax;
sscal_(n, &remax, &vr[(ki - 1) * vr_dim1 + 1], &c__1);
sscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1);
}
}
--is;
if (ip != 0) {
--is;
}
L130:
if (ip == 1) {
ip = 0;
}
if (ip == -1) {
ip = 1;
}
/* L140: */
}
}
if (leftv) {
/* Compute left eigenvectors. */
ip = 0;
is = 1;
i__1 = *n;
for (ki = 1; ki <= i__1; ++ki) {
if (ip == -1) {
goto L250;
}
if (ki == *n) {
goto L150;
}
if (t[ki + 1 + ki * t_dim1] == 0.f) {
goto L150;
}
ip = 1;
L150:
if (somev) {
if (! select[ki]) {
goto L250;
}
}
/* Compute the KI-th eigenvalue (WR,WI). */
wr = t[ki + ki * t_dim1];
wi = 0.f;
if (ip != 0) {
wi = sqrt((r__1 = t[ki + (ki + 1) * t_dim1], dabs(r__1))) *
sqrt((r__2 = t[ki + 1 + ki * t_dim1], dabs(r__2)));
}
/* Computing MAX */
r__1 = ulp * (dabs(wr) + dabs(wi));
smin = dmax(r__1,smlnum);
if (ip == 0) {
/* Real left eigenvector. */
work[ki + *n] = 1.f;
/* Form right-hand side */
i__2 = *n;
for (k = ki + 1; k <= i__2; ++k) {
work[k + *n] = -t[ki + k * t_dim1];
/* L160: */
}
/* Solve the quasi-triangular system: */
/* (T(KI+1:N,KI+1:N) - WR)'*X = SCALE*WORK */
vmax = 1.f;
vcrit = bignum;
jnxt = ki + 1;
i__2 = *n;
for (j = ki + 1; j <= i__2; ++j) {
if (j < jnxt) {
goto L170;
}
j1 = j;
j2 = j;
jnxt = j + 1;
if (j < *n) {
if (t[j + 1 + j * t_dim1] != 0.f) {
j2 = j + 1;
jnxt = j + 2;
}
}
if (j1 == j2) {
/* 1-by-1 diagonal block */
/* Scale if necessary to avoid overflow when forming */
/* the right-hand side. */
if (work[j] > vcrit) {
rec = 1.f / vmax;
i__3 = *n - ki + 1;
sscal_(&i__3, &rec, &work[ki + *n], &c__1);
vmax = 1.f;
vcrit = bignum;
}
i__3 = j - ki - 1;
work[j + *n] -= sdot_(&i__3, &t[ki + 1 + j * t_dim1],
&c__1, &work[ki + 1 + *n], &c__1);
/* Solve (T(J,J)-WR)'*X = WORK */
slaln2_(&c_false, &c__1, &c__1, &smin, &c_b22, &t[j +
j * t_dim1], ldt, &c_b22, &c_b22, &work[j + *
n], n, &wr, &c_b25, x, &c__2, &scale, &xnorm,
&ierr);
/* Scale if necessary */
if (scale != 1.f) {
i__3 = *n - ki + 1;
sscal_(&i__3, &scale, &work[ki + *n], &c__1);
}
work[j + *n] = x[0];
/* Computing MAX */
r__2 = (r__1 = work[j + *n], dabs(r__1));
vmax = dmax(r__2,vmax);
vcrit = bignum / vmax;
} else {
/* 2-by-2 diagonal block */
/* Scale if necessary to avoid overflow when forming */
/* the right-hand side. */
/* Computing MAX */
r__1 = work[j], r__2 = work[j + 1];
beta = dmax(r__1,r__2);
if (beta > vcrit) {
rec = 1.f / vmax;
i__3 = *n - ki + 1;
sscal_(&i__3, &rec, &work[ki + *n], &c__1);
vmax = 1.f;
vcrit = bignum;
}
i__3 = j - ki - 1;
work[j + *n] -= sdot_(&i__3, &t[ki + 1 + j * t_dim1],
&c__1, &work[ki + 1 + *n], &c__1);
i__3 = j - ki - 1;
work[j + 1 + *n] -= sdot_(&i__3, &t[ki + 1 + (j + 1) *
t_dim1], &c__1, &work[ki + 1 + *n], &c__1);
/* Solve */
/* [T(J,J)-WR T(J,J+1) ]'* X = SCALE*( WORK1 ) */
/* [T(J+1,J) T(J+1,J+1)-WR] ( WORK2 ) */
slaln2_(&c_true, &c__2, &c__1, &smin, &c_b22, &t[j +
j * t_dim1], ldt, &c_b22, &c_b22, &work[j + *
n], n, &wr, &c_b25, x, &c__2, &scale, &xnorm,
&ierr);
/* Scale if necessary */
if (scale != 1.f) {
i__3 = *n - ki + 1;
sscal_(&i__3, &scale, &work[ki + *n], &c__1);
}
work[j + *n] = x[0];
work[j + 1 + *n] = x[1];
/* Computing MAX */
r__3 = (r__1 = work[j + *n], dabs(r__1)), r__4 = (
r__2 = work[j + 1 + *n], dabs(r__2)), r__3 =
max(r__3,r__4);
vmax = dmax(r__3,vmax);
vcrit = bignum / vmax;
}
L170:
;
}
/* Copy the vector x or Q*x to VL and normalize. */
if (! over) {
i__2 = *n - ki + 1;
scopy_(&i__2, &work[ki + *n], &c__1, &vl[ki + is *
vl_dim1], &c__1);
i__2 = *n - ki + 1;
ii = isamax_(&i__2, &vl[ki + is * vl_dim1], &c__1) + ki -
1;
remax = 1.f / (r__1 = vl[ii + is * vl_dim1], dabs(r__1));
i__2 = *n - ki + 1;
sscal_(&i__2, &remax, &vl[ki + is * vl_dim1], &c__1);
i__2 = ki - 1;
for (k = 1; k <= i__2; ++k) {
vl[k + is * vl_dim1] = 0.f;
/* L180: */
}
} else {
if (ki < *n) {
i__2 = *n - ki;
sgemv_("N", n, &i__2, &c_b22, &vl[(ki + 1) * vl_dim1
+ 1], ldvl, &work[ki + 1 + *n], &c__1, &work[
ki + *n], &vl[ki * vl_dim1 + 1], &c__1);
}
ii = isamax_(n, &vl[ki * vl_dim1 + 1], &c__1);
remax = 1.f / (r__1 = vl[ii + ki * vl_dim1], dabs(r__1));
sscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1);
}
} else {
/* Complex left eigenvector. */
/* Initial solve: */
/* ((T(KI,KI) T(KI,KI+1) )' - (WR - I* WI))*X = 0. */
/* ((T(KI+1,KI) T(KI+1,KI+1)) ) */
if ((r__1 = t[ki + (ki + 1) * t_dim1], dabs(r__1)) >= (r__2 =
t[ki + 1 + ki * t_dim1], dabs(r__2))) {
work[ki + *n] = wi / t[ki + (ki + 1) * t_dim1];
work[ki + 1 + n2] = 1.f;
} else {
work[ki + *n] = 1.f;
work[ki + 1 + n2] = -wi / t[ki + 1 + ki * t_dim1];
}
work[ki + 1 + *n] = 0.f;
work[ki + n2] = 0.f;
/* Form right-hand side */
i__2 = *n;
for (k = ki + 2; k <= i__2; ++k) {
work[k + *n] = -work[ki + *n] * t[ki + k * t_dim1];
work[k + n2] = -work[ki + 1 + n2] * t[ki + 1 + k * t_dim1]
;
/* L190: */
}
/* Solve complex quasi-triangular system: */
/* ( T(KI+2,N:KI+2,N) - (WR-i*WI) )*X = WORK1+i*WORK2 */
vmax = 1.f;
vcrit = bignum;
jnxt = ki + 2;
i__2 = *n;
for (j = ki + 2; j <= i__2; ++j) {
if (j < jnxt) {
goto L200;
}
j1 = j;
j2 = j;
jnxt = j + 1;
if (j < *n) {
if (t[j + 1 + j * t_dim1] != 0.f) {
j2 = j + 1;
jnxt = j + 2;
}
}
if (j1 == j2) {
/* 1-by-1 diagonal block */
/* Scale if necessary to avoid overflow when */
/* forming the right-hand side elements. */
if (work[j] > vcrit) {
rec = 1.f / vmax;
i__3 = *n - ki + 1;
sscal_(&i__3, &rec, &work[ki + *n], &c__1);
i__3 = *n - ki + 1;
sscal_(&i__3, &rec, &work[ki + n2], &c__1);
vmax = 1.f;
vcrit = bignum;
}
i__3 = j - ki - 2;
work[j + *n] -= sdot_(&i__3, &t[ki + 2 + j * t_dim1],
&c__1, &work[ki + 2 + *n], &c__1);
i__3 = j - ki - 2;
work[j + n2] -= sdot_(&i__3, &t[ki + 2 + j * t_dim1],
&c__1, &work[ki + 2 + n2], &c__1);
/* Solve (T(J,J)-(WR-i*WI))*(X11+i*X12)= WK+I*WK2 */
r__1 = -wi;
slaln2_(&c_false, &c__1, &c__2, &smin, &c_b22, &t[j +
j * t_dim1], ldt, &c_b22, &c_b22, &work[j + *
n], n, &wr, &r__1, x, &c__2, &scale, &xnorm, &
ierr);
/* Scale if necessary */
if (scale != 1.f) {
i__3 = *n - ki + 1;
sscal_(&i__3, &scale, &work[ki + *n], &c__1);
i__3 = *n - ki + 1;
sscal_(&i__3, &scale, &work[ki + n2], &c__1);
}
work[j + *n] = x[0];
work[j + n2] = x[2];
/* Computing MAX */
r__3 = (r__1 = work[j + *n], dabs(r__1)), r__4 = (
r__2 = work[j + n2], dabs(r__2)), r__3 = max(
r__3,r__4);
vmax = dmax(r__3,vmax);
vcrit = bignum / vmax;
} else {
/* 2-by-2 diagonal block */
/* Scale if necessary to avoid overflow when forming */
/* the right-hand side elements. */
/* Computing MAX */
r__1 = work[j], r__2 = work[j + 1];
beta = dmax(r__1,r__2);
if (beta > vcrit) {
rec = 1.f / vmax;
i__3 = *n - ki + 1;
sscal_(&i__3, &rec, &work[ki + *n], &c__1);
i__3 = *n - ki + 1;
sscal_(&i__3, &rec, &work[ki + n2], &c__1);
vmax = 1.f;
vcrit = bignum;
}
i__3 = j - ki - 2;
work[j + *n] -= sdot_(&i__3, &t[ki + 2 + j * t_dim1],
&c__1, &work[ki + 2 + *n], &c__1);
i__3 = j - ki - 2;
work[j + n2] -= sdot_(&i__3, &t[ki + 2 + j * t_dim1],
&c__1, &work[ki + 2 + n2], &c__1);
i__3 = j - ki - 2;
work[j + 1 + *n] -= sdot_(&i__3, &t[ki + 2 + (j + 1) *
t_dim1], &c__1, &work[ki + 2 + *n], &c__1);
i__3 = j - ki - 2;
work[j + 1 + n2] -= sdot_(&i__3, &t[ki + 2 + (j + 1) *
t_dim1], &c__1, &work[ki + 2 + n2], &c__1);
/* Solve 2-by-2 complex linear equation */
/* ([T(j,j) T(j,j+1) ]'-(wr-i*wi)*I)*X = SCALE*B */
/* ([T(j+1,j) T(j+1,j+1)] ) */
r__1 = -wi;
slaln2_(&c_true, &c__2, &c__2, &smin, &c_b22, &t[j +
j * t_dim1], ldt, &c_b22, &c_b22, &work[j + *
n], n, &wr, &r__1, x, &c__2, &scale, &xnorm, &
ierr);
/* Scale if necessary */
if (scale != 1.f) {
i__3 = *n - ki + 1;
sscal_(&i__3, &scale, &work[ki + *n], &c__1);
i__3 = *n - ki + 1;
sscal_(&i__3, &scale, &work[ki + n2], &c__1);
}
work[j + *n] = x[0];
work[j + n2] = x[2];
work[j + 1 + *n] = x[1];
work[j + 1 + n2] = x[3];
/* Computing MAX */
r__1 = dabs(x[0]), r__2 = dabs(x[2]), r__1 = max(r__1,
r__2), r__2 = dabs(x[1]), r__1 = max(r__1,
r__2), r__2 = dabs(x[3]), r__1 = max(r__1,
r__2);
vmax = dmax(r__1,vmax);
vcrit = bignum / vmax;
}
L200:
;
}
/* Copy the vector x or Q*x to VL and normalize. */
if (! over) {
i__2 = *n - ki + 1;
scopy_(&i__2, &work[ki + *n], &c__1, &vl[ki + is *
vl_dim1], &c__1);
i__2 = *n - ki + 1;
scopy_(&i__2, &work[ki + n2], &c__1, &vl[ki + (is + 1) *
vl_dim1], &c__1);
emax = 0.f;
i__2 = *n;
for (k = ki; k <= i__2; ++k) {
/* Computing MAX */
r__3 = emax, r__4 = (r__1 = vl[k + is * vl_dim1],
dabs(r__1)) + (r__2 = vl[k + (is + 1) *
vl_dim1], dabs(r__2));
emax = dmax(r__3,r__4);
/* L220: */
}
remax = 1.f / emax;
i__2 = *n - ki + 1;
sscal_(&i__2, &remax, &vl[ki + is * vl_dim1], &c__1);
i__2 = *n - ki + 1;
sscal_(&i__2, &remax, &vl[ki + (is + 1) * vl_dim1], &c__1)
;
i__2 = ki - 1;
for (k = 1; k <= i__2; ++k) {
vl[k + is * vl_dim1] = 0.f;
vl[k + (is + 1) * vl_dim1] = 0.f;
/* L230: */
}
} else {
if (ki < *n - 1) {
i__2 = *n - ki - 1;
sgemv_("N", n, &i__2, &c_b22, &vl[(ki + 2) * vl_dim1
+ 1], ldvl, &work[ki + 2 + *n], &c__1, &work[
ki + *n], &vl[ki * vl_dim1 + 1], &c__1);
i__2 = *n - ki - 1;
sgemv_("N", n, &i__2, &c_b22, &vl[(ki + 2) * vl_dim1
+ 1], ldvl, &work[ki + 2 + n2], &c__1, &work[
ki + 1 + n2], &vl[(ki + 1) * vl_dim1 + 1], &
c__1);
} else {
sscal_(n, &work[ki + *n], &vl[ki * vl_dim1 + 1], &
c__1);
sscal_(n, &work[ki + 1 + n2], &vl[(ki + 1) * vl_dim1
+ 1], &c__1);
}
emax = 0.f;
i__2 = *n;
for (k = 1; k <= i__2; ++k) {
/* Computing MAX */
r__3 = emax, r__4 = (r__1 = vl[k + ki * vl_dim1],
dabs(r__1)) + (r__2 = vl[k + (ki + 1) *
vl_dim1], dabs(r__2));
emax = dmax(r__3,r__4);
/* L240: */
}
remax = 1.f / emax;
sscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1);
sscal_(n, &remax, &vl[(ki + 1) * vl_dim1 + 1], &c__1);
}
}
++is;
if (ip != 0) {
++is;
}
L250:
if (ip == -1) {
ip = 0;
}
if (ip == 1) {
ip = -1;
}
/* L260: */
}
}
return 0;
/* End of STREVC */
} /* strevc_ */